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Abstract—Automatic modulation classification is a desired
feature in many modern software-defined radios; however, clas-
sification performance degrades with decreasing signal to noise
ratios. We propose employing a deep convolutional signal to noise
ratio estimation model to exploit relationships within signals of
similar signal to noise ratio ranges through signal to noise ratio
specific modulation classifiers. We utilize a two-stage process
where the signal to noise ratio is first estimated and then
demultiplexed into a modulation classifier that has been tuned
on signals with similar signal to noise ratios. Using the proposed
method, we build upon the current state-of-the-art and increase
classification performance at decreasing signal to noise ratios.

I. INTRODUCTION

A considerable amount of work has gone into Automatic
Modulation Classification (AMC) for a variety of applications
including cognitive radios, interference monitoring, and de-
fense applications. AMC plays a critical role in these systems
as it is a necessary step in demodulating an unknown signal.
In systems that utilize adaptive modulation schemes, AMC
can be used to determine the current channel conditions. With
knowledge of the channel conditions, the transmitter can adjust
the modulation scheme to maximize usage of the transmission
medium.

Although application specific, AMC in many situations
cannot assume any prior knowledge on the incoming signals.
When this is the case, AMC must be able to classify a
large variety of modulation schemes. Typical benchmarks are
constructed on the premise that the AMC must classify not
only the mode of modulation (e.g., QAM), but the exact
variant of that mode of modulation (e.g., 32QAM). These
architectures have proven to be effective at high signal to noise
ratios (SNRs) but degrade significantly at low SNRs which
occur often in real-world applications. Therefore, our aim in
this work is to improve AMC as SNR decreases.

To perform classification, a large variety of input features
have been investigated. Historically, AMC has been performed
through statistical moments and higher order cumulants [1]–
[3] derived from the received signal. Recent approaches [4]–
[7] use raw in-phase (I) and quadrature (Q) components
as features to predict the modulation variant of a signal.
Further works have investigated additional features including
IQ constellation plots [8]–[10].

After deriving input features, machine learning models are
used to determine statistical patterns in the data for the
classification task. Support vector machines, decision trees,
and neural networks are commonly used classifiers [4]–[7],

Fig. 1. Complete architecture using SNR regression and SNR-specific
classifiers.

[11], [12]. Residual neural networks (ResNet) along with
convolutional neural networks (CNN) have been shown to
achieve high classification performance for AMC [4]–[8].
Deep learning in AMC has become more prevalent in recent
years with promising performance and the ability to generalize
for large, complex datasets.

A task that is often overlooked in AMC is SNR estima-
tion. In previous work, models are trained to be as resilient
as possible under different SNRs; however, classification is
increasingly difficult as SNR degrades as a single model may
not be able to represent features specific to different noise
levels. At lower SNR values, the noise component of the signal
becomes more dominant and the features employed by the
classifier may not be reliable enough to make an informed
classification.

In this work, we propose an architecture that leverages
SNR estimation of modulated signals to enhance classification
performance. By first predicting the SNR of the received
signal, we can apply an SNR-specific modulation classifier
(MC) that has been trained on signals with the predicted SNR.
Utilizing this approach, different classifiers can tune their
feature processing for differing SNR ranges (see Figure 1). In
our implementation, we train an SNR regression model that is
used to select the desired MC based on the estimated SNR of
the signal.

In our previous work [4], we found that modulation clas-
sification performance plateaued in peak performance beyond
+8dB SNR and approached chance classification performance
below -8dB SNR. Therefore, in this work we aim to primarily
increase classification performance in the range of -8dB to
+8dB SNR. We build upon our previous work [4] exploiting
latent space statistics for AMC. More precisely, this previous



work made use of X-Vectors that are traditionally used in
speech embeddings [13]. X-Vectors employ statistical mo-
ments, specifically mean and variance, across convolutional
filter outputs. It can be theorized that taking the mean and
variance of the embedding layer helps to eliminate signal-
specific information, leaving modulation-specific characteris-
tics. This X-Vector inspired architecture achieved state-of-the-
art AMC performance; therefore, we aim to improve upon this
architecture in this work.

