
Industrial Control System Anomaly Detection
Using Convolutional Neural Network Consensus

Aviraj Sinha§, Michael Taylor§, Nathan Srirama, Theodore Manikas, Eric C. Larson, and Mitchell A. Thornton
Darwin Deason Institute for Cyber Security

Southern Methodist University, Dallas, Texas, USA
{avirajs,taylorma,nsrirama,manikas,eclarson,mitch}@smu.edu

Abstract—Industrial control systems provide transportation,
essential utilities, and the manufacturing of goods to the
masses. It is critical that controlled processes are executed
correctly and according to schedule. Monitoring the system’s
performance during its operation is an important approach
for maintaining high levels of reliability and availability. We
present a system monitoring capability that implements parallel
multi-view neural networks to detect anomalous behavior in an
industrial control system by predicting operational states. By
deploying the prediction capability within the system, system
operation can be monitored in a semi-supervised manner to
ensure the actual system state lies within an appropriate
region of the state space that was previously predicted by the
neural networks. Furthermore, if the two predictive models
diverge in their classification of state (breaking consensus),
it is likely that system operation has been compromised due
to faulty equipment, communication errors, or some other
source of malfunction. To achieve different “views” of the
system, one predictive model is trained to analyze the data
flow of system control packets and the other model is trained
to analyze gyrometric signals obtained from physical sensors
in the control system. We demonstrate that this methodology
can detect anomalous behavior of an example industrial control
system by emulating its operation in the presence of injected
anomalies. Results indicate highly accurate anomaly detection
during system operation.

Index Terms—Industrial systems, anomaly detection, machine
learning, multi-view classification

I. INTRODUCTION

Industrial and manufacturing facilities rely on computer
controlled electro-mechanical frameworks, referred to as In-
dustrial Control Systems (ICS), to efficiently support pro-
duction and processing objectives. Key attributes of an ICS
include safety, reliability, and in more recent years, resilience
to potential cyberattacks that can disrupt functionality. In
extreme cases, cyberattacks can cause damage or harm to
personnel supporting the facility [1]–[4]. Detecting anomalies
in an ICS can increase resilience to cyberattacks or other
errant behavior. For these reasons, we are motivated to devise
methods for automated anomaly detection.

The connections and devices that enable the communi-
cation between the components in an ICS installation are
supplied by various vendors and are generally interoperable
due to the use of standardized computer interfaces and net-
working protocols that support modern ICS implementations.

§These two authors contribute equally to the work

It is typical that an ICS will demonstrate state-like behavior
that characterizes its overall functionality. That is, the ICS
cycles through various operating points that can be classified
as a particular state. However, in many applications the state
space is very large thus making it impractical to capture the
complete behavior with traditional methods.

In this work, an ICS network is augmented to include by
convolutional neural networks (CNNs) in order to determine
the overall health of the devices and components in an
industrial environment. Machine learning techniques have
been applied to industrial reliability analysis in previous
approaches [5]–[11]. Our technique differs in that it relies
upon multiple data sources as shown in Figure 1. Since our
classification uses multiple data sources with unsupervised
error thresholds, the classification is robust to random de-
viations in sensor and traffic patterns. The neural networks
separately analyze the state of the system using two different
input streams: (1) the packet data sent along the network
and, (2) time series signals from a gyroscope. Each input
corresponds to a different “view” of the system state. When
the system is functioning properly, the state classified by
each model should match or be reasonably similar allowing
consensus from the two models to be achieved [12]. However,
when faulty equipment or other errors cause unexpected
behavior in the system, the classification will diverge, causing
loss of consensus. Because the system diverges from normal
behavior, this classification can also be described as anomaly
detection.

We outline our contributions as:

1) We propose the use of dual CNN state prediction
models for detecting anomalies in the context of in-
dustrial control systems via consensus. Each CNN uses
a different set of features for prediction: (a) analyzing
patterns in packet data and (b) analyzing sensor data
from co-located sensing points placed in the ICS.

2) We designed and collected data from a test bed of ICS
operations (normal and anomalous) using commercial
ICS hardware components. This test bed is used to eval-
uate and characterize the performance of the proposed
method.



Fig. 1: Overview of the multi-view classification system.

