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Determining the resources needed to run a specific 
program is an important task for static task schedulers 
for existing multiprocessors. It can also be a valuable 
computer-aided engineering tool for the design and im­
plementation of application specific parallel processors. 
An approach for determining the required number of 
processors and the amount of memory needed per pro­
cessor is described. The estimates are calculated using 
information available in a data-flow graph generated 
by a high-level language compiler. Metrics based on 
the notions of thread spawning and maximum length 
thread probability density functions are presented. The 
measures obtained frorn the parallelism profiles arc used 
as input to a queuing system model to predict the number 
of processing elements that can be exploited. Memory 
resource estimates are predicted through a simple graph 
traversal technique. Finally, experimental results are 
given to evaluate the methods. 

1.0. Introduction 

Processor execution speeds are increasing dra­
matically due to advancements in integrated cir­
cuit manufacturing technology and engineering 
design methods and tools. However, the rate 
of speed increase for memory is much smaller. 
Currently, memory access versus processor la­
tency is at a ratio of approximately 10:1. It is 
predicted that this ratio will increase to 100:1 
in 20 years, a problem known as the processor­
memory performance gap [l]. This implies that 
future architectures must efficiently deal with 
memory latencies in order to continue to pro­
vide machines with performance increases that 
have been common in the past. 

A result of the processor-memory performance 
gap is that new architectural approaches for de­
signing and implementing multiprocessor com­
puter systems must be utilized. A common 
theme among several of the various approaches 
is to distribute and integrate memory with each 
processor to reduce bus contention, thus allow­
ing concurrent local memory accesses. This 
leads to the question of determining the amount 
of memory needed for each processor. Too 
much memory results in a waste of resources 
in terms of available chip area and power con­
sumption, while too Ii ttle memory could impact 
program runtime [l]. For these reasons an an­
alytical tool for estimating the number of pro­
cessor/memory resources for given application 
programs has been developed. 

Histograms of the theoretical maximum number 
of instructions that may execute versus cumu­
lative runtime (referred to as 'parallelism pro­
files') have been used in the past to evaluate the 
available parallelism contained within an appli­
cation program [2] [3 ]- The profiles indicate the 
number of parallel operations available at each 
step of program execution. We present a model 
derived from parallelism profiles for the anal­
ysis of the overhead time associated with the 
creation and completion of parallel operations. 
The model presents a method for determining 
the overhead associated with executing the pro­
gram. The model results may then be used to 
determine the granularity of parallel operations 
within a program, partitioning, and load bal­
ancing, or determining optimal thread sizes for 
multithreaded architectures. 

• This research was supported in part by a grant from the Arkansas Science and Technology Authority under contract 97-B-12. 
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Unfortunately, parallelism profiles only give the 
upper bound in achievable parallelism for any 
given architecture. Multiprocessor designers 
typically specify a system using a behavioral or 
structural description of the hardware and sim­
ulate the execution of benchmark programs to 
determine the behavior of the architecture. The 
hardware simulation results can then be com­
pared against the ideal case given in the paral­
lelism plot for performance analysis of the de­
sign. In this work, we define several parameters 
that are directly measurable from the parallelism 
plots and develop a statistical queuing model for 
execution of the program independent of archi­
tectural details. The statistical model results 
can then be used to guide the designer in de­
termining the hardware organization. Since the 
statistical model can also be used to generate 
ideal cases, model validation is accomplished 
by comparing predicted results to the original 
ideal data. 

Most stochastic models for multiprocessor sys­
tems only predict steady state responses by ig­
noring start-up and shut-down transients since 
they are typically too hard to model. In this 
work, we include the transients in the model 
through the notions of maximal thread length 
and thread spawning probability density func­
tions (pdf). The pdfs are generated directly 
from the available parallelism curves and are 
used to pseudo-randomly generate random vari­
ables that represent the initiation and duration 
of maximal length computation threads. 

