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Abstract: We introduce an implementation of a radix 4 dual recoding procedure for the squaring operation 
of an n-bit number which reduces the number of bit product terms employed in the previously known 
squaring methods obtained by either Booth radix-4 recoded multiplication or by radix 2 squaring. Several 
other squaring algorithms have been developed such as [WSMB99], [YW01], and [SNC01]. Employing the 
dual recoded radix-4 procedure for design of a squaring circuit introduces a significant reduction in power 
and area. Architecturally, radix-4 dual recoded squaring uses only the 1’s complement representation which 
allows for a simpler PPG structure as compared to the 2’s complement representation required for Booth 
radix-4 multiplication.  

1. Background 

The radix 4 recoding procedure utilizes Booth recoding. Let 

P  d n

2 
d n

2 1
d0 with 

di  2,1,0,1,2  be the Booth recoded radix 4 representation of Q  qn1qn2q0  [Bo51, Ru75]. It 

is important to recall how Booth radix-4 digit di of P is determined by the three bits q2i1q2iq2i1 of Q as 
can be seen from Table 1. Bit q-1 is considered a 0. 

 
Binary Booth Digit

100 
110, 101
000, 111 0 
001, 010 1 

011 2 
 

Table 1: Radix-4 Booth Recodings [Bo51, Ru75] 
 

Q 1100 01011000 10112 
11 

101 
001 1 
100 
011 2 
010 1 
000 0 
110 
001 1 

P  1 1 012 2 11 1  
4

 

 
Example 1: Shows how Q 1100 01011000 10112 is recoded to be represented by 

P  1 1 012 2 11 1  
4

 

 
The use of Booth radix-4 recoding for 16-bit integer multiplication for Q P  requires 88 entries and 9 
rows as illustrated in Figure 2 for the n-bit product. This is a considerable reduction of the 136 entries and 
16 rows for the radix-2 integer partial product array but provides no additional benefit for the squaring 



operation. A radix-2 squaring circuit was described in [PBD97] resulting in 72 entries as illustrated in 
Figure 3. 

 
 

1100 0101100010112

 (1 0 1 2 2 1 1 1)4

 
 

(selector digits) 

   0011 1010 0111 0100 
   1110 1001 1101 00 
   0101 1000 1011 
   0011 1010 00 
   0001 0110 
   0010 11 
   0000 
   00 

1 
1 
1 

2 
2 
1 
0 

1 

   0100 0000 1000 0101 2’s comp bits 

   0011 1001 0111 1001 Square 

Figure 2: Booth Recoded Radix 4 Multiplication  
 
 

(1100 0101 1000 1011)2 
                  [1000 1011]    

 
(selector bits) 

 1000 1011 0001 01o1 
 0001 0110 0010 o1 
 0000 0000 00o0 
 0101 1000 o1 
 0000 00o0 
 0000 o0 
 00o0 
 o1 

1 
1 
0 
1 
0 
0 
0 
1 

 0011 1001 0111 1001 Square 

Figure 3: Booth Recoded Radix-2 Squaring  
 
2. Algorithm 

The radix-4 dual recoded squaring algorithm determines the Booth digits in a right-to-left manner i.e. 
starting from the least significant bit and moving toward the most significant bit. Let Pi be the integer 
formed by shifting the radix 4 digit string right i places deleting the low order i digits obtaining 


Pi  d n

2 
d n

2 1
di  d j

j i

n
2 

 4 j i  

for i  0,1, n
2 , with P n

2 1
 0 and P0  P  Q . Since then Pi  4Pi1  di  and 

Pi
2 16Pi1

2  8Pi1  di di  for i  0,1,, n
2 , we obtain the following. 

 
Observation 1: 

Q2  8 Q2i2  q2i1 di  di
2 16i

i 0

n
2 1

  



Definition 1: LetQ  qn1qn2q0  with Qi 
Q

2 i  qn1qn2qi  for 0  i  n 1 and let 

di  2,1,0,1,2  be the ith digit of the Booth recoded radix 4 representation 

Q  P  d n

2 
d n

2 1
d0. 