TABLE I: List of symbols used in this paper

Symbol Description
y Packet State Prediction (expected by network)
ŷ Gyrometer State Prediction (observed by sensor)
s Data input into model over a time period t

e Prediction error et =
{

0 y = ŷ
1 y 6= ŷ

(1) for data s

W Window size for error rate of multiple predictions
T Threshold for anomalous error rate
Ai Anomaly for ith window when

(∑i
t=i−W et

)
> T (2)

II. RELATED WORK

Light weight machine learning techniques such as support
vector machines (SVMs) and clustering have been employed
for detecting anomalies in an ICS [5]. These approaches,
however, require careful feature engineering such as charac-
terizing the mean packets bytes and interarrival times [8],
[9]. This characterization can cause significant impact in the
deployment of an ICS anomaly detector because the feature
engineering process must be calibrated to each new ICS.
Therefore, many researchers are motivated to use methods
from the deep learning community, whereby the model can
learn system variable baselines without extensive information
gathering.

Deep learning has been steadily gaining popularity for ICS
anomaly detection due to its ability to classify both multi-
and single-stage attacks. In particular, intrusion detection has
been widely tested on a popular dataset, the secure water
(SWaT) dataset, which consists of data collected from a
scaled-down water treatment plant ICS 1. The data available
for this ICS consists of 26 time series streams (from sensors
and actuators) and packet information from the data bus
(which uses the Modbus protocol). For the most part, related

1https://itrust.sutd.edu.sg/itrust-labs-datasets/

work using this data has focused either on intrusion detection
using packets from the Modbus protocol [11] or the usage of
the time series streams to detect anomalies as they occur [7],
[10]. Because Modbus is typically unencrypted and therefore
more open to attack, many methods look at only packet data.

Research on ICS sensor data (also from SWaT) has also
been performed with long short term memory (LSTM) re-
current networks [10]. Recently, 1D convolutional models
for ICS sensor anomalies have had comparable results to
LSTMs, but with greater efficiency [7]. 1D convolutions are
well suited for time series sensor data due to its design to
classify time series through parallel convolutions.

III. BACKGROUND

A. Deep Learning Concepts

In this section, we describe a popular method for sequential
data classification, the LSTM, as well its limitations in this
context. We then work to overcome those limitations through
the usage of CNN (convolutional neural networks). The main
idea is to use CNNs for prediction of not only sensor data,
but also raw network bit patterns.

The LSTM cell is a type of layer, or internal data structure,
in a recurrent neural network. LSTM cells are useful in
machine learning tasks that use time series data, and they
can be implemented in classification and regression decision-
making tasks. What makes the LSTM layer powerful is that it
is able to “remember” important information and “selectively
forget” what is not essential to the created decision-making
model. Because data ordering is respected, future predictions
are made according to a sequence of past events [13].

Many deep learning algorithms can analyze either ICS
payload data or sensor data individually such as LSTMs,
since they are efficient for simple time series tasks [14].
We focus on convolutional neural networks because they
have recently been shown to rival LSTMs performance in
the context of an ICS, but with typically more efficiency
due to optimized GPU computations [6]. CNNs are feed
forward neural networks that were originally proposed for
image processing [15], [16]. Having multiple convolutional
layers allowed complex spatial patterns to be captured.

The convolutional neural network’s goal is to maximize an
output activation of a convolutional classification layer; this is
done by training the filter weights to minimize a loss func-
tion using gradient descent with gradients computed from
backpropagation [17]. These convolutional steps are often
denoted as the feature extraction phase. After convolution,
it is common practice to down sample the number of outputs
by pooling over a space of outputs. One commonly used
down sampling technique between convolutional layers is the
max pooling operation; max pooling operations distill data
to lower dimensions by taking only the maximums values
over a segment, which helps capture the significant feature
values as well as speed up performance. After the feature
extraction and pooling a dense (or fully connected) layer
uses the resulting output activations to make a decision. For
additional details on CNNs please refer to [18].



One unconventional approach used in our experiment is
using CNNs for packet payload classification. That is, using
a CNN to analyze raw data in the payload of a network
packet. Convolutions are typically employed for analyzing
time series sensor data, such as speech, motion data, etc. We
find that CNNs are efficient for detecting properties in an ICS
payload bit patterns since the ICS command payload tends
to follow a recognizable pattern.

