
Journal of Computing and Information Technology - CIT 6, 1998, 4, 359-371 359

Resource Estimation for Parallel
Architectures with Distributed
Processor/Memory Nodes*

M.A. Thornton and D. L. Andrews
Department of Computer Systems Engineering, University of Arkansas, Fayetteville, USA

Determining the resources needed to run a specific
program is an important task for static task schedulers
for existing multiprocessors. It can also be a valuable
computer-aided engineering tool for the design and im­
plementation of application specific parallel processors.
An approach for determining the required number of
processors and the amount of memory needed per pro­
cessor is described. The estimates are calculated using
information available in a data-flow graph generated
by a high-level language compiler. Metrics based on
the notions of thread spawning and maximum length
thread probability density functions are presented. The
measures obtained frorn the parallelism profiles arc used
as input to a queuing system model to predict the number
of processing elements that can be exploited. Memory
resource estimates are predicted through a simple graph
traversal technique. Finally, experimental results are
given to evaluate the methods.

1.0. Introduction

Processor execution speeds are increasing dra­
matically due to advancements in integrated cir­
cuit manufacturing technology and engineering
design methods and tools. However, the rate
of speed increase for memory is much smaller.
Currently, memory access versus processor la­
tency is at a ratio of approximately 10:1. It is
predicted that this ratio will increase to 100:1
in 20 years, a problem known as the processor­
memory performance gap [l]. This implies that
future architectures must efficiently deal with
memory latencies in order to continue to pro­
vide machines with performance increases that
have been common in the past.

A result of the processor-memory performance
gap is that new architectural approaches for de­
signing and implementing multiprocessor com­
puter systems must be utilized. A common
theme among several of the various approaches
is to distribute and integrate memory with each
processor to reduce bus contention, thus allow­
ing concurrent local memory accesses. This
leads to the question of determining the amount
of memory needed for each processor. Too
much memory results in a waste of resources
in terms of available chip area and power con­
sumption, while too Ii ttle memory could impact
program runtime [l]. For these reasons an an­
alytical tool for estimating the number of pro­
cessor/memory resources for given application
programs has been developed.

Histograms of the theoretical maximum number
of instructions that may execute versus cumu­
lative runtime (referred to as 'parallelism pro­
files') have been used in the past to evaluate the
available parallelism contained within an appli­
cation program [2] [3]- The profiles indicate the
number of parallel operations available at each
step of program execution. We present a model
derived from parallelism profiles for the anal­
ysis of the overhead time associated with the
creation and completion of parallel operations.
The model presents a method for determining
the overhead associated with executing the pro­
gram. The model results may then be used to
determine the granularity of parallel operations
within a program, partitioning, and load bal­
ancing, or determining optimal thread sizes for
multithreaded architectures.

• This research was supported in part by a grant from the Arkansas Science and Technology Authority under contract 97-B-12.

360 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nod es

Unfortunately, parallelism profiles only give the
upper bound in achievable parallelism for any
given architecture. Multiprocessor designers
typically specify a system using a behavioral or
structural description of the hardware and sim­
ulate the execution of benchmark programs to
determine the behavior of the architecture. The
hardware simulation results can then be com­
pared against the ideal case given in the paral­
lelism plot for performance analysis of the de­
sign. In this work, we define several parameters
that are directly measurable from the parallelism
plots and develop a statistical queuing model for
execution of the program independent of archi­
tectural details. The statistical model results
can then be used to guide the designer in de­
termining the hardware organization. Since the
statistical model can also be used to generate
ideal cases, model validation is accomplished
by comparing predicted results to the original
ideal data.

Most stochastic models for multiprocessor sys­
tems only predict steady state responses by ig­
noring start-up and shut-down transients since
they are typically too hard to model. In this
work, we include the transients in the model
through the notions of maximal thread length
and thread spawning probability density func­
tions (pdf). The pdfs are generated directly
from the available parallelism curves and are
used to pseudo-randomly generate random vari­
ables that represent the initiation and duration
of maximal length computation threads.

The criterion for determining when to halt the
statistical models' execution proved to be a cru­
cial parameter with regard to the accuracy of
the results. In the work described here, the halt­
ing criterion is based on equating the amount of
work present in the available parallelism curve
to that predicted by the simulation. When the
maximum work criterion is used, estimates of
total runtime and maximum required process­
ing elements are predicted and compared to the
ideal case. This validates the approach for es­
timating the results due to non-zero processor
communication latencies or restricting the num­
ber of available processing elements in other
experiments using the model.