II. DATASET

To evaluate different machine learning architectures, we
chose the RadioML 2018.01A dataset that is comprised of 24
different modulation types [6], [14]. There are a total of 2.56
million labeled signals, S(T ), each consisting of 1024 time
domain digitized baseband samples of in-phase (I) and quadra-
ture (Q) signal components where S(T ) = I(T ) + jQ(T ).

The 24 modulation types are listed as follows: OOK, 4ASK,
8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM,
128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-
WC, AM-DSB-SC, FM, GMSK, and OQPSK. Each modula-
tion type includes a total of 106,496 observations ranging from
-20dB to +30dB SNR in 2dB steps for a total of 26 different
SNR values.

For evaluation, we divided the dataset into 1 million differ-
ent training observations and 1.5 million testing observations
under a random shuffle split, stratified across modulation type
and SNR. Because of this balance, the expected performance
for a random chance classifier is 1/24 or 4.2%.

III. SNR REGRESSION

A. SNR Regression Training

First, a regression model to predict the SNR level of an
input signal is trained. Although the SNR values in the
dataset are discrete, SNR is measured on a continuous scale
in a deployment scenario and can vary over time. As a
result, we utilize regression over classification to model SNR.
Through this task, we hope to attain more information about
the modulated input signal and improve AMC performance,
especially at decreasing SNR levels, by directing the signal to
a specialized classifier.

We investigate two different architectures for SNR
regression—Random Forest Regression [15] and a deep con-
volutional neural network architecture similar to our previous
work [4] (Table I). Each model requires the input features
to be in a slightly different format. For the random forest,
we aggregate statistics of the I and Q data as well as the
magnitude of the signal, M , defined as M =

√
I2 +Q2. We

include magnitude as an additional feature to the random forest
regression model as SNR is based on the amplitude variations
a signal. We calculate the signal statistics for range, variance,
and kurtosis for the M , I , and Q signals similarly to [16].

In this work, we use the random forest regression algorithm
from the Python library scikit-learn [17]. Default parameters
were used—an ensemble of 100 trees, using mean squared

error as the splitting criterion. The variable importance of
each of these statistics can be calculated from the random
forest using variable permutations as suggested by [15]. The
importance values are graphed in Figure 2, where it can be
observed that most features are deemed to have relatively equal
importance, with magnitude-based statistics having slightly
larger importance than I or Q-based signals alone.

Fig. 2. Variables used in random forest regression and importance to accuracy.

The convolutional network does not use any derived fea-
tures, but instead learns directly from the I and Q signals in
the time domain. The filters learned in the network extract
features that can be directly used for SNR regression. We
found incorporating the magnitude in the deep convolutional
architecture did not increase performance. That is, there was
no statistically significant advantage to adding magnitude as a
feature. Consequently, we only use I and Q as input modalities
to the convolutional model. Both the random forest regressor
and convolutional network are trained to convergence with the
best models being saved according to the lowest mean squared
error achieved while training.

TABLE I
DEEP CONVOLUTIONAL SNR REGRESSION MODEL

Layer Output Dimensions
Input 2 x 1024

Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024

Conv 1D 64 x 1024
Average Pooling 1D 64
Variance Pooling 1D 64

Concatenate 128
FC/SeLU 128
FC/SeLU 128
FC/Linear 1

B. SNR Regression Results
Figure 3 summarizes the performance of each regression

model. The deep convolutional regression model outperforms



Fig. 3. Deep convolutional architecture and random forest residual values for
each SNR value with the mean residual dB shown in black.

the random forest in terms of residual dB particularly for true
SNRs above −8dB. The residual is defined as:

residual = true− predicted

A residual closer to zero is desirable as the predicted value
would be closer to the true value. The variance in the predic-
tions becomes unstable below −8dB SNR. This behavior was
also observed in Figure 4 where classification performance be-
comes no better than chance below −8dB SNR. This behavior
may indicate that signals below −8dB SNR are too noisy to
obtain consistent predictions. When comparing the regression
results with an F -Test of residual variance, it was found that
the difference is statistically significant across all SNRs. We
therefore choose to use the convolutional architecture as our
SNR prediction model for the remainder of this work.