B. ICS Network Protocol

There are a variety of communication protocols which can
be utilized by Industrial Control Systems, including Modbus,
HART, Profibus, Profinet, BACnet, and others. Each was
developed with slightly different use cases in mind, but for
the most part they are interchangeable within an ICS. A
defining feature of these protocols is that they are designed to
adhere to strict timing constraints. This is based on a desire
for speed and reliability within these industrial systems. The
research presented deals with a simulated ICS network which
implements the Modbus protocol. The focus for this paper
will therefore be on the Modbus protocol, and any reference
to ICS protocols, communication systems, or packets will be
stated with Modbus in mind.

The Modbus protocol is one of the most commonly used
communication protocols within industrial control environ-
ments because it is designed specifically with industrial
applications in mind. It was introduced in 1979 as a tech-
nique to establish controller-worker relationships between
programmable logic controllers, remote terminal units, and
other systems that were being introduced into industrial
systems at the time2. An important feature to note about
the Modbus protocol is that it was not designed with innate
security. There is an implicit trust between all devices on a
Modbus network, and packets are not encrypted at any point
during communication.

IV. ICS TESTBED DESCRIPTION

In order to collect data for the purposes of this research,
a miniature ICS network was created. The network includes
a Tolomatic industrial motor connected to a human-machine
interface (HMI) controller, an accelerometer for acceleration
and gyro-metric data, and an inline Raspberry Pi which
handles packet collection and simulates network anomalies,
as shown in Figure 2. The motor is bolted to a solid
foundation and placed under various load configurations
in order to better simulate a real industrial environment.
The accelerometers and gyrometers were also bolted to the
foundation to collect vibrations emanating from the motor.

Dataflow within the created network travels as follows:
The HMI sends commands to the motor, which can turn it on
or off, change its speed, etc. The HMI will send a continual
stream of commands, even if there are no desired changes for
the motor. Commands are sent through the inline Raspberry
Pi for logging purposes, and then forwarded messages to the
motor. The motor in turn responds with a continual stream
of gyrometer data, which is also routed through the inline

2https://modbus.org

Fig. 2: ICS Testbed Overview Diagram

Raspberry Pi. This data is stored as Comma Separated Values
(CSVs) of the following categories: gyroscope (X, Y, and Z
rotation axes). These axes represent the orientation of the
attached sensor in the three dimensional space.

The created ICS system communicates using Modbus
packets between the HMI and the industrial motor. Communi-
cation is structured such that all messages sent from the HMI
to the motor will result in a response message sent back to the
HMI. Modbus packets within the system therefore represent
Read/Write commands for the motor, and motor data sent
back to the HMI.

A. Anomaly Generation

Our experiments involve creating anomalies through a
Man-in-the-Middle (MITM). MITM attacks are carried out
by a third party that has secretly taken control of the
communication channel between two or more endpoints in
the network. Such changes would allow for the attacker
to gain complete control over an asset in the network by
dropping or modifying all communication from a controller
[19]. Additionally, the attacker can spoof all communication
in a way that makes the asset appear to be operating as
expected. The repercussions of such an attack could range
anywhere from a small amount of downtime to catastrophic
damage to equipment, infrastructure, and even personnel.

For our experimental setup, the MITM device was set up in
a way which placed all incoming packets on the two network
connections into a kernel queue. The device also continuously
ran a process which pulled the packets from the kernel queue
for analysis and potential modification based on a command
line prompt made available to a user. The program would first
determine which network asset was sending the message and
which network asset was receiving the message. Afterwards,
the program would check if the devices were part of any
attack strings entered by the user. If the devices were not part
of any attack strings or there were no attack strings provided
by the user the packet would be forwarded. However, if the
devices did match with an attack string the program would
make the requisite modifications to the packet data before
forwarding. Attacks included stopping the motor, changing
the speed of the motor, and changing the direction of the
motor. The user also had the option to spoof the returned



data from the motor to the HMI so that it appeared to be
operating as expected. This was achieved by maintaining a
record of the actual speed and direction data from the most
recent communication from the HMI.