Traditionally, memory requirements have been
obtained by: 1) assuming an architectural or­
ganization, 2) building or simulating the ar­
chitecture, and 3) executing an application on

the architecture and monitoring memory usage.
This approach is disadvantageous for the de­
signer, since the design must be in place before
the memory requirements can be found. Other
methods for modeling and predicting memory
include non-deterministic statistical models [4]
[5] which unfortunately still assume some type
of architecture. The work described in [6] is
similar to that described here, except that reg­
ister estimation in a high-level synthesis frame­
work is accomplished, not memory estimation
for application specific programs. The method
discussed here has novelty in that the only re­
quirement is a representation of the application
program itself.

The organization of the paper consists of the fol­
lowing section that briefly reviews the notions
of data-flow graphs and available parallelism
curves. Next, some metrics and definitions are
provided that are used in the formulation of the
model. Sections 4 and 5 contain the descriptions
of the number of processors and memory usage
models respectively, including experimental re­
sults. Finally, conclusions and future work sec­
tion is included.

2.0. Data-Flow Graphs and Associated
Metrics

Any given application program can be viewed
as a collection of sequential instruction threads
to be executed as soon as their input data is avail­
able. An abstract representation of a program is
then a directed acyclic graph where vertices cor­
respond to computational instructions to be ex­
ecuted and edges represent data dependencies.
The edges of the data dependency graph cor­
respond to the transfer of data from the output
of a producer instruction node to a consumer
instruction node. In a multiprocessor system,
each thread can be executed on a single proces­
sor; therefore, threads can execute concurrently
as long as the required input data are available.
With this viewpoint, representing an application
program as a data dependency graph allows us
to exploit the available parallelism.

As an example, Figure 1 shows a data depen­
dency graph which computes a value from the
formula c = (1/a 2) + b2 - (b + a) - l. The
graph shows the data dependencies inherent in
the computation. For example, node 2 cannot

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes 361

t
C

Fig.]. Data dependency graph of
c = (1/a 2) + b2 - (b + a) - 1.

execute until it receives the value of a from node
l. When node 2 executes, it will produce the
value of a2 . Node 2 then passes this value to
node 6, and so on. The graph also shows the
available parallelism in the computation. For
example, given sufficient resources, nodes 2, 3,
4, and 5 can be executed in parallel depending
only on the results of node l. Table 1 sum­
marizes the operations performed by each data
dependency graph node.

Thread Operation Result
1 Retrieve a,b
2 Square a,.

3 Subtract -l-b
4 Square b,.
5 Negate -a
6 Inverse l/a,.
7 Add b,.+(-l-b)
8 Add (1/ aL)+b2-(b+a)-1

Table J. Instruction Thread Operations for Each Vertex
in Graph of Figure 1

Parallelism profiles present a graphical repre­
sentation of the parallel operations available for
execution at each time step in a program. A
typical parallelism profile is shown in Figure 2.
This parallelism profile taken from Loop 11 of
the Livermore Loops [2,7] shows the number

of parallel operations available for execution at
each time step in the program. The parallelism
profile also indicates that a variable number of
operations are available for execution in paral­
lel throughout the lifetime of the program. The
shape of the parallelism curve is characteristic
of the form of the source code.

The overall envelope or shape of the parallel
profile in Figure 2 is determined by an inner
parallel For construct, and the number of lo­
cal maximum values is determined by an outer
while loop. For a detailed discussion of the
Livermore Loops, see [7]. The parallelism pro­
file provides insight into the architectural char­
acteristics of the machine type best suited for
executing the program. The maximum number
of processors required in order to exploit the
parallelism can easily be determined by analy­
sis of the profile graph. The maximum number
of parallel operations and hence, the maximum
number of processors required for this profile is
250. The area under the parallelism profile rep­
resents the total work required to execute this
program.

One factor that will affect the execution time of
the program is the overhead associated with task
creation, completion, data copying, synchro­
nization, etc., as well as resource contentions
associated with the initialization and termina­
tion of the parallel operations. The effect of this
overhead is not apparent by the data displayed in
the parallelism profile. The parallelism profile
is based on a data dependency ordering of op­
erations by level. The parallelism profile shows
the cumulative number of operations at each
level, but does not show actual execution times.

3.0. Model Based on Data-Flow Graph

A model can be developed based on the par­
allelism profile to aid in the understanding of
the overhead of creating and executing these
parallel operations. The model is based on the
following definitions:

Maximal Source Overhead: The overhead as­
sociated with starting execution of a new maxi­
mal thread.

Maximal Sink Overhead: The overhead asso­
ciated with terminating a maximal thread.