The criterion for determining when to halt the 
statistical models' execution proved to be a cru­
cial parameter with regard to the accuracy of 
the results. In the work described here, the halt­
ing criterion is based on equating the amount of 
work present in the available parallelism curve 
to that predicted by the simulation. When the 
maximum work criterion is used, estimates of 
total runtime and maximum required process­
ing elements are predicted and compared to the 
ideal case. This validates the approach for es­
timating the results due to non-zero processor 
communication latencies or restricting the num­
ber of available processing elements in other 
experiments using the model. 

Traditionally, memory requirements have been 
obtained by: 1) assuming an architectural or­
ganization, 2) building or simulating the ar­
chitecture, and 3) executing an application on 

the architecture and monitoring memory usage. 
This approach is disadvantageous for the de­
signer, since the design must be in place before 
the memory requirements can be found. Other 
methods for modeling and predicting memory 
include non-deterministic statistical models [ 4] 
[5] which unfortunately still assume some type 
of architecture. The work described in [ 6] is 
similar to that described here, except that reg­
ister estimation in a high-level synthesis frame­
work is accomplished, not memory estimation 
for application specific programs. The method 
discussed here has novelty in that the only re­
quirement is a representation of the application 
program itself. 

The organization of the paper consists of the fol­
lowing section that briefly reviews the notions 
of data-flow graphs and available parallelism 
curves. Next, some metrics and definitions are 
provided that are used in the formulation of the 
model. Sections 4 and 5 contain the descriptions 
of the number of processors and memory usage 
models respectively, including experimental re­
sults. Finally, conclusions and future work sec­
tion is included. 

2.0. Data-Flow Graphs and Associated 
Metrics 

Any given application program can be viewed 
as a collection of sequential instruction threads 
to be executed as soon as their input data is avail­
able. An abstract representation of a program is 
then a directed acyclic graph where vertices cor­
respond to computational instructions to be ex­
ecuted and edges represent data dependencies. 
The edges of the data dependency graph cor­
respond to the transfer of data from the output 
of a producer instruction node to a consumer 
instruction node. In a multiprocessor system, 
each thread can be executed on a single proces­
sor; therefore, threads can execute concurrently 
as long as the required input data are available. 
With this viewpoint, representing an application 
program as a data dependency graph allows us 
to exploit the available parallelism. 

As an example, Figure 1 shows a data depen­
dency graph which computes a value from the 
formula c = (1/a 2) + b2 - (b + a) - l. The 
graph shows the data dependencies inherent in 
the computation. For example, node 2 cannot 
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Fig.]. Data dependency graph of 
c = (1/a 2) + b2 - (b + a) - 1. 

execute until it receives the value of a from node 
l. When node 2 executes, it will produce the 
value of a2 . Node 2 then passes this value to 
node 6, and so on. The graph also shows the 
available parallelism in the computation. For 
example, given sufficient resources, nodes 2, 3, 
4, and 5 can be executed in parallel depending 
only on the results of node l. Table 1 sum­
marizes the operations performed by each data 
dependency graph node. 

Thread Operation Result 
1 Retrieve a,b 
2 Square a,. 

3 Subtract -l-b 
4 Square b,. 
5 Negate -a 
6 Inverse l/a,. 
7 Add b,.+(-l-b) 
8 Add (1/ aL)+b2-( b+a )-1 

Table J. Instruction Thread Operations for Each Vertex 
in Graph of Figure 1 

Parallelism profiles present a graphical repre­
sentation of the parallel operations available for 
execution at each time step in a program. A 
typical parallelism profile is shown in Figure 2. 
This parallelism profile taken from Loop 11 of 
the Livermore Loops [2,7] shows the number 

of parallel operations available for execution at 
each time step in the program. The parallelism 
profile also indicates that a variable number of 
operations are available for execution in paral­
lel throughout the lifetime of the program. The 
shape of the parallelism curve is characteristic 
of the form of the source code. 