V. EXPERIMENTAL SETUP

A. Method Description

As mentioned in related works, most ICS anomaly meth-
ods depend on detecting trace changes in either packet or
sensor data. Packet detection methods rely more on changes
caused by command packet manipulation, whereas for sensor
anomaly detection focus on detecting abnormal behavior in
the physical system. Network based methods were more
popular because they could find anomalies before any damage
was done; however, now network packets can be easily
spoofed by MITMs. Though, looking at both of these data
types separately would be helpful for identifying anomalies,
using them together can take advantage of the relationship
between the network data and the sensor data — the fact
that command payloads will result in specific patterns of
sensor behavior. In the case of an ICS, the network data
conveys the expected ICS state y while the gyrometer sensor
data presents the actual observed ICS state ŷ. The benefit
of this relationship is that a MITM (man in the middle
attacks) will be required to spoof both command payloads
and sensor information at the same time in order for y = ŷ.
Though this is a possible weakness of this approach, spoofing
both network and sensor data would require very in-depth
knowledge of the ICS system at all times.

For our experiment, two CNNs are used to classify y
and ŷ as one of six ICS states. When y = ŷ an error is
marked as 1 for that sample. Over time random errors can
accumulate; however, over specific windows of time, W , such
as an attack, the percentage of errors per prediction should
surpass a threshold, T , and be labeled an anomaly as defined
in equation 2. The anomalous state is a label that was not
available during training. As a result of using labeled data
and unlabeled data for classification, our model falls under
the category of semi-supervised learning.

This technique contrasts with previous methods that would
accumulate errors as standard deviations from the mean
rather than model prediction errors. As a consequence, pre-
vious methods assume a normal distribution of differences
for both sensor and payload data so that thresholds could be
established for detecting deviations—which is not always a
reasonable assumption, especially as windows of error accu-
mulation become shorter and the central limit theorem has
fewer guarantees. We note that a number of more complicated
detection algorithms are possible that discern not only the
number of errors, but also how far apart each prediction might
be. We find that empirically this formulation, while simple,
works well and requires the least amount of fine tuning—only
T and W , are required for calibration.

B. Machine Learning Implementation

Our model architecture is shown in Table II. The input
to the model is either raw time series sensor data or bit

streams from the payloads in packets over time. Proper
training, validation, and testing splits are performed at the
ratio of 70:20:10 to ensure the model can accurately detect
ICS states from payloads and sensors. Data preprocessing,
training results, and details on how models are used together
are mentioned in the next subsections. To create the model,
we use the Keras package for design and training [20]. The
remainder of discussion in this subsection assumes some
familiarity with this software package—details are provided
for reproducibility. The model uses a combination of con-
volutional, max pooling, and fully connected (dense) neural
network layers. All activation functions are ReLU except
for the final softmax activation for classification. The loss
function employed for training is cross entropy across the
six possible ICS states. An adaptive momentum (ADAM)
optimizer is employed with a learning rate of 1e-5 and is
used to iteratively update the weights. The model is trained
for 100 epochs and dropout is used to help prevent over
fitting.

TABLE II: Deep Convolutional State Classifiers

Layer Input Payload Input Gyrometer
Input 424x1 (Average of 100) 100x3

Conv 1D (ReLU) 424x32 100x32
Max Pooling 1D 212x32 50x32
Conv 1D (ReLU) 212x32 50x64
Max Pooling 1D 106x32 25x64

Flatten 3392 1600
Dropout 3392 1600

FC/Linear 64 64
FC/Linear(Softmax) 6 6

C. Experimental Design

1) Dataset Description:

a) ICS State Labels: The dataset includes packet pay-
load and corresponding sensor data. For our classification
task, we focus on classifying packets/sensors data as one
of the ICS states: ’FAST’, ’HALT’, ’MEDIUM’, ’OFF’,
’REVERSE’, ’SLOW’.

b) Gyrometer: The sensors include gyrometer data for
all X, Y, and Z directions; this data is collected as a constant
stream as the sensor controller continuously logs data from
the motor at a fixed sample rate of 10 thousand samples per
second. The gyrometer data is logged as floating point values
represent angular velocity as degrees per second. From the
diagram in Figure 3, we can see the change in our raw data
types during for a single MITM attack around sample 25000.
For our gyrometer sensors, we can visually observe that
there is a state change from the random short burst of speed
and forces. From this example of an ICS state change, we
know that a state change can be quick to create a noticeable
anomaly; this means our model should take enough samples
to detect the state change but not take enough that the attack
be reduced by the surrounding noise of the baseline data.