362 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

Loop 11 Parallelism

300

250 •

E 200 •
-~
]! 150 .. e
"' Q. 100 •

50

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Time

Fig. 2. Parallelism Profile for Livermore Loop 11.

Thread 1 Thread 2 Thread 3 Thread 4

Thread 1 Thread 2 Thread 3 Thread 4

Fig. 3. Thread Definitions.

Average Maximal Thread Length: The aver­
age number of operations executed in all maxi­
mal threads.

The first graph in Figure 3 shows a data de­
pendency graphical representation of a single
thread. The data graph provides a strict ordering
of operations represented by the data dependen­
cies between the operations in the graph. The
single thread shown in Figure 3 contains a sin­
gle sequential ordering of operations. The sec­
ond graph in Figure 3 shows three new threads
sourced from the top-most node. Overhead
will be introduced when these three threads
are sourced. This overhead can be attributed
to operating system scheduling, resource de­
allocation and contention, or transfer of data.

The third graph in Figure 3 shows three threads
that will be terminated by transferring data into
the thread that contains the bottom node. Over­
head will also be introduced when these three
threads are sinked.

It is apparent from the second and third graphs
shown in Figure 3 that exactly three threads are
sourced, and three are sinked. This level of
detail cannot be accurately obtained from a par­
allelism profile. Each time step shown in a pro­
file shows the net number of parallel operations
existing at that level. Consider the parallelism
profile shown in Figure 2. The profile shows
that approximately 120 parallel operations exist
at time steps three, and 250 parallel operations
exist at time step four. A net am'ount of 130 new

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes 363

Spawns

., 140 -~------------------~
~ 120 •
[100 ·­

CJJ 80 • ·--i 60

'" 40 ~ o 20 •
z o-~_!"!"H...,..,.r,---,-1-L+-,-...,.r-ffl-M+.,..;--,-...+1'+++.,.....,...+!-!...,......,..,..,..,."'44..,..,..-.,......H-,-,-;-,,~

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

Time

Fig. 4. S,c(t) Graph for Loop 11.

parallel operations were sourced between time
steps three and four. However, the profile does
not provide enough information to determine if
130 new operations were sourced, or, if the 120
operations in time step three were sinked while
250 new operations were sourced. This infor­
mation is available from the source program,
or the data dependency graph, but not the par­
allelism profile. The following definitions are
required to continue describing the specification
of the model based on parallelism profiles.

Let N(t) = number of processors required at
time t in the parallelism profile. Enumerate
PEi = i "Ii E (1, n] where n is the maximum
number of processors required throughout the
program execution. For the parallelism profile
illustrated in Figure 1, the value of n = 250.

If N(t) = k, then PE 1, PE2, ... PEk are execut­
ing, and PEk+ 1 ... PEn are idle. If N(t + l) >
N(t), then we assume processors PEN(t+l) .. .
PEN(t)+i initiate execution. Processors PE1 .. .
PEN(t) continue execution, assumingN(t) :::; n.

If N(t + 1) < N(t), then we assume pro-
cessors PEN(t+l)+I ... PEN(t) terminate execu-
tion. Processors PE1 ... PEN(t+I) continue ex-
ecution. A maximal process thread is defined to
operate on processor PEk over the time interval
(a, f:l], with length f:l - a, such that k 2:: N(t)
Vt E [a, f:l].

3.1. Source/Sink Definitions

We define Ml(t) as:

t-,.JN(t) = N(t + 1) -N(t)
t,.tfl(t) = N(t) -N(t - 1)

where !-,.JN(t) is a first order forward difference
equation, and !-,.tfl(t) is a first order backward
difference equation [8]. !-,.JN(t) represents the
net number of maximal threads spawned, and
!-,.tfl(t) represents the net number of maximal
threads sinked at time t. Define Src(t) and Snk(t)
as:

Src(t) = ½ [l!-,.tfl(t) I + !-,.tfl(t)]

S,,k(t) = ½ [\t,.1N(t) I - !-,.1N(t)]

Src (t) represents the number of maximal threads
sourced, and S,,k(t) represents the number of
maximal threads sinked at time t. For any pro­
gram

00

L S,c(t) = #maximallengththreads
1=1

The number of maximal length threads sourced
must equal the number sinked, otherwise, the
program would not terminate. Based on the
definitions for Src(t) and S,,k(t), several obser­
vations can be made regarding the programs'
overhead behavior.

0:::; Src(t):::; max lt,.tN(t)I

0:::; Snk(t):::; max lt,.tfl(t)I
max it-,.1N(t)I, max lt,.tfl(t)I :::; max IN(t)I.

