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In modern design flows low-power aspects should be considered as early as possible to minimize power dissipation in the resulting circuit. A new binary
decision diagram—based design style that considers switching activity optimization using temporal correlation informationis presented. The techniqueis
based on an approximation method for switching activity estimation. In the case of finite state machines, the presented method extracts signal statistics by
means of Markov chain analyses. Experimental results on a set of MCNC and | SCA S89 benchmarksshow the estimated reductionin power dissipation.

L es aspects relatifs aux faibles puissances devraient étre pris en compte dés |es premiéres phases du design en vue de minimiser |a dissipation de puissance
du circuit résultant. Cet article présente une méthode de design basée sur un diagrammede décision binaire qui traite |’ optimisation des commutationsvia
I’information de corrélation temporelle. L’ approche repose sur une approximationde I’ estimation de I’ activité de commutation. Dans le cas des machines
aétats finis, la méthode extrait les statistiques du signal via une analyse par chaines de Markov. Des résultats expérimentaux obtenus avec des données de
banc d" essai MCNC et | SCAS89 montrent |a réduction estimée de | a dissipation de puissance.

I. Introduction

The importance of low-power optimization is growing due to the in-
creased use of battery-powered embedded systems. In order to opti-
mize for low power dissipation, statistical information about the be-
haviour of the system can be exploited. The switching activity of a
circuit nodein aCMOS digital circuit directly contributes to the over-
all dynamic power dissipation. Tempora correlation of the occurring
input signals can have a significant effect on the switching activity and
hence the power consumption [1]. Modern design flows should con-
sider these effects from the very beginning.

Several synthesis tools make use of binary decision dia
grams (BDDs) [2]{4], an efficient data structure used for solving
many of the problems occurringin VLS| CAD. BDDs can be directly
transformed into circuits if each node of the underlying graph is sub-
stituted with a multiplexer. An approach for BDD mapping that also
considers low-power aspects has recently been proposed in [5]. The
method combines logic synthesis, area minimization and |ow-power
optimization together with mapping in a single pass. This approach
eliminatesthe need for circuit extraction and back annotation common
in many traditional synthesis methods. However, the activity estima-
tion method used lacksthe ability to exploit temporal correlationinfor-
mation. Thislimitation can severely affect optimization for low power
in caseswhere strong temporal correlation of input signalsis present.

The problem of switching activity minimization using temporal cor-
relation information is addressed in this work. A novel BDD-based
approximation method is described, and we show how it can be com-
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bined with the approach in [5]. The power dissipation estimate for a
mapped BDD node is based on its switching activity and its fanout
(corresponding to the capacitive load). The resulting circuit is real-
ized by mapping BDD nodes to multiplexer circuits implemented us-
ing CMOS transmission gates and static inverters. Similar BDD map-
ping methods based on pass transistor logic (PTL) circuits [6]-{7] can
also be used. The proposed switching activity estimation method has
been validated by transistor-level simulations, showing that the power
dissipation due to switching is dominated by the switching of the mul-
tiplexer outputs and (as the model used here assumes) that the contri-
bution from internal switching in the multiplexers can be neglected.

To permit calculation of the power dissipation, the capacitiveload of
all nodesisalso estimated. This problemishandled by using theinher-
ent structure of BDD mapped circuits. Thisalows for devising acom-
putationally efficient cost function for low-power optimization. The
synthesistechnique utilizes statistical properties of the primary inputs
that can be obtained by functional simulation. An analytic method for
extracting statistical properties for next-state signals of circuits mod-
elled asfinite state machines (FSMs) is described. In thisway, the need
for computationally expensive gate-level simulation is avoided, and
signal statistics are utilized for low-power synthesis.