c) Modbus payload: The second data type includes the
Modbus payload. Rather than being a constant stream of
data input each payload arrives at different times from the



(a) (b) (c)

Fig. 3: Visualizations of sensor streams and payload data in the dataset

Fig. 4: The color intensity represents byte values 0-255

controller. Since, the network data was preprocessed from
PCAP files the payload data was converted from its original
byte format to binary. In each individual data payload there
were 53 bytes, each byte was between 0 to 255. For payload
preprocessing for our model, the 53 bytes were converted to
binary for machine learning input changing the input width
from 53 bytes to 424 bits. In Figure 4 payload data is
represented in its byte format where each of the 53 bytes
are vertically stacked and pixel color intensity represents
the 0-255 value for that byte. That is, the color changes
in each row represent the change in value of the field in
the packet over time. This coloring allows us to visualize
that some byte locations in our packet have static, cyclic,
or random values over time. In contrast to the sensor data,
we cannot immediately observe the ICS state change from
this visualization, we hypothesize that the machine learning
convolutional model will be able to classify states of different
time windows.

d) Unused Data: Another data type we collected but
did not use in our model are interarrival times, also known as
packet time deltas or in statistical terms, the first difference.
Each packet contains a timestamp for which it arrives through
the controller to the motor. By taking the differences between
two adjacent timestamps we can get the amount of time
between each packet arrival from the controller to the motor
actuator. From our experiments, as shown in our raw dataset

diagram Figure 3c, we have observed that interarrival times
(time between packet arrivals) increase a certain constant
amount during an ICS state change before returning to
the baseline interarrival time; as a result, interarrival times
may have potential for detecting anomalous state changes.
However, due to the lack of experimental classification results
and distinguishing interarrival times characteristics between
states, the ICS states themselves cannot be classified. Overall,
there has not been enough experimentation with other models
to determine if interarrival times can help classify ICS states,
and since our semi-supervised method heavily relies on
comparing expected ICS states to observed values, we will
not create a model that depends upon interarrival times. In
future works, the data may be useful to signify whether a state
change is occurring. For a similar reason, accelerometer data
was not used in our model; classification results were higher
for gyrometer input. Though the data from both interarrival
times and accelerometer are useful for detecting anomalies
in both the network and sensor data streams, there is not a
significant improvement in classification performance when
combining all data streams with our current machine learning
techniques.

2) Preprocessing:
a) Feature Transformation: After raw sensor and packet

data is obtained, a series of preprocessing steps are per-
formed. The absolute values of the raw values were taken
in order to specifically detect the magnitude of the rotational
and straight-line forces; this is done since the direction itself
is oscillatory around the axis, so the magnitude is the primary
source of classification information. For this reason, we use
an absolute value to reduce the neural network learning
needed to find the magnitude. Payload data contains constant
noise from a variety of packets that ping and maintain
the connection. By taking a moving average of 100 of the
packet bitstreams we were able to improve classification by
accounting for a constant amount of noise on the network.

b) Downsampling for Time alignment: After the low
level preprocessing, there are still many challenges with
dealing aligning samples of packet data to the corresponding
sensor data. This time alignment step is important because
we need to classify the ICS state from the sensor and packet
data for the same time period to decide if there is an anomaly



during that period. The first problem is the two data types
have varying amounts of data for each period of time because
the sensor data is arriving in constant intervals while the
packet is arriving sporadically. In order to have around the
same amount of data for the time period we downsample the
sensor data taking every other sensor reading. This reduction
of sensor data to half its readings allows payload data to be
aligned to its corresponding sensor readings in time.

c) Windowing for Delays: Other timing problems are
specific to the problem of having multiple classifiers on
an ICS. One problem is that the packet payload messages
sent on the network take some time to impact the ICS
actuators, especially mechanical peripherals because of start
up transients. This adds delay between the observed state
from the PCAP analysis and the observed state from the
sensors. Furthermore, the packet payload arrival time varies
depending on whether an ICS state transition is occurring,
which has the effect of giving a variable sampling rate
to the ICS. This means each payload cannot directly be
correlated with a sensor output, because many payloads can
be correlated to only a few ICS sensor changes, and vice
versa.