The graph shown in Figure 4 illustrates the
S)rc(t) curve for the parallelism profile shown
in Figure 2.

364 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

3.2. Probability Density and Distributions

Define two random variables X and Y. We can
define the event Ax to the subset of S,c consisting
of all sample points S,c(t) to which the random
variable X assigns the value x, and the event
By to the subset of Snk consisting of all sample
points Snk(t) to which the random variable Y
assigns the value y [9]:

Ax= {Src(t) E Src j X(Src(t)) = x}
By= {S,,k(t) E S,,k I Y(S,,k(t)) = y}

Using these definitions,

P(Ax)=P([X=x])=P({Src(t)jX(Src(t))=x})

L P(Src(t))
X(Src(t))=x

P(By)=P([Y=y])=P({Snk(t) jY(Snk(t))=y})

L P(Snk(t))
Y(Snk(t))=y

We define these functions as the spawning and
sinking probability density functions (pdf), re­
spectively. The following properties hold:

0::; p(Src(t))::; 1

L P(Src(t)) = 1
xES,c

0::; p(Snk(t))::; 1

L P(Snk(t)) = l.
yES11k

The cumulative spawning and sinking distribu­
tion functions F x(x) and Fr(y) as

Fx(x) = P{X < x} = I:tx(xi)

Fy(y) = P{Y < y} = Lfr(y;)

The spawning mass function represents the prob­
ability of spawning Src(t) new maximal threads
during the execution of the program. The sink­
ing mass function represents the probability of
sinking S11k(t) maximal threads during the ex­
ecution of the program. The spawning and
sinking probability mass functions for the par­
allelism profile shown in Figure 2 are illustrated
in Figure 5. Likewise, the distribution functions
are depicted in Figure 6.

The cumulative normalized spawning density
function shows that threads are spawned fairly
uniformly throughout the life of the program.
The cumulative normalized sinks density func­
tion shows that threads are terminated fairly

uniformly throughout the life of the program.
The distribution functions show the normalized
number of spawns and sinks during execution.
The distribution functions in Figure 6 show the
number of spawns and sinks are fairly constant
throughout the program.

3.3. Thread Length Density / Distributions

The spawning and sinking density functions
provide a technique to model the frequency of
maximal thread creation and completion. This
provides a measure of how active the program is
during execution, and how the overhead of cre­
ation and completion is distributed throughout
the program. This cost of the overhead can be
modeled by density and distribution functions
of the length of the maximal threads. For long
threads, the overhead cost is easily amortized
over the length of the thread. This is typical of
MIMD operation, where the length of the thread
is long. For short threads, the overhead cost is
not readily available, and can represent a signif­
icant delay in the thread execution. Short thread
lengths are characteristic of SIMD operations.

3.4. Overhead Granularity

The parallelism profile in Figure 2 shows that a
large degree of parallelism is available periodi­
cally throughout the program. A total of 9000
threads are spawned during the program execu­
tion. The average thread length is an important
characteristic of the program, and can be deter­
mined by:

1
thread length = --- L ti

#threads .
I

where t; is the length of thread I. The thread
length can also be computed by dividing the to­
tal area under the parallelism profile curve by
the total number of threads. The average thread
length for Figure 2 is 3.6. This implies that only
3.6 instructions are executed on average in each
thread.

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes 365

Spawning Density

0.6 -.--------------------------,

0.5

~ 0.4

'.g 0.3 -
J:I

£ 0.2

0.1
oli--.:::.l;...-.16=_,, _ _,, ____,,........,,...,.::::::::i=::!o:m....l

a "' "' <D "' O>
<D
a "' <D O> "' "'

Number to Spawn

Sinking Density

0.8 ·==-----------------------,
0.7 •

,.. 0.6 · -

= 0.5 :a
.. 0.4

~ 0.3 •
a..

0.2 •
0.1 ..

0-~. ~-1------------------====--! a "' "' (!)
0)
O>

U')
O> "' "' 0)

"' "' N g

Number to Sink

Fig. 5. Density Functions

4.0. Estimation of Processing Elements

To investigate the validity of using spawning
and thread length distribution density functions
for characterizing exploitable parallelism, a sta­
tistical model was developed and run using the
SIMSCRIPT simulation language [10]. The
model consisted of a set of resources repre­
senting maximal length threads and two main
processes; a GENERATOR and PE process. The
GENERATOR process is responsible for randomly
determining if and how many maximal length
threads are spawned at each CPU clock cycle.
The PE process represents a single processing
element upon which a maximal length thread
will execute. The PE process pseudo-randomly
generates the length of a maximal thread by
using a user-defined probability density func­
tion. Likewise, the GENERATOR process deter­
mines the number of maximal length threads to
spawn at a given time based upon another user­
defined probability density function. The model
also has the capability to add additional parame­
ters such as latencies due to processing element

overhead, and to limit the number of available
processing elements to some finite number.