The overall envelope or shape of the parallel 
profile in Figure 2 is determined by an inner 
parallel For construct, and the number of lo­
cal maximum values is determined by an outer 
while loop. For a detailed discussion of the 
Livermore Loops, see [7]. The parallelism pro­
file provides insight into the architectural char­
acteristics of the machine type best suited for 
executing the program. The maximum number 
of processors required in order to exploit the 
parallelism can easily be determined by analy­
sis of the profile graph. The maximum number 
of parallel operations and hence, the maximum 
number of processors required for this profile is 
250. The area under the parallelism profile rep­
resents the total work required to execute this 
program. 

One factor that will affect the execution time of 
the program is the overhead associated with task 
creation, completion, data copying, synchro­
nization, etc., as well as resource contentions 
associated with the initialization and termina­
tion of the parallel operations. The effect of this 
overhead is not apparent by the data displayed in 
the parallelism profile. The parallelism profile 
is based on a data dependency ordering of op­
erations by level. The parallelism profile shows 
the cumulative number of operations at each 
level, but does not show actual execution times. 

3.0. Model Based on Data-Flow Graph 

A model can be developed based on the par­
allelism profile to aid in the understanding of 
the overhead of creating and executing these 
parallel operations. The model is based on the 
following definitions: 

Maximal Source Overhead: The overhead as­
sociated with starting execution of a new maxi­
mal thread. 

Maximal Sink Overhead: The overhead asso­
ciated with terminating a maximal thread. 
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Fig. 2. Parallelism Profile for Livermore Loop 11. 

Thread 1 Thread 2 Thread 3 Thread 4 

Thread 1 Thread 2 Thread 3 Thread 4 

Fig. 3. Thread Definitions. 

Average Maximal Thread Length: The aver­
age number of operations executed in all maxi­
mal threads. 

The first graph in Figure 3 shows a data de­
pendency graphical representation of a single 
thread. The data graph provides a strict ordering 
of operations represented by the data dependen­
cies between the operations in the graph. The 
single thread shown in Figure 3 contains a sin­
gle sequential ordering of operations. The sec­
ond graph in Figure 3 shows three new threads 
sourced from the top-most node. Overhead 
will be introduced when these three threads 
are sourced. This overhead can be attributed 
to operating system scheduling, resource de­
allocation and contention, or transfer of data. 

The third graph in Figure 3 shows three threads 
that will be terminated by transferring data into 
the thread that contains the bottom node. Over­
head will also be introduced when these three 
threads are sinked. 

It is apparent from the second and third graphs 
shown in Figure 3 that exactly three threads are 
sourced, and three are sinked. This level of 
detail cannot be accurately obtained from a par­
allelism profile. Each time step shown in a pro­
file shows the net number of parallel operations 
existing at that level. Consider the parallelism 
profile shown in Figure 2. The profile shows 
that approximately 120 parallel operations exist 
at time steps three, and 250 parallel operations 
exist at time step four. A net am'ount of 130 new 
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Fig. 4. S,c(t) Graph for Loop 11. 

parallel operations were sourced between time 
steps three and four. However, the profile does 
not provide enough information to determine if 
130 new operations were sourced, or, if the 120 
operations in time step three were sinked while 
250 new operations were sourced. This infor­
mation is available from the source program, 
or the data dependency graph, but not the par­
allelism profile. The following definitions are 
required to continue describing the specification 
of the model based on parallelism profiles. 

Let N(t) = number of processors required at 
time t in the parallelism profile. Enumerate 
PEi = i "Ii E (1, n] where n is the maximum 
number of processors required throughout the 
program execution. For the parallelism profile 
illustrated in Figure 1, the value of n = 250. 