These two timing effects can be mitigated by using a larger
input size for our machine learning model. As sample input
size increases, the variable sampling rate and differences
among sample rates become less impactful. For our purposes,
we used 100 samples of payload data and 100 samples of
sensor data (ending at the same point in time) as input for
each CNN model. 100 samples seems to be a conservative
sample size that works for our classification because the
sensor visuals seem to show that the state changes happen
over less than 100 samples; by increasing the sample input
size to the ratio of the number of samples it takes to change
states we can reduce misclassification errors to a single
prediction during an ICS state change. Overall, this input
sample size parameter is critical to meet custom performance
metrics—a large input size may increase predictive accuracy
for system states but may also increase the time for the
models to identify anomalies, especially anomalies over small
time periods.

3) Combining models to perform a semi-supervised
anomaly detection:

First, our CNN models train and test on a series of 100
samples (s) ,for both payload and sensor data streams. For the
combined algorithm for anomaly detection, we use the two
previous described models and monitor when errors between
the models would occur. Since the trials are about 500,000
samples each and the models predict from 100 samples, there
will be about 5000 predictions per trial.

A sliding window of size 20 is used to calculate error
prediction percentage over time. In other words, every group
of 20 predictions, produces an error rate. The plots shown
in Figure 6c visualize the results of both the payload and
gyrometer sensor classifiers and then the error rate per
moving window of 20 predictions. In this case, using a
smaller average window size, we can control false positive

(a) (b)

(c) (d)

Fig. 5: Results of classification training for individual datas-
treams

to false negative ratio, which can be optimized based on the
costs of a misclassification.

The value of the hyperparameter window size W and
threshold T are empirically chosen from observing the natu-
ral patterns on our ICS network. The selection of a moving
window error rate of 20 is used because, while random
misclassification can occur, after around 20 predictions the
error rate is observed to be fairly low. A threshold of 18% for
the error rate is used to identify anomalies since the baseline
error rate for a window of size 20 is around 15% for our
models. One aspect to note is that the two hyperparameters
are inversely related: the greater the window size the lower
the threshold needed.

VI. RESULTS

The results of our model effectiveness depend both on
the strength of our individual supervised classifiers and the
techniques we use to detect discrepancies between them.
While theoretically anomalies could be detected even if the
individual classifiers are not high performing, it is preferred
so that the result is readily interpretable. In the sections
below, we visualize and analyze supervised classification
results and evaluate their usage for unsupervised detection.

A. Training Results

To analyze the effectiveness of our classifiers, we visu-
alize the confusion matrices, along with the F1 scores and
weighted averages, shown in Figure 5. These confusion ma-
trices allow us to see which ICS states can be distinguished
and which states are misclassified. From the plots and learn-
ing curves in Figures 5b and 5d, it is apparent that the lesser
performing model uses only the gyrometer, with near perfect



classification except for misclassifications for the ‘halt’ and
’off’ states (an easily interpreted confusion). We hypothesize
that the gyrometer is better suited for classifying direction
of motion than the accelerometer because the acceleration
magnitude is quite similar regardless of rotation direction.
Whereas the gyrometer rotation signals can be in the negative
direction (helping to elucidate rotation state more clearly).
Moreover, the gyrometer device can also be subtly influenced
by magnetic fields from the motor, which could also explain
why the CNN was able to distinguish direction of rotation
from the gyrometer [21]. Finally, the payload classifier shows
the highest performance—but this classifier also takes some
time to recognize different states so the misclassifications
will be exacerbated somewhat by the latency of the classifier.
Though the results of the individual data streams have
misclassifications, these misclassifications may be mitigated
through adjusting the threshold of classification errors for
anomaly detection, discussed next.