I1. Switching activity estimation

In this section an introduction to signal switching activity estimation
isgiven. (For more details, see[8].) In thefollowing it is assumed that
theinput signals are mutually independent (spatially uncorrel ated) and
that the signals can be modelled as strict-sense stationary (SSS) and
mean-ergodic with zero delay [8]; that is, all switching is carried out
simultaneously, and signal probability valuesand switching activity do
not vary over time. P( f) denotesthe probability that f is1 (the output
probability of f), and a( f) denotesthe activity for f (the probability
that f will changein value from one cycle to the next).
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In order to devise an improved low-power synthesis method for
BDD mapped circuits, an accurate and computationally efficient
switching activity estimation method is needed that is able to utilize
temporal correlation. To avoid the high computational complexity of
an exact method, it is assumed that there is no spatial correlation be-
tween the Shannon cofactors of the function of interest. The approxi-
mation technique provides the exact result for the case where the co-
factors are spatially uncorrelated. In the case where cofactors are pos-
itively correlated an overestimate is obtained, since the switching of a
top variableisless proneto causeatrue switching of the node's output.
The opposite holds for negatively correlated cofactors. This observa-
tion allows for the application of Theorem 3.1 from [8]. The formula
in (1) can then be derived using the multiplexer-based circuit model:
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In (1), v is the input variable, fo is the low cofactor, and f1 is
the high cofactor. This formulais used recursively in a bottom-up ap-
proach to calculate the activity for each nodein the BDD.

I11. Low-power synthesis

In this section, BDD mapping, power dissipation modelling and
approximation characteristics are described. Furthermore, the pro-
posed heuristic optimization technique based on the sifting algorithm
is shown.

A. BDD mapped circuits

A BDD can be directly mapped to a multiplexer-based circuit as de-
scribed in [9], to a“timed” circuit as described in [10], or to a “pass
transistor”—based circuit as described in [6], [7] and [11]. In al cases,
the resulting circuit can be considered to be one that is obtained by
replacing BDD vertices with small subcircuits and BDD edges with
wires. It isknown that the diagram size (and therefore the circuit com-
plexity) issensitive to the ordering of the function variables. The com-
plexity may vary from linear to exponential under different orderings
for some functions. Both exact and heuristic methods have been de-
veloped to tackle this problem. However, in the work described here
we are concerned not only with the complexity of the circuit resulting
from aBDD, but to an even greater extent with the power dissipation.

A method for low-power synthesis of BDD mapped circuits was
first introduced in [5]. The power dissipation of each node was com-
puted by the estimated switching activity and the node’s fanout. The
variable order of the underlying BDD was shown to influencenot only
the area (number of nodes) but also the internal switching activity. An
optimization algorithm based on local variable exchange (sifting) was
proposed. Since the switching activity estimate, and therefore the cost
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Figure 1: BDD node mapping into multiplexer circuits.
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Figure2: Variable swap.

function, was implementable solely by loca operations on the dia-
gram, the method was shown to be computationally effective. How-
ever, the estimation technique did not consider any temporal signal
correlation. The technique can aso be used with BDDs using com-
plemented edges. The use of complemented edges has been shown
to both reduce BDD complexity and improve performance of opera-
tions [2], [4]. The statements above apply for BDDs using comple-
mented edges, taking into account the following observations:

1. The output probability, P[f],
2. The switching activity, a[f],

of fisequalto1 — P[f].
of f isequal to a[f].

These properties are used to compute local switching probabili-
ties during variable exchangeoperations on BDDs with complemented
edges.

B. Power dissipation modelling

A cost model based on the total circuit switching activity under agiven
set of dependent-variable output probabilities is defined. The depen-
dent variables are denoted as support variables. We attempt to mini-
mize the sum of al internal switching activities at each BDD vertex.
The approach then maps each BDD node into a multiplexer-based cir-
cuit as shown in Fig. 1. The number of stages of active buffersis de-
termined by the fanout of each BDD node, which is equivalent to the
number of BDD edges pointing to the node.