If N(t) = k, then PE 1, PE2, ... PEk are execut­
ing, and PEk+ 1 ... PEn are idle. If N( t + l) > 
N(t), then we assume processors PEN(t+l) .. . 
PEN(t)+i initiate execution. Processors PE1 .. . 
PEN(t) continue execution, assumingN(t) :::; n. 

If N(t + 1) < N(t), then we assume pro-
cessors PEN(t+l)+I ... PEN(t) terminate execu-
tion. Processors PE1 ... PEN(t+I) continue ex-
ecution. A maximal process thread is defined to 
operate on processor PEk over the time interval 
(a, f:l], with length f:l - a, such that k 2:: N(t) 
Vt E [a, f:l]. 

3.1. Source/Sink Definitions 

We define Ml(t) as: 

t-,.JN(t) = N(t + 1) -N(t) 
t,.tfl(t) = N(t) -N(t - 1) 

where !-,.JN(t) is a first order forward difference 
equation, and !-,.tfl(t) is a first order backward 
difference equation [8]. !-,.JN(t) represents the 
net number of maximal threads spawned, and 
!-,.tfl(t) represents the net number of maximal 
threads sinked at time t. Define Src(t) and Snk(t) 
as: 

Src(t) = ½ [l!-,.tfl(t) I + !-,.tfl(t)] 

S,,k(t) = ½ [\t,.1N(t) I - !-,.1N(t)] 

Src ( t) represents the number of maximal threads 
sourced, and S,,k(t) represents the number of 
maximal threads sinked at time t. For any pro­
gram 

00 

L S,c(t) = #maximallengththreads 
1=1 

The number of maximal length threads sourced 
must equal the number sinked, otherwise, the 
program would not terminate. Based on the 
definitions for Src(t) and S,,k(t), several obser­
vations can be made regarding the programs' 
overhead behavior. 

0:::; Src(t):::; max lt,.tN(t)I 

0:::; Snk(t):::; max lt,.tfl(t)I 
max it-,.1N(t)I, max lt,.tfl(t)I :::; max IN(t)I. 

The graph shown in Figure 4 illustrates the 
S)rc(t) curve for the parallelism profile shown 
in Figure 2. 
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3.2. Probability Density and Distributions 

Define two random variables X and Y. We can 
define the event Ax to the subset of S,c consisting 
of all sample points S,c(t) to which the random 
variable X assigns the value x, and the event 
By to the subset of Snk consisting of all sample 
points Snk(t) to which the random variable Y 
assigns the value y [9]: 

Ax= {Src(t) E Src j X(Src(t)) = x} 
By= {S,,k(t) E S,,k I Y(S,,k(t)) = y} 

Using these definitions, 

P(Ax)=P([X=x])=P( {Src(t)jX(Src(t))=x}) 

L P(Src(t)) 
X(Src(t))=x 

P(By )=P([Y=y ])=P( {Snk(t) jY(Snk(t))=y}) 

L P(Snk(t)) 
Y(Snk(t))=y 

We define these functions as the spawning and 
sinking probability density functions (pdf), re­
spectively. The following properties hold: 

0::; p(Src(t))::; 1 

L P(Src(t)) = 1 
xES,c 

0::; p(Snk(t))::; 1 

L P(Snk(t)) = l. 
yES11k 

The cumulative spawning and sinking distribu­
tion functions F x(x) and Fr(y) as 

Fx(x) = P{X < x} = I:tx(xi) 

Fy(y) = P{Y < y} = Lfr(y;) 

The spawning mass function represents the prob­
ability of spawning Src(t) new maximal threads 
during the execution of the program. The sink­
ing mass function represents the probability of 
sinking S11k(t) maximal threads during the ex­
ecution of the program. The spawning and 
sinking probability mass functions for the par­
allelism profile shown in Figure 2 are illustrated 
in Figure 5. Likewise, the distribution functions 
are depicted in Figure 6. 