4.1 . Model Validation

The accuracy of the model was tested by per­
forming a series of runs using maximal thread
source and length pdfs derived from the Liver­
more Loops as input. The model results were
then compared to the original deterministic par­
allelism profiles. In order to have a fair compari­
son, the statistical model assumed that an unlim­
ited number of processing elements with zero
communication latency were present. These
parameters match the deterministic parallelism
curves given in (3,7].

During model validation, it was noted that a cru­
cial parameter for model results is the number
of initial threads executing. Upon examination
of the deterministic data in [3,7], code segments
such as the one represented by loop 10 begin
with a small number of threads (less than 10)
and at time 1 spawn several thousand threads
(over 5500). For the highly parallel scientific

366 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

Spawning Distribution

1.2 ·.-----------------------..,..,

:E 0.8
:z .g 0.6 •

:!: 0.4

0.2

0 •.
0 2 56 65 91 95 106 115 116 119 120 121 125 130

Number to Spal\n

Sinking Distribution

1.2 ----~------------....--,..,. ,.....,..-------..,.......,
1.

,E 0.8
:z _g 0.6 ..

ct; 0.4 ·:~~~'jj;~ii
0

_2 ·u. :/lti:111,•Kl,:lh"t,

0-!,,>,W-.!-...... ""'
0 3 58 65 93 95 108 115 118 120 121 123 125 130

Number to Sink

Fig. 6. Distribution Functions

codes used in this study, the initial instruction is
typically a "scatter" type command which ex­
ploits the concurrency of the code as soon as
possible.

4.2. Experimental Results

Table 2 contains the results when the halting
criterion is set to equivalent amounts of work in
the stochastic simulation and the available par­
allelism profiles. In roughly half of the bench­
mark cases the percent error is less than or equal
to 5% in terms of resource estimation (required
number of processing elements) and is greater
than 15% in only 3 of the 15 cases. Since
the pdfs may be derived from data dependency
graphs as well as available parallelism curves,
the model may be used to estimate the required
number of processing elements for a given data
dependency graph.

5.0. Estimation of Required Memory

Consider the case where all threads in a data de­
pendency graph have the same execution time of
one clock cycle and execute on a multithreaded

multiprocessor with no delay due to interproces­
sor communications or synchronization. If this
machine also has unlimited resources (i.e. the
ideal parallel machine), then all available paral­
lel ism in the program can be exploited. Further­
more, the number of threads executing in paral­
lel at each clock cycle will represent the max­
imum available parallelism in the program. In
this simplified case, the data dependency graph
may be viewed as having levels of execution,
where a level is the collection of nodes execut­
ing concurrently during a given clock cycle.

As an example, in Figure 1 the first level would
contain node 1 and would execute in one clock
cycle. The second level would contain nodes
2 through 5 and would execute in the second
clock cycle. Likewise, the third level would
contain the nodes 6 and 7 and would execute in
the third clock cycle. The fourth and final level
would contain only node 8 and would complete
execution in the fourth clock cycle. This is sum­
marized in Table 3.

Another useful metric which can be obtained
directly from the data dependency graph is the
number of graph edges which enter and leave
particular nodes on a per level basis. This in-

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes 367

SISAL
compiler

Executable ·,, Resource
Estimation
Program

Parallelism. M.emorv. and
Bandwidth Estim.al~:/

Data Structure

Fig. 7. The steps to produce resource estimates from SISAL source code.

Loop Execution Time Average Number of PEs Maximum Number of PEs
Model Actual % Error Model Actual % Error Model Actual % Error

1 11 8 38% 1740.2 1493.8 16% 3158 2950 7%
2 110 109 1% 22.4 15.0 49% 165 200 18%
3 6 4 50% 1467.1 1250.0 17% 2080 2000 4%
4 22 19 16% 10.1 7.2 40% 24 30 20%
5 107 78 37% 136.4 117.3 16% 486 500 3%
6 967 635 52% 27.0 26.2 31% 168 190 12%
8 30 18 67% 837.8 822.0 2% 2584 2975 13%
9 26 14 86% 255.2 189.5 35% 1103 1000 10%
10 18 12 50% 2718.7 2228.3 22% 6716 5500 22%
11 94 65 45% 78.2 71.5 9% 254 254 0%
12 8 6 33% 1380.6 1000.2 38% 2091 2000 5%
15 35 25 40% 1206.8 1126.0 7% 3173 3290 4%
16 74 45 64% 149.1 156.3 5% 883 900 2%
22 21 12 75% 110.4 116.9 6% 210 200 5%
23 1969 2030 3% 28.1 23.5 19% 776 700 11%