B. Unsupervised Anomaly Detection Results: Qualitative

Our combined model, as mentioned in our methodology,
combines our classifier outputs, tracking the number of
occurrences when the classifiers differ in the state prediction.
When the accumulation of these errors within a window of
time surpasses a certain threshold, the anomaly is marked.
Visualizations of our anomaly detection for a few samples is
shown in Figure 6 for gyrometer and payload classification,
as well as their combined accumulated discrepancy rate in
Figure 6c. As seen in the diagram, the usage of two classi-
fication models can be used to identify anomalous behavior
by putting a threshold on the average discrepancy rate. In
our testing, we found that a threshold of 18% worked well in
flagging the anomalies, as is apparent in the plots. Though the
individual supervised models themselves contain some errors
in classification, comparing them in an unsupervised way
allows a robust anomaly detection. As a result, this model
is particularly robust to the large amount of noise and timing
effects for the multiple streams of data found on an ICS
system. We now turn our attention from a qualitative analysis
of the anomaly detection threshold to a more quantitative
view of performance across many thresholds.

C. Unsupervised Anomaly Detection Results: Summative

The baseline training data includes gyrometer and packet
data from 6 unique ICS state trials that have been divided
into 5000 samples of input size 100. The testing dataset
consists of more static data along with data with anomalous
behavior caused by a MITM interacting with sensor and
payload data. Our test dataset includes 18 baseline trial runs
and 24 anomalous trials.

A precision-recall curve (PRC) is used to detect the
precision to recall ratio as the threshold of anomaly detection
is adjusted. This method can reveal to what degree the overall
classifier performs greater than random chance, revealing
the true skill. By sweeping our threshold from 0.0% to
100.0% of errors within a window (and keeping the window
size constant) we can create a diagram where, as recall of

(a) (b)

(c)

Fig. 6: Anomaly detection results using Gyrometer and
Packet Classification

anomalies increases, the false positives also increase and
precision decreases. Thus, we can observe the tradeoff for
the classifier at varying thresholds. Though similar to a
receiver operating characteristic (ROC), a precision recall
curve is preferred when the classes are heavily imbalanced
and positive classes are much more important [22]. In our
results, detecting true positives has greater utility since our
model has consistent results at detecting the baseline (true
negative) at every threshold and will have minimal false
negatives, if any. Furthermore, an ROC curve with a static
true negative cannot be effectively visualized, since the x-
axis will show a static specificity = FP/(FP+TN). In addition
to improved visualization through the PRC curve, emphasis
on recalling true positives is important since the model must
be able to detect and mitigate threats before they cause a
permanent major failure to the ICS system. From Figure 7,
the calculated area under the precision-recall curve(AUPRC)
is about 86%.

From the precision-recall curve, we took the optimal
threshold where precision and recall are equal (sometimes
referred to as the equal error rate point or EER). At this
threshold of around 0.17, we ran the model on our test
set. The performances can be statistically summarized. F1
score: 0.89, Sensitivity(Recall): 0.87, Precision: 0.88. The
results are obtained by analyzing the true positive and false
negatives from anomaly injections and false positives and
true negatives from baseline. These results represent the
strength of the classifier after it is tuned to be an optimal
threshold for this dataset. We conclude that detecting this
percentage of our anomalies generated is quite strong because
the inserted anomalies in the system were of relatively short



Fig. 7: Precision-Recall Curve for Anomaly Detection Re-
sults

duration. Though some anomalies were not detected, a more
sustained MITM attack would eventually trigger an alarm,
and this is considered likely since anomalies would need to
be prolonged to cause a major system failure. Overall, our
classifier is robust to the random noise of multiple classifiers
and can accurately distinguish anomalies from baseline data.

D. Latency of Classifier

Another important metric is latency of prediction. Our
method will have a non-zero latency due to determining
anomalies only after the error rate of a window of time
surpasses a certain point. For every prediction there are
100 data points of sensor data and packets, and every 20
predictions there is a potential anomaly flagged. We define
latency as: W ·(ei−ea)/r where W is the window (number of
samples per prediction), ei−ea are the number of predictions
between the first error and the error where the anomaly
threshold is crossed, and r is the sampling rate in samples
per millisecond. These variables are needed to calculate the
latency in milliseconds.

Prediction delays can be used to estimate the latency. For
our example, the median number of predictions between the
first incorrect prediction and the anomaly(threshold crossed)
is 39.5. This means that about 3950 sensor and payload
data were used in total before the error was confirmed. At
a rate of 10 samples per milliseconds, 395 milliseconds of
sensor data passes until detection. When taking account of all
timing information, our combined model setup is fast enough
to quickly classify and compare windows of data from two
datastreams. Whether this anomaly detection is fast enough
depends on the ICS system requirements and fault tolerance;
acknowledging this variability, our model has controllable
hyper parameters such as window size and a threshold that
can be modified to increase the speed of detection.