The cumulative normalized spawning density 
function shows that threads are spawned fairly 
uniformly throughout the life of the program. 
The cumulative normalized sinks density func­
tion shows that threads are terminated fairly 

uniformly throughout the life of the program. 
The distribution functions show the normalized 
number of spawns and sinks during execution. 
The distribution functions in Figure 6 show the 
number of spawns and sinks are fairly constant 
throughout the program. 

3.3. Thread Length Density / Distributions 

The spawning and sinking density functions 
provide a technique to model the frequency of 
maximal thread creation and completion. This 
provides a measure of how active the program is 
during execution, and how the overhead of cre­
ation and completion is distributed throughout 
the program. This cost of the overhead can be 
modeled by density and distribution functions 
of the length of the maximal threads. For long 
threads, the overhead cost is easily amortized 
over the length of the thread. This is typical of 
MIMD operation, where the length of the thread 
is long. For short threads, the overhead cost is 
not readily available, and can represent a signif­
icant delay in the thread execution. Short thread 
lengths are characteristic of SIMD operations. 

3.4. Overhead Granularity 

The parallelism profile in Figure 2 shows that a 
large degree of parallelism is available periodi­
cally throughout the program. A total of 9000 
threads are spawned during the program execu­
tion. The average thread length is an important 
characteristic of the program, and can be deter­
mined by: 

1 
thread length = --- L ti 

#threads . 
I 

where t; is the length of thread I. The thread 
length can also be computed by dividing the to­
tal area under the parallelism profile curve by 
the total number of threads. The average thread 
length for Figure 2 is 3.6. This implies that only 
3.6 instructions are executed on average in each 
thread. 
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Fig. 5. Density Functions 

4.0. Estimation of Processing Elements 

To investigate the validity of using spawning 
and thread length distribution density functions 
for characterizing exploitable parallelism, a sta­
tistical model was developed and run using the 
SIMSCRIPT simulation language [10]. The 
model consisted of a set of resources repre­
senting maximal length threads and two main 
processes; a GENERATOR and PE process. The 
GENERATOR process is responsible for randomly 
determining if and how many maximal length 
threads are spawned at each CPU clock cycle. 
The PE process represents a single processing 
element upon which a maximal length thread 
will execute. The PE process pseudo-randomly 
generates the length of a maximal thread by 
using a user-defined probability density func­
tion. Likewise, the GENERATOR process deter­
mines the number of maximal length threads to 
spawn at a given time based upon another user­
defined probability density function. The model 
also has the capability to add additional parame­
ters such as latencies due to processing element 

overhead, and to limit the number of available 
processing elements to some finite number. 

4.1 . Model Validation 

The accuracy of the model was tested by per­
forming a series of runs using maximal thread 
source and length pdfs derived from the Liver­
more Loops as input. The model results were 
then compared to the original deterministic par­
allelism profiles. In order to have a fair compari­
son, the statistical model assumed that an unlim­
ited number of processing elements with zero 
communication latency were present. These 
parameters match the deterministic parallelism 
curves given in (3,7]. 

During model validation, it was noted that a cru­
cial parameter for model results is the number 
of initial threads executing. Upon examination 
of the deterministic data in [3,7], code segments 
such as the one represented by loop 10 begin 
with a small number of threads (less than 10) 
and at time 1 spawn several thousand threads 
(over 5500). For the highly parallel scientific 
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codes used in this study, the initial instruction is 
typically a "scatter" type command which ex­
ploits the concurrency of the code as soon as 
possible. 

4.2. Experimental Results 

Table 2 contains the results when the halting 
criterion is set to equivalent amounts of work in 
the stochastic simulation and the available par­
allelism profiles. In roughly half of the bench­
mark cases the percent error is less than or equal 
to 5% in terms of resource estimation (required 
number of processing elements) and is greater 
than 15% in only 3 of the 15 cases. Since 
the pdfs may be derived from data dependency 
graphs as well as available parallelism curves, 
the model may be used to estimate the required 
number of processing elements for a given data 
dependency graph. 