The power dissipation for the mapped node r: is estimated using the
relationshipin (2):

PD,, = a(n) x driver(fanout(n)) + leakage(n). 2
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Table 1
Power dissipation of
external switchingvs. internal switching

Power dissipation
Switch v, fo =0, fi =1 18827
Switch v, fo, f1 (f = stable) 14
v = 0, switch fo, f1 =0 10688
v =0, fo = 0, switch f1 22

Table 2
Estimated switching activity for each
BDD node and total estimated power dissipation
with BDD variable order asshown in Fig. 2(a)

a(f)  a(fo) a(fr)  Power
dissipation
Overestimation[8] ~ 1.42 ~0.75 ~0.75 2.92
Exact estimation [8] ~ 0.67 ~0.75 ~ 0.75 2.17

Probabilistic [5] 0.5 0.5 0.5 1.5
MUX approximation ~ 0.58 0.75 0.75 2.08

Table 3
Estimated switching activity for each
BDD node and total estimated power dissipation
with BDD variable order as shown in Fig. 2(b)

a(f)  a(fo) a(fr)  Power
dissipation
Overestimation [8] ~ 1.42 ~0.67 ~0.67 2.75
Exact estimation [8] ~ 0.67 ~0.67 ~ 0.67 2

Probabilistic [5] 0.5 0.5 0.5 1.5
MUX approximation  0.54 0.67 0.67 1.88

Equation (2) was validated by conducting transistor-level simula-
tions using modelsfrom acommercially available CMOS process. The
results (see Table 1) show that the power dissipation of external switch-
ing (driving the fanout load capacitance) dominates over the internal
switching in the multiplexer by afactor of over 100 to 1 under unity
load (a single fanout). Thus, the effect of internal switching can be
disregarded.

Capacitive load and leskage parameters are strongly process-
dependent. In the following, leakage current is ignored and driver
power dissipation is assumed to be linear with the fanout (capacitive
load). Any parasitic capacitances due to routing are also ignored. The
power dissipation from the buffering of input signalsis not considered
in this model.

C. Approximation characteristics

The switching activity estimation method described in (1) is analyzed
further to show various properties and demonstrate how it can be
applied to low-power synthesis for BDD mapped circuits. The total
power dissipation of the mapped circuit is computed as

PDior = Z a(n) x driver(fanout(n)) + leakage(n).  (3)

vn

Consider the XOR function f = x1 @ z2, given the input prob-
abilities P(x1) = 1/2, P(xz2) = 1/2, and the switching activities
a(z1) = 2/3, a(x2) = 3/4 asshown in Fig. 2. Table 2 shows the
estimated switching activity for each BDD node £, fo, and f1, and the

total estimated power dissipation. As shownin thetable, the technique
labelled Probabilistic leads to an underestimation, while the proposed
multiplexer-based approximation (MUX approximation) comes closer
to the exact result.

When the BDD variable order is changed as shownin Fig. 2(b), the
switching activities are swapped, and the overall power dissipation for
the exact method is reduced to 2. Also, the other approximation meth-
odsindicate areduction, asshownin Table 3 (except for the probabilis-
tic approach, which isunableto utilize the signal activity information).

The switching estimate labelled Probabilistic in Table 3 is com-
puted solely by local operations on the BDD. However, the approxi-
mation technique labelled MUX approximation that is proposed here
also considersthe approximated switching activity of each node’ssuc-
cessors, o that the local condition no longer holds. This implies that
after a local variable exchange, switching activity estimates need to
be propagated toward preceding levels in the diagram. While this ap-
proach leads to more complexity in the switching activity estimation
algorithm, CPU times are reasonable for the set of benchmark func-
tions used in the experiments.