Table 2. Model Validation Results Using the Total Work Halting Criteria

Level Parail1elism Nodes Incoming Outgoing
A.res Arcs

1 1 1 2 4
2 4 2, 3, 4, and 5 4 3
3 2 6 and 7 3 2
4 1 8 3 1

Table 3. The parallelism and incoming and outgoing arc counts for each level for the example data dependency graph

formation can be used to estimate the memory
and bandwidth a system requires to efficiently
execute a program.

5.1 . Memory Requirements Estimation

The amount of required local memory can be
estimated for a given processor by noting the
maximum amount of intermediate storage used
during the execution of a program. However,
it is important to note that the actual code does
not need to be executed to perform this esti­
mation. The required intermediate storage can

be obtained by traversing the data dependency
graph structure by application of a "graph walk"
algorithm.

Consider the case when a data producing in­
struction thread completes execution but a cor­
responding consumer instruction thread requires
data from the finished thread as well as another
independent producer thread that has not yet
completed execution. In this case, the data from
the finished producer thread must be stored until
the consumer thread has all available data and is
scheduled for execution. Based on this premise,
we have begun developing a tool to estimate the

368 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

required memory to execute an algorithm on a
generic multiprocessor system.

Figure 7 shows the sequence of steps to produce
resource estimates from available source code
as we have currently implemented the tool. The
first step is to compile the source code into IFl,
a text file representing a data dependency graph.
A SISAL to IFl compiler exists [11], as well as
IFl compilers from other high-level languages.
The IFl file is then used as input to the IFl com­
piler/ profiler described in [3]. The profiler tool
extracts the necessary statistics used as input to
the memory resource estimation tool.

5.2. Algorithmic Memory Requirements
Estimation

We define two types of memory requirements;
those due to machine-dependent details of pro­
gram execution, the run-time memory require­
ments, and those due to the structure of the
application program's data dependency graph,
the algorithmic memory requirements. Algo­
rithmic memory requirements are unavoidable
and pertain to the structure of the program only.
Run-time memory requirements contain the al­
gorithmic memory requirements in addition to
the extra amount of memory needed for proces­
sor synchronization, communication, and other
operating system needs.

The following method is used to estimate algo­
rithmic memory requirements for a given pro­
gram in a high level language:

• 1. Compile the source code to IFl.

• 2. Use the IFl compiler and profiler to
produce a parallelism profile that includes

Level ParalleHsm lncormng Al:cs
1 1 0
2 2970 2970
3 1980 3960
4 1980 3960
5 990 1980
6 990 1980
7 990 1980
8 1 990
9 1 1

incoming and outgoing arc counts (see Ta­
ble 3 for an example).

• 3. Begin a count of memory usage at zero.

• 4. Step through each level in the paral­
lelism profile, adding the outgoing arcs
and subtracting the incoming arcs to find
the net memory usage by level. Accumu­
late these values during each step to deter­
mine the current, total memory usage.

• 5. The maximum (peak) value of the accu­
mulated memory usage is then the memory
requirement of the algorithm.

5.3. Experimental Results for
Memory Estimation Method

Table 4 shows the results of the algorithmic
memory requirement estimation tool for the
SISAL code shown in Figure 8. After the first
level of instruction threads is executed, the num­
ber of outgoing arcs that are stored for level
1 is 7,920. Level 2 has only 2,970 incoming
arcs leaving 4,950 data items to be stored. The
amount of memory required decreases through­
out the rest of the execution as those arcs are
consumed by other instruction threads, so 4,950
is the peak amount of storage required for exe­
cution under these ideal conditions. Therefore,
this value represents the algorithmic memory
requirements for Livermore Loop 1.