5.0. Estimation of Required Memory 

Consider the case where all threads in a data de­
pendency graph have the same execution time of 
one clock cycle and execute on a multithreaded 

multiprocessor with no delay due to interproces­
sor communications or synchronization. If this 
machine also has unlimited resources (i.e. the 
ideal parallel machine), then all available paral­
lel ism in the program can be exploited. Further­
more, the number of threads executing in paral­
lel at each clock cycle will represent the max­
imum available parallelism in the program. In 
this simplified case, the data dependency graph 
may be viewed as having levels of execution, 
where a level is the collection of nodes execut­
ing concurrently during a given clock cycle. 

As an example, in Figure 1 the first level would 
contain node 1 and would execute in one clock 
cycle. The second level would contain nodes 
2 through 5 and would execute in the second 
clock cycle. Likewise, the third level would 
contain the nodes 6 and 7 and would execute in 
the third clock cycle. The fourth and final level 
would contain only node 8 and would complete 
execution in the fourth clock cycle. This is sum­
marized in Table 3. 

Another useful metric which can be obtained 
directly from the data dependency graph is the 
number of graph edges which enter and leave 
particular nodes on a per level basis. This in-
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Fig. 7. The steps to produce resource estimates from SISAL source code. 

Loop Execution Time Average Number of PEs Maximum Number of PEs 
Model Actual % Error Model Actual % Error Model Actual % Error 

1 11 8 38% 1740.2 1493.8 16% 3158 2950 7% 
2 110 109 1% 22.4 15.0 49% 165 200 18% 
3 6 4 50% 1467.1 1250.0 17% 2080 2000 4% 
4 22 19 16% 10.1 7.2 40% 24 30 20% 
5 107 78 37% 136.4 117.3 16% 486 500 3% 
6 967 635 52% 27.0 26.2 31% 168 190 12% 
8 30 18 67% 837.8 822.0 2% 2584 2975 13% 
9 26 14 86% 255.2 189.5 35% 1103 1000 10% 
10 18 12 50% 2718.7 2228.3 22% 6716 5500 22% 
11 94 65 45% 78.2 71.5 9% 254 254 0% 
12 8 6 33% 1380.6 1000.2 38% 2091 2000 5% 
15 35 25 40% 1206.8 1126.0 7% 3173 3290 4% 
16 74 45 64% 149.1 156.3 5% 883 900 2% 
22 21 12 75% 110.4 116.9 6% 210 200 5% 
23 1969 2030 3% 28.1 23.5 19% 776 700 11% 

Table 2. Model Validation Results Using the Total Work Halting Criteria 

Level Parail1elism Nodes Incoming Outgoing 
A.res Arcs 

1 1 1 2 4 
2 4 2, 3, 4, and 5 4 3 
3 2 6 and 7 3 2 
4 1 8 3 1 

Table 3. The parallelism and incoming and outgoing arc counts for each level for the example data dependency graph 

formation can be used to estimate the memory 
and bandwidth a system requires to efficiently 
execute a program. 

5.1 . Memory Requirements Estimation 

The amount of required local memory can be 
estimated for a given processor by noting the 
maximum amount of intermediate storage used 
during the execution of a program. However, 
it is important to note that the actual code does 
not need to be executed to perform this esti­
mation. The required intermediate storage can 

be obtained by traversing the data dependency 
graph structure by application of a "graph walk" 
algorithm. 

Consider the case when a data producing in­
struction thread completes execution but a cor­
responding consumer instruction thread requires 
data from the finished thread as well as another 
independent producer thread that has not yet 
completed execution. In this case, the data from 
the finished producer thread must be stored until 
the consumer thread has all available data and is 
scheduled for execution. Based on this premise, 
we have begun developing a tool to estimate the 
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required memory to execute an algorithm on a 
generic multiprocessor system. 