D. Heuristic minimization algorithm

The proposed heuristic minimization agorithm iteratively seeks a
variable order that reduces the mapped circuits switching activity,
weighted by the fanout cost for each node. This procedure is outlined
in pseudocodeas follows:

Dmin() {

1 conpute D[ -total]

2 for each variable {

3 sift to position minimzing D. total]
4 } repeat until no further inprovenent

The sifting and recalculation of output probabilities and switching
activities is performed solely through local operations on the BDD
representation. Thetotal estimated power dissipation due to switching
(Dsw[-total]) can also be updated by local operationson thetwo levels
sifted (upper and lower) and nodes connecting to the sifted levels (be-
low). By maintaining reference counters (i.e., the number of incoming
edges) for each node, the effect of fanout changesfor nodes below in
the diagram can be handled. Thefollowing pseudocodeshows how the
total switching activity is updated during sifting:

Dsift(upper, lower) {
1 D.,[total] -= (D[ -upper]
+ D[ -l ower] + D[ -bel ow])

ref _renmove_edges_t o(upper, | ower)
perform | ocal variable exchange
ref _add_edges_t o(upper, | ower)
D..[-total] += (D[ -upper]

+ D[ -l ower] + D[ -bel ow])

abwnN

—

In line 1 above, the contribution of the two levels to be sifted
(Dsw[-upper] + D.w[lower]) and the contribution of fanouts from
connecting nodes (D sw [-below]) are subtracted. The number of refer-
encesfor connecting nodesis updated (line 2) before sifting is applied
(line 3). After the variable exchangeis performed, the reference coun-
ters of the connecting nodes(line 4) are updated and thetotal estimated
power dissipation in line 5 is computed. Dueto the variable exchange,
switching activities and reference counters may change, thereby also
changing the estimated power dissipation D .« [_total].

Example 1 Fig. 3(a) shows a portion of a BDD before sifting. The
number at each node denotesthe number of incoming edges (the fanout
in a multiplexer-based mapping). Before the fanout is sifted, changes
of the lower level in the BDD shown in Fig. 3(b) need to be deter-
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Figure 3: Reference-count updateduring sifting.

Figure4: FSM states.

mined. Note that only nodes connecting to the upper and lower levels
are updated. After sifting is performed, the new fanout values (refer-
ence counters) of the connecting nodes are computed asillustrated in
Fig. 3(c).

IV. FSM analysis

The optimization algorithm described here utilizes the statistical in-
formation of the input signals. The ability to gather this information
is essential for optimizing for low power. The signal properties for
the next-state vector are defined using the FSM transition relation to-

gether with the properties of the primary input signals. In this sectiona
method to extract thisinformation by modelling the FSM behaviour as
aMarkov chain [12] is described. There are several approachesfor ef-

ficient FSM spanning [13]. Inthiswork the spanningfunctionisimple-

mented in a straightforward way by a depth-first recursive algorithm,
which also calculates the transition probability matrix represented by
an algebraic decision diagram (ADD) in the same pass. In [12] and
[14], ADDs were used to represent the transition probability matrix,
and the steady-state probabilities were calculated in an efficient way.
The calculations described here were implemented using ADDs in an

iterative manner, as described in the following.

A. Span FSM states

The BDD representing the next-state functionsis used to spanthe FSM

(see Fig. 4). Starting from the reset state, each possible new stateisre-
cursively visited (depth first) until an already visited state is reached.
During the recursion, a transition probability matrix is constructed.
This usualy sparse matrix is efficiently represented by an ADD. The
matrix is addressed with the current state as the columns and the next
state as the rows. The value in each entry in the matrix (correspond-
ing to an ADD leaf) represents the probability of a transition from a
current state to a next state.
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Example2 When the transition probabilities are calculated, the ma-
trix isinitially empty and new entries are added during the recursion.
We assume the probability that an input signal 7 is at a logic-1 value
tobel/4 (i.e, P(I) = 1/4):

CSoo CSo1 CSio CS11
NSqo 0 0 0 0
NSo1 0 0 0 0
NSio 0 0 0 0
NSy 0 0 0 0

Thereis a transition from state 00 to state 01, and the probability of
P(I) isaddedtorow 01 and column 00:

CSoo  CSo1 CS10 CSniy
NSoo [ 0 0 0 0
NSo; | 1/4 0 0 0
NSio | 0 0 0 0
NSi; | 0 0 0 0