SNR values above −8db exhibit small variances along with
mean residuals of approximately zero. As stated previously,
our main goal in this work is to improve classification per-
formance for SNR levels between −8dB and +8dB. With
this goal in mind and our regression model performing well
in this range, we can predict SNR and pass the signal in
question to the appropriate SNR-specific modulation classifier
with confidence for signals between −8dB and +8dB SNR.

IV. MODULATION CLASSIFICATION

A. Modulation Classification Training

From our previous work, we know classification perfor-
mance plateaus outside the range of approximately −8dB SNR
to +8dB SNR (see Figure 4 from [4]). Due to this behavior,
we decided to create multiple modulation classifiers (MCs)
to exploit nuances for varying SNR groups specifically in the
−8dB to +8dB SNR range.

To determine the SNR groupings, we had to ensure there
was sufficient training data in each group to not overfit the
classifiers. We also had to ensure enough granularity such that
each grouping provided more value than a single classifier
trained to be as resilient as possible under varying SNR levels.
We created 6 different groupings as seen in Table II to fit

Fig. 4. Accuracy values for each SNR value in the dataset as seen in [4].

TABLE II
SNR GROUPINGS FOR TRAINING SNR-SPECIFIC CLASSIFIERS AND

DEMULTIPLEXED CLASSIFICATION RANGES FOR EACH PREDICTED SNR.

Training Range (dB) Demultiplexed Classification Range (dB)
[-20, -8] (−∞, -8)
[-8, -4] [-8, -4)
[-4, 0] [-4, 0)
[0, 4] [0, 4)
[4, 8] [4, 8)

[8, 30] [8, ∞)

these constraints. Values below −8dB SNR are grouped and
values above +8dB SNR are grouped as diminishing returns in
classification performance were observed in Figure 4. Values
below −8dB were also grouped as Figure 3 illustrates high
variability in SNR predictions below this level.

Each MC is based upon the same architecture described
in Table I where the input modalities are the I and Q
signal components; however, each output is a 24 unit softmax
output for the 24 different modulation types. The complete
architecture can be seen in Figure 1 where the SNR regression
output is demultiplexed into a specialized classifier for the final
modulation type prediction.

B. Classification Results

Using our X-Vector inspired architecture used in [4], we
were able to achieve a maximum accuracy of 98% at high
SNR values improving over [6] as seen in Figure 4. High-
lighting improvements across SNR, Figure 5 shows the overall
performance improvement (in percentage accuracy) compared
to [4].

While we see a slight decrease in performance for −8dB
and a larger decrease for −2dB, we improve upon [4] under
most SNR conditions particularly in our target range of
−8dB to +8dB. A possible explanation for these decreases
in performance is that the optimization for a particular MC
helped overall performance for a grouping at the expense



of a single value in the group. That is, the MC for [−4, 0)
boosted the overall performance by performing well at −4
and 0dB at the expense of −2dB. Due to the large size
of the testing set, the small percentage gains are impactful
because thousands more classifications are correct. All results
are statistically significant based on a McNemar’s test [18],
therefore achieving a new state-of-the-art performance.

Fig. 5. Proposed approach residual improvement in accuracy over [4].

V. CONCLUSION

In this work we have examined several different archi-
tectures for improving modulation classification performance.
While many architectures focus on being as resilient as possi-
ble under varying SNR conditions, a single model may not
be able to fully characterize discrepancies between signals
at different SNR levels. Our proposed architecture makes
use of SNR estimates to refine the classification task. We
found a deep convolutional architecture to be superior in SNR
regression compared to a random forest regression in terms
of residuals. After estimating SNR, we are able to direct the
signal to a specialized classifier for the given SNR estimate.
Through leveraging the deep convolutional regression model,
we were able to create SNR-specific classifiers that improved
classification performance compared to the current state-of-
the-art.
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