Figure 9 shows the results of the algorithmic
memory requirements estimation when analyz­
ing a set of benchmark applications, the Liv­
ermore Loops in SISAL [7]. The graph shows
only the amount of temporary storage required
by the algorithm. The technique does not in­
clude memory estimates for the storage of ma­
chine instructions and other synchronization

Outgoing Arcs Memory Usage
7920 4950
2970 3960
1980 1980
1980 1980
990 99
990 0
990 0

1 0
0 0

Table 4. Parallelism and algorithmic memory requirements for Livermore Loop 1 when the loop index N = 990

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes 369

% LOOP 1
% Hydro Fragment
% Parallel Algorithm

Define Main

type double= double_real;
type OneD array[double];

function Loopl(n:integer; Q,R,T:double; Y,Z:OneD returns OneD}
for Kin l,n

X := Q + (Y[K] * (R * Z[K+l0] + T * Z[K+ll]}}
returns array of X
end for

end function

function Main(rep,n:integer; Q,R,T:double; Y,Z:OneD returns OneD)
for i in 1, rep

X := Loopl(n, Q, R, T, Y, z);
returns value of X
end for

end function

Fig. 8. SISAL code for Livermore Loop 1.

and communication overhead. Therefore, these
are algorithmic estimates, not runtime memory
estimates.

The results of the technique illustrate the re­
lationship between memory usage and the loop
bound for the Livermore Loops. In all cases this
relationship is approximately linear with respect
to the loop bound N. This trend is not surprising
since we varied only a single bound. We would
expect a non-linear relationship if more than one
loop bound were varied. It is interesting to note
that the different applications in Figure 9 can be
characterized by the slope of the memory usage
curves, thus validating the notion of algorithmic
memory requirements.

6.0. Conclusions

An approach for multiprocessor processor/
memory resource estimation using only an ap­
plication's data dependency graph was presented.
This approach was implemented, leading to the
experimental results given. The methodology
is suitable for inclusion in a high-level sys­
tem architecture design package for estimating

required processor/memory resources for tar­
geted or benchmark applications. Also, this
technique could be incorporated into a "smart"
scheduler to utilize available resources efficiently.

The development of a multipurpose resource es­
timation package has been initiated. To date, a
profiler has been developed that produces in­
formation containing data structures from an
input application's data dependency graph rep­
resented in IFl (3]. A stochastic model based
simulator has also been developed, based on the
profiling information produced by the !Fl tool
for estimating processor element work-loads.

Th~ current version of the memory resource es­
timation tool is limited to resource estimation
for the ideal case of unlimited available process­
ing elements and equal instruction thread length
for all graph nodes. This version is being ex­
tended to estimate required memory resources
for limited processing elements and variation in
execution times for each type of node in IFl.

In addition, the arcs between nodes in the data
dependency graphs represent data transfers and
require bandwidth between individual process­
ing elements. The memory estimation tool will
also be extended to estimate the minimum re-

370 Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

Algorithmic Memory Requirements for the Livermore
Loops

1.0E+09 .----------------------------~-.~•o-----.
1.0E+08 ·+-----------------,,• ~;:::,, .,....i

I::;::~:,_____________ ":~:;;~"'~~=:

~ 1.0C:+04 · --

~ 1.0E+03 ·t---------:.,-C-./-:-""''::
::E

1.0E+02 • ••••••••

1.0E+01

1.0E+00 <-------';..-----------------------------!

0 2 3 4
Loop Bound (N = 10')

i -a- Loop 1 - Hydrodynamic _,,__ 3 - Inner Product -+-4 - Banded Linear Equations
i -a-- 5 - Tri-diag. Linear Equations
; - 9 - Integrate Predictors

-+- 7 - Equation of State
·- 11 - First Sum

-+-8 - A.D.I. Integration
..... 12 - First Difference

i -a- 14 - Particle in Cell
; _,,_ 22 - Planckian Distribution

...,._ 15 - Casual FORTRAN
-o- 24 - First Min Search

-.. •• 21 - Matrix Multiplication

Fig. 9. Algorithmic Memory Requirements for Various Scientific Code Loops and Varying Loop Ranges

quired total system bandwidth to efficiently ex­
ecute application software.

We have developed a statistical model that can
be used to predict needed resources for a parallel
architecture based upon the notions of maximal
length thread spawning and length probability
density functions. This information is easily ob­
tainable from available parallelism profiles or,
data dependency graphs. The model was val­
idated through comparisons to actual data and
several different halting criteria were evaluated.

The utility of this approach lies in the fact that
parameters such as processor latencies arid finite
resources may be varied and the corresponding
characteristics of a parallel architecture may be
observed before high level design occurs. Thus,
this tool can be valuable for the system designer
in the specification phase of the processor archi­
tecture. Since the pdfs can be computed directly
from a data dependency graph produced by a
compiler, this model can be used to predict the
required number of processing elements before
the program is actually executed.