Finally, after all reachable states are found, the complete matrix is
represented:

CSoo  CSo1 CS10 CSniy
NSoo [ 3/4  3/4  3/4 0
NSo; | 1/4 0 1/4 0
NSio | 0 1/4 0 0
NSi; | 0 0 0 0

B. Calculation of state probabilities

The ADD obtained by spanning the FSM is used to calculate the
steady-state probabilities for each state. The FSM is viewed as a
Markov chain [12], [14] andis usedin the calculation of the state prob-
abilities. The ADD ismultiplied with aninitial state probability vector.
Equation (4) describesthis operation mathematically:

AT =7, 4

where A is the matrix represented by the ADD, and # and ' are the
steady-state probability vectorsafter theiterations. Theiteration termi-
nateswhen z and ' are within the specified tolerance from each other.
Theresulting ' contains the resulting steady-state probability vector.

Example 3 The state probability vector is initialized such that each
stateentry hasthevalue1/nr reachablestates €XCEPL for the unreachable
state entries, which have the value 0:

3/4 3/1 3/1 0O 1/3 3/4

/4 0 1/4 0 1/3 1/6
0 1/4 0o o “|i3 1/12]° ®)
o 0 0 0 0 0

3/4 3/1 3/1 0O 3/4 3/4

/4 0 1/4 0 1/6 0.21
0 1/4 o ol |12 0.04| - ©)
o 0 0 o0 0 0

Finally the solution is found when the result vector is equal to the
vector from the previousiteration:

3/4 3/4 3/4 0 3/4 3/4

/4 0 1/4 0| |1/5 1/5 @
0 1/4 0 0 1/20 1/20

0 0 0 0 0 0



DRECHSLER/KERTTU / LINDGREN / THORNTON: LOW-POWER OPTIMIZATION TECHNIQUES 5

Table 5
| SCAS89 benchmarks
Area-optimized Non-FSM-optimized FSM-optimized Percent change
Name Size PD Size PD Size PD Size PD
s208.1 40 25 40 25 64 19 60 —24
27 9 4.1 9 4.1 9 4.1 0 0
s298 73 4.3 74 4.2 77 2.9 5.4 —33
s344 103 12 108 19 148 3.4 44 —72
s349 103 12 108 19 127 3.3 23 —73
s382 120 2.1 122 2.1 120 2.1 0 0
S386 113 44 114 41 114 39 0 —11
400 120 2.1 122 2.1 120 2.1 0 0
A44 150 43 161 19 156 2.1 4 —95
s510 163 118 168 81 153 61 — 6.1 —48
s526 137 8.4 139 8.1 136 4.6 —0.7 —55
s641 398 81 384 77 1149 15 289 —81
s713 398 81 384 77 1149 15 289 —81
s820 219 172 261 149 280 108 28 —37
s832 219 174 261 148 294 103 34 —41
used. Pss(n) denotes the steady-state probability for state n, where
Table4 n[i : i) is the i-th bit of vector n, A is the matrix containing the
Area optimization vs. low-power optimization state transition probabilities (A[N Sx][C'S»] = P(N Sk | C'Sy)), and
a(NS[t : 1]) isthe activity for the next-state bit ¢« and is given by the
Area-optimized L ow-power-optimized formulain (10):
Name In/Out Prob Mux Prob Mux . .
5xpl 7/10 32.2 40.4 30.2 25.1 (Vi)a(NS[izal) = Pas(n)
addé 12/7 23.0 20.3 23.0 20.3 o
apex7 49/37 1756  209.8 1584  165.1 x > P(NSk | CSn).  (10)
bcO 26/11 320.0 330.8 310.3 229.7 Vke(k[i]#n[e:1])
chkn 29/7 132.0 151.1 84.8 33.2
duke2 22/29 106.9 129.2 103.8 75.9
exp 8/18 79.5 81.5 61.6 42.4 V. Experimen‘[a] results
in2 19/10 115.5 115.5 95.5 67.5
in7 26/10 21.9 23.5 20.1 16.8
inc 7/9 45.4 54.4 45.3 24.6 Theimplementation of thistechniqueis based onthe CUDD 2.3.0[15]
intb 15/7 349.3 313.8 305.4 256.6 package for BDD manipulation. All experiments were run on a
misex3 14/14 2939 934.9 2939 203.8 SUNW,UItr_a—S/l(_) platform running at 333 MHz with 768 MB RAM.
sa02 10/4 35.8 37.9 34.9 16.6 No automatic variable reordering was enabled [ 15].
tid 14/8 0 SR 0 S0 Benchmark circuits were synthesized using the low-power opti-
vg2 25/8 L0 e 20 6.2 mizations described here and also those for optimizing with respect
x6dn 39/5 143.1 115.2 124.5 96.0 to area minimization. Compared to the previous approach in [5], fur-
Sum 2276.8  2357.7  2093.6  1682.8 ther power reductions were obtained since this method incorporates
the use of temporal signal correlations. As shownin Table 4, the aver-
age power estimate reduction for the synthesis method described here
is 30% compared to that for the area-optimized circuit. These results
The steady-state probabilities (Pss) are shown below: were obtained assuming alarge activity deviation (P = 0.5 anda ; has
alternating values of 0.1,0.9,0.1,...). Using the same assumptions
Pss(S[L+ 0] = 00) = P55(00) = 3/4, with the %ethod in [5] resulted in a)power ?eduction of onlyp8.3%
Pss(S[1:0] =01) = Pss(01) = 1/5, (8 compared to the area-optimizer resuilts.
Pss(S[1: 0] = 10) = Pss(10) = 1/20,
Pss(S[1:0] = 11) = Psg(11) = 0. Table 4 is organized as follows: Area-optimized denotes circuit op-