VII. CONCLUSION

In summary, our classification technique reliably finds
anomalies based upon the difference in prediction between
two parallel neural networks, using two different, but com-
plementary, views of the network to measure consensus:
command packets and actuator sensors. This model can
eventually be expanded to work with more complex and

multistage ICS systems such as that of the SWaT dataset
discussed in previous works. In the future, the area of multi-
modal machine learning may allow more complex interaction
between payload and sensor data streams. This type of model
would make it easier to incorporate data that does not directly
identify ICS states such as interarrival times.

REFERENCES

[1] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis,
“A survey on scada systems: Secure protocols, incidents, threats and
tactics,” IEEE Communications Surveys Tutorials, vol. 22, no. 3, pp.
1942–1976, third quarter 2020.

[2] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A
survey of iot-enabled cyberattacks: Assessing attack paths to critical
infrastructures and services,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3453–3495, Fourth quarter 2018.

[3] B. Babu, T. Ijyas, Muneer P., and J. Varghese, “Security issues in
scada based industrial control systems,” in 2017 2nd International
Conference on Anti-Cyber Crimes (ICACC), March 2017, pp. 47–51.

[4] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A. Sadeghi,
M. Maniatakos, and R. Karri, “The cybersecurity landscape in indus-
trial control systems,” Proceedings of the IEEE, vol. 104, no. 5, pp.
1039–1057, May 2016.

[5] S. D. Anton, S. Kanoor, D. Fraunholz, and H. D. Schotten, “Evaluation
of machine learning-based anomaly detection algorithms on an indus-
trial modbus/tcp data set,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security, 2018, pp. 1–9.

[6] “Detecting cyber attacks in industrial control systems using convolu-
tional neural networks.”

[7] M. Kravchik and A. Shabtai, “Detecting cyberattacks in industrial
control systems using convolutional neural networks,” 2018.

[8] S. D. Anton, S. Kanoor, D. Fraunholz, and H. D. Schotten, “Evalu-
ation of machine learning-based anomaly detection algorithms on an
industrial modbus/tcp data set,” 2019.

[9] X. He, E. Robards, R. Gamble, and M. Papa, “Anomaly detection
sensors for a modbus-based oil and gas well-monitoring system,” in
2019 2nd International Conference on Data Intelligence and Security
(ICDIS). IEEE, 2019, pp. 1–8.

[10] J. Kim, J.-H. Yun, and H. C. Kim, “Anomaly detection for industrial
control systems using sequence-to-sequence neural networks,” 2019.

[11] J. Liu, X. Song, Y. Zhou, X. Peng, Y. Zhang, P. Liu, and D. Wu, “Deep
anomaly detection in packet payload,” 2019.

[12] S. Dasgupta, M. L. Littman, and D. McAllester, “Pac generalization
bounds for co-training,” Advances in neural information processing
systems, vol. 1, pp. 375–382, 2002.

[13] F. Chollet, Deep Learning with Python. Manning Publications, 2017.
[14] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study

of cnn and rnn for natural language processing,” arXiv preprint
arXiv:1702.01923, 2017.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[16] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series.”

[17] P. J. Werbos, “Generalization of backpropagation with application to
a recurrent gas market model,” Neural networks, vol. 1, no. 4, pp.
339–356, 1988.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[19] H. Lan, X. Zhu, J. Sun, and S. Li, “Traffic data classification to detect
man-in-the-middle attacks in industrial control system,” 2019 6th In-
ternational Conference on Dependable Systems and Their Applications
(DSA), pp. 3453–3495, 2019.

[20] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[21] K. Kunze, G. Bahle, P. Lukowicz, and K. Partridge, “Can magnetic

field sensors replace gyroscopes in wearable sensing applications?”
in International Symposium on Wearable Computers (ISWC) 2010.
IEEE, 2010, pp. 1–4.

[22] J. Davis and M. Goadrich, “The Relationship Between Precision-
Recall and ROC Curves,” in ICML ’06: Proceedings of
the 23rd international conference on Machine learning. New
York, NY, USA: ACM, 2006, pp. 233–240. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1143874