References

[l] DAVID PATTERSON, THOMAS ANDERSON, NEAL CARD­
WELL, RICHARD FROMM, KIMBERLY KEETON,
CHRISTOFOROS KOZYRAKIS, RANDI THOMAS, AND
KATHERINE YELICK, "A Case for Intelligent RAM:
IRAM", IEEE Micro, April 1997, http://iram.cs.

berkeley.edu/publications.html.

[2] JOHN. T. FEO, "An Analysis of the Computational
and Parallel Complexity of the Livermore Loops."
Elsevier Science Publishers B.V., Series on Parallel
Computing 0167-8191/88, #7, 1988.

[3] SUWANTO, Implementation of Compiler, Viewer, and
Parallelism Analysis Software for the !Fl Lan­
guage, Master of Science thesis at the Uni­
versit;v of Arkansas at Fayetteville, May 1997,
ftp:/ /ftp.engr.uark.edu/user/matl/pubs/suwanto
_thesis.ps.

[4] J. P. DIGUET, 0. SENTIEYS, J. L. PHILIPPE, AND E.
MARTIN, "Probabilistic Resource Estimation for
Pipeline Architecture", in VLSI Signal Processing
VIII, IEEE Press, October 1995, and Proceedings
of the 1995 IEEE Workshop on Signal Processing,
Osaka, Japan, October 16-18, 1995.

[5] H. JONKERS, A. J. C. VAN GEMUND, G. L. REIJNS,
"A Probabilistic Approach to Parallel System Per­
formance Modelling", Proceedings 28'h Annual
Hawaii international Conference on System Sci­
ences, Vol. II (Software Technology), Wailea,
Hawaii, January 1995.

Resource Estimation for Parallel Architectures with Distributed Processor/Memory Nodes

[6] R. MORENO, R. HERMIDA, M. FERNANDEZ, "Regis­
ter Estimation in Unshceduled Dataflow Graphs",
ACM Transactions on Design Automation of Elec­
tronic Systems, vol. 1, no. 3, pp. 396-403, July
1996, http://www.acm.org/todaes/Y1N3/L164/
paper.ps.gz.

[7] JOHN T. FEO, "The Livermore Loops in SISAL."
Technical Report, UCID-21159, Lawrence Liver­
more National Laboratory, August 1987.

[8] M. L. JAMES, G. M. SMITH, J.C. WOLFORD, "Applied
Numerical Methods For Digital Computation",
Harper Row, 2nd ed. 1977.

[9] KISHOR TRIVEDI, "Probability and Statistics with
Reliability, Queuing, and Computer Science Ap­
plications", Prentice Hall, 1982.

[10] E. C. RUSSELL, SIMSCRIPT 11.5 Programming
Language, 4-th Edition, CACI Products Company,
LaJolla, CA, 1987.

[11] J. MCGRAW, S. SKEDZ!ELEWSK!, R. OLDEHOEFT, J.
GLAUERT, C. KIRKHAM, B. NOYCE, R. THOMAS,
"SISAL: Streams and Iteration in a Single As­
signment Language." Language Reference Man­
ual, Version 1.2, M-146 Rev. I, University of
California-Davis, March 1985.

Received: November, 1997
Revised: May, 1998

Accepted: June, 1998

Co11tacl address:

Milch Thornlon
Deparlmenl of Compuler Systems Engineering

University of Arkansas
313 Engineering Hall

Fayetteville, AR 72701-1201
USA

e-mail: matl@engr.uark.edu
phone: (501) 575-5159

fax: (501) 575-5339

MITCH THORNTON received the BS degree in Electrical Engineering
in 1985 from Oklahoma State University, the MS degree in Electrical
Engineering in 1991 from the Universi1y of Texas at Arlington, the MS
degree in Computer Science in 1993 from Southern Methodist Uni­
versity, and the PhD degree in Computer Engineering in 1995 from
Southern Methodist University. From 1985 to 1990, he was employed
al E-Systems, Inc. and left there as a Sr. Electronic Systems Engineer.
In 1995 he was appointed Assistant Professor of Computer Systems En­
gineering at the University of Arkansas. His research inlerests include
logic synthesis, design verificalion, and computer arithmetic. Mitch is
a member of the computer architecture and CAD /VLSI research group.

DAVID L. ANDREWS is an Associate Professor of Computer Systems
Engineering at the University of Arkansas. His research interests are in
real time systems, parallel systems, Computer architecture and recon­
figurable computing. Dr. Andrews received his BSEE and MSEE from
the University Missouri-Columbia, and PhD from Syracuse University.
Dr. Andrews is a member of the IEEE.

371