Figure 7 shows the sequence of steps to produce 
resource estimates from available source code 
as we have currently implemented the tool. The 
first step is to compile the source code into IFl, 
a text file representing a data dependency graph. 
A SISAL to IFl compiler exists [11 ], as well as 
IFl compilers from other high-level languages. 
The IFl file is then used as input to the IFl com­
piler/ profiler described in [3]. The profiler tool 
extracts the necessary statistics used as input to 
the memory resource estimation tool. 

5.2. Algorithmic Memory Requirements 
Estimation 

We define two types of memory requirements; 
those due to machine-dependent details of pro­
gram execution, the run-time memory require­
ments, and those due to the structure of the 
application program's data dependency graph, 
the algorithmic memory requirements. Algo­
rithmic memory requirements are unavoidable 
and pertain to the structure of the program only. 
Run-time memory requirements contain the al­
gorithmic memory requirements in addition to 
the extra amount of memory needed for proces­
sor synchronization, communication, and other 
operating system needs. 

The following method is used to estimate algo­
rithmic memory requirements for a given pro­
gram in a high level language: 

• 1. Compile the source code to IFl. 

• 2. Use the IFl compiler and profiler to 
produce a parallelism profile that includes 

Level ParalleHsm lncormng Al:cs 
1 1 0 
2 2970 2970 
3 1980 3960 
4 1980 3960 
5 990 1980 
6 990 1980 
7 990 1980 
8 1 990 
9 1 1 

incoming and outgoing arc counts ( see Ta­
ble 3 for an example). 

• 3. Begin a count of memory usage at zero. 

• 4. Step through each level in the paral­
lelism profile, adding the outgoing arcs 
and subtracting the incoming arcs to find 
the net memory usage by level. Accumu­
late these values during each step to deter­
mine the current, total memory usage. 

• 5. The maximum (peak) value of the accu­
mulated memory usage is then the memory 
requirement of the algorithm. 

5.3. Experimental Results for 
Memory Estimation Method 

Table 4 shows the results of the algorithmic 
memory requirement estimation tool for the 
SISAL code shown in Figure 8. After the first 
level of instruction threads is executed, the num­
ber of outgoing arcs that are stored for level 
1 is 7,920. Level 2 has only 2,970 incoming 
arcs leaving 4,950 data items to be stored. The 
amount of memory required decreases through­
out the rest of the execution as those arcs are 
consumed by other instruction threads, so 4,950 
is the peak amount of storage required for exe­
cution under these ideal conditions. Therefore, 
this value represents the algorithmic memory 
requirements for Livermore Loop 1. 

Figure 9 shows the results of the algorithmic 
memory requirements estimation when analyz­
ing a set of benchmark applications, the Liv­
ermore Loops in SISAL [7]. The graph shows 
only the amount of temporary storage required 
by the algorithm. The technique does not in­
clude memory estimates for the storage of ma­
chine instructions and other synchronization 

Outgoing Arcs Memory Usage 
7920 4950 
2970 3960 
1980 1980 
1980 1980 
990 99 
990 0 
990 0 

1 0 
0 0 

Table 4. Parallelism and algorithmic memory requirements for Livermore Loop 1 when the loop index N = 990 
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% LOOP 1 
% Hydro Fragment 
% Parallel Algorithm 

Define Main 

type double= double_real; 
type OneD array[double]; 

function Loopl( n:integer; Q,R,T:double; Y,Z:OneD returns OneD} 
for Kin l,n 

X := Q + (Y[K] * (R * Z[K+l0] + T * Z[K+ll]}} 
returns array of X 
end for 

end function 

function Main( rep,n:integer; Q,R,T:double; Y,Z:OneD returns OneD) 
for i in 1, rep 

X := Loopl( n, Q, R, T, Y, z); 
returns value of X 
end for 

end function 

Fig. 8. SISAL code for Livermore Loop 1. 

and communication overhead. Therefore, these 
are algorithmic estimates, not runtime memory 
estimates. 