Then the ith radix-4 partial square is 8 Q2i2  q2i1 di  di
2  where 8 Q2i2  q2i1  is the ith 

multiplicand factor for radix-4 dual recoded squaring and di is the ith recoded radix 4 select digit.  
 Recall that  q2i1 is effectively the sign bit of the recoded digit di , so we obtain the partial square 
identity  

8 Q2i2  q2i2 di  di
2  1 q2i1 8 Q2i2  q2i2 di  di

2 . 

It is important to observe that the 2’s complement of Q2i2  q2i1 reduces to the sign extended 1’s 

complement of Q2i2, as formally summarized in the following. 
 
Theorem 1: Let 


P  d n

2 
d n

2 1
d0 be the radix-4 dual recoded representation of Q  qn1qn2q0 . 

Let Q2i2
*  be the conditionally 1's complemented sign extended leading bits of Q 2 i 2  Q

2 i  2   given 

for i  0,1, n
2 1 by 


Q2i2

* 
qn1qn2q2i2, for q2i1  0

11q n1q n2q 2i2, for q2i1 1





 

Then 

 
 
  

2

0

2*
22

2 168
n

i
iii ddQQ . 

 
From Theorem 1 we observe that the PPG's for recoded radix 4 squaring are simpler than for a Booth 
recoded radix-4 multiplier since the complements are simply 1's complements. This means that for the n-bit 

integer radix-4 square: (1) we need to employ only the n
4  low order half of the Booth-4 select digits in 

forming the radix-4 dual recoded square array, (2) No complement bit row is needed as in Booth-radix 4 
multiplication, and (3) no sign extension of the partial squares are needed for the n-bit square. 
 Figure 4 illustrates the radix-4 dual recoded array for computing 

Q2  1100 010110001011 2
mod216 . There are only 40 entries in Figure 4 compared to the 72 

entries for radix 2 illustrated in Figure 3 and compared to the 88 entries for Booth recoded radix 4 
multiplication illustrated in Figure 2. 
 

 
1100 0101 |10|00| 10|11 

                  [ 2   1   1    1] 

 
Booth-4 select digits 

0111 0100  1110  10o1 
1101 0011  10o1 
1011 00o1 
01o0  

1 
1 
1 

2 

0011 1001  01 11  10 01 Square 

Figure 4: Radix-4 Dual Recoded Squaring  
 
3. Implementation 
 Based on the properties of Theorem 1, an efficient Partial Square Generator (PSG) was designed. 
Figure 5 is a Synopsys screen shot of an 8-bit PSG. The dataflow through the circuit is as follows: 

1. All the bits of the input, X, except for the 3 least significant bits are conditionally negated 
if x2 is 1, 

2. The output from step 1 is left shifted by 1 if x2  is equal to x0, 



3. If the three least significant bits of X are 0, 0Y else all but the 3 least significant bits 
of Y are the output from step 2 and 
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Figure 5: A Synopsys screen shot of an 8 bit PSG 
 
Using the PSG design above, the architecture of the squaring unit can be viewed in at least the two 
following methods depicted in figures 5. Figure 5 shows the architecture view of building the circuit 
independent of smaller versions of the circuit. The architecture in Figure 5 is constructed from the 

following components:  2
n  PSG’s of bit sizes n, n-2, …, 2, and an adder tree of height of nxlog  where x 

is the bit size of the adders used in the adder tree. 
 
4. Results 
 The radix-4 dual recoded squaring circuit and a general purpose multiplier were both implemented 
in verilog and mapped to OSU standard cell library [SCWH07]. Both circuits were constrained to run with-
in a 20ns clock-edge and were implemented for 16, 32, and 64 bit-widths. The charts in Figures 7-9 show a 
substantial gain in power, leakage power, and area for our customized squaring circuit compared to a 
multiplier circuit. 
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Figure 5: Datapath of 16-bit input/16-bit output Radix-4 Dual Recoded Squaring Circuit  

 



 

 
Figure 7: Power (mW) vs Bit-Width chart 

 
 

 
Figure 8: Leakage Power(nW) vs Bit-Width Chart 

 
 

 
Figure 9: Area vs Bit-Width chart 
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