C. Extracting signal statistics

The transition probability matrix and the steady-state probability vec-
tor can be used to calculate the bit probability and the switching activ-
ity of the next-state bits. Thisis accomplished using the ADD and (9):

(Vi)P(NS[i : 1]) = > Pss(S[N —1:0]). (9)

VI[N —1:0]eS[e:e]=1

To calculate the activity for each bit, the ADD with the state transi-
tion probabilities and the steady-state probabilities calcul ated earlier is

timization for minimum area (minimum number of BDD nodes), and
Low-power-optimized denotes the optimization technique presentedin
this paper. The two subcolumns denote the estimation technique ap-
plied. Prob is a probability-based algorithm that does not consider
temporal correlation [5]. Finally, the estimation technique described
in this paper is found in the column Mux.

Furthermore, we have analyzed a set of ISCAS89 finite state ma-
chine benchmarks and extracted statistical information as described
in Section IV and used this information within the synthesistool. As
shown in Table 5, the results indicate an average power estimate re-
duction of 43% using the new method proposed here compared to the
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results of the area-optimized method. The power estimate reductions
range from 0% to 95%. The magjority of the tests show a significant
power estimate reduction for the FSM-optimized circuits compared
with the area-optimized ones. The results also show that the power-
optimized circuits have an increased area of 51% on average over the
area-optimized circuit. In two cases the power optimizer synthesized
smaller circuits than the area optimizer. This outcome is due to the
heuristic algorithm that the area optimizer utilizes, which may causeit
to get stuck in alocal minimum.

VI. Conclusions

A synthesis method that reduces the dynamic power dissipated in a
CMOS circuit obtained using a BDD mapping technique was pre-
sented. The technique utilizes a switching activity estimate that is
based on the structure of the subcircuit used to represent each BDD
node. Furthermore, temporal correlation statistics were extracted from
the transition functions of a finite state machine and also included in
the low-power optimization technique. Experimental results show an
average decrease in estimated power dissipation of 30% compared to
circuits synthesized with area minimization for combinationa bench-
marks, and an average decrease of 43% for sequential benchmarks.
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