The results of the technique illustrate the re­
lationship between memory usage and the loop 
bound for the Livermore Loops. In all cases this 
relationship is approximately linear with respect 
to the loop bound N. This trend is not surprising 
since we varied only a single bound. We would 
expect a non-linear relationship if more than one 
loop bound were varied. It is interesting to note 
that the different applications in Figure 9 can be 
characterized by the slope of the memory usage 
curves, thus validating the notion of algorithmic 
memory requirements. 

6.0. Conclusions 

An approach for multiprocessor processor/ 
memory resource estimation using only an ap­
plication's data dependency graph was presented. 
This approach was implemented, leading to the 
experimental results given. The methodology 
is suitable for inclusion in a high-level sys­
tem architecture design package for estimating 

required processor/memory resources for tar­
geted or benchmark applications. Also, this 
technique could be incorporated into a "smart" 
scheduler to utilize available resources efficiently. 

The development of a multipurpose resource es­
timation package has been initiated. To date, a 
profiler has been developed that produces in­
formation containing data structures from an 
input application's data dependency graph rep­
resented in IFl (3]. A stochastic model based 
simulator has also been developed, based on the 
profiling information produced by the !Fl tool 
for estimating processor element work-loads. 

Th~ current version of the memory resource es­
timation tool is limited to resource estimation 
for the ideal case of unlimited available process­
ing elements and equal instruction thread length 
for all graph nodes. This version is being ex­
tended to estimate required memory resources 
for limited processing elements and variation in 
execution times for each type of node in IFl. 

In addition, the arcs between nodes in the data 
dependency graphs represent data transfers and 
require bandwidth between individual process­
ing elements. The memory estimation tool will 
also be extended to estimate the minimum re-
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Algorithmic Memory Requirements for the Livermore 
Loops 

1.0E+09 .----------------------------~-.~•o-----. 
1.0E+08 ·+-----------------,,• ~;:::,, .,....i 

I::;::~:,_____________ ":~:;;~"'~~=: 

~ 1.0C:+04 · --

~ 1.0E+03 ·t---------:.,-C-./-:-""'':: 
::E 

1.0E+02 • •••••••• 

1.0E+01 

1.0E+00 <-------';..-----------------------------! 

0 2 3 4 
Loop Bound (N = 10') 

i -a- Loop 1 - Hydrodynamic _,,__ 3 - Inner Product -+-4 - Banded Linear Equations 
i -a-- 5 - Tri-diag. Linear Equations 
; - 9 - Integrate Predictors 

-+- 7 - Equation of State 
·- 11 - First Sum 

-+-8 - A.D.I. Integration 
..... 12 - First Difference 

i -a- 14 - Particle in Cell 
; _,,_ 22 - Planckian Distribution 

...,._ 15 - Casual FORTRAN 
-o- 24 - First Min Search 

-.. •• 21 - Matrix Multiplication 

Fig. 9. Algorithmic Memory Requirements for Various Scientific Code Loops and Varying Loop Ranges 

quired total system bandwidth to efficiently ex­
ecute application software. 

We have developed a statistical model that can 
be used to predict needed resources for a parallel 
architecture based upon the notions of maximal 
length thread spawning and length probability 
density functions. This information is easily ob­
tainable from available parallelism profiles or, 
data dependency graphs. The model was val­
idated through comparisons to actual data and 
several different halting criteria were evaluated. 

The utility of this approach lies in the fact that 
parameters such as processor latencies arid finite 
resources may be varied and the corresponding 
characteristics of a parallel architecture may be 
observed before high level design occurs. Thus, 
this tool can be valuable for the system designer 
in the specification phase of the processor archi­
tecture. Since the pdfs can be computed directly 
from a data dependency graph produced by a 
compiler, this model can be used to predict the 
required number of processing elements before 
the program is actually executed. 
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