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Abstract

Redundant signed digit number systems have been used as a basis for the construction of fast arithmetic
circuits for several years. In particular, addition circuits with no carry-ripple effects have been developed
using signed binary arithmetic systems. This paper presents a general class of signed binary addition tables
and provides a framework for constructing various tables. The existence of an entire class of tables provides
a circuit designer with an additional degree of freedom while developing addition circuitry. The choice of
the exact form of the addition table can be based on the dominant desired characteristics of the resultant
circuit. An example of a circuit derived for area minimization is presented and compared to another signed
binary addition circuit that was previously published. Both circuits were optimized and mapped to 20
different CMOS cell libraries. The experimental results indicate an average decrease in area of 26% and an
average decrease in dynamic power consumption of 29% with an average increase in delay of only 4.4%.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In an attempt to build processors that are faster, significant past research has been focused on
developing addition circuitry with minimal delay [6,10,13-15,17,18,21]. One technique for im-
plementing fast adders is to utilize signed digit number systems where the digit set contains a
number of members that is larger than the radix value [1,11,16]. When such number systems are
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used, particular quantities may be represented by more than one unique digit string. This re-
dundancy can be used to produce addition circuits that do not require carry ripples to traverse the
entire set of digits comprising the addend and augend. Examples of circuits using redundant
signed binary arithmetic may be found in Refs. [4,5,7-9,12,19].

In particular, the work described in Refs. [4,9,19,8] utilized the signed binary digit (SBD) set
comprised of the digits {1,0, 1}. Two different addition tables were used in these approaches and
they were chosen such that no carry ripples would occur. By examining the two digits in the aug-
end and addend to the immediate right (one radix power less), intermediate sum and carry digits of
the current addend and augend can be chosen such that no carry ripple will occur. As is shown in
this paper, there are many other possible signed binary addition tables that exhibit this property.
An entire class of new addition tables will be discussed and some specific examples are given.

The remainder of this paper is organized as follows: Section 2 will provide a brief review of the
properties of signed binary number systems and will describe their use in past addition circuits as
well as discuss why this number system can be used to generate fast addition circuits. In Section 3,
a new class of addition tables is presented with a description of the theory of their construction
included. Next, we describe experimental results where we computed several different addition
tables and chose one that resulted in a circuit with superior area and delay characteristics as
compared to the the circuit in Ref. [8]. Finally, the paper will conclude with a discussion of the
results obtained and their usefulness.

2. Signed binary arithmetic

The number system commonly used in the design of digital logic is the binary system consisting
of a digit set, {0, 1} with a radix value of 2. Using this digit set and radix value, specific quantities
can be represented as a fixed string of digits. Each digit string is a shorthand notation for a radix
polynomial. For example, the value 9 in the familiar radix-10 system could be expressed as a radix
polynomial in the binary system as given in Eq. (1).

9=1-2°4+0-2240-2"+1.2° (1)

In this radix-2 system, there exists a unique digit string for any given value since the number of
members in the digit set is equal to the radix value. This statement holds for any arbitrary
number system with this characteristic and is discussed in detail in Refs. [1,16].

A SBD system allows each digit to carry its own arithmetic sign information rather than as-
signing a single arithmetic sign to an entire quantity. Therefore, the signed binary digit set is
{1,0, 1}, where 1 indicates a negative value with unity magnitude. Since the radix is 2 for a binary
system, but the number of signed binary digits is 3, this system is redundant. Because the system is
redundant, it is possible to represent some values with more than one digit string (or radix
polynomial). As an example consider Eq. (2) which shows the equivalence of two radix polyno-
mials both representing the value of 1.

1=1-2'47-2=0.2"+1-2° (2)

In positional notation, the relationship expressed in Eq. (2) states that the number 01 is the
same as the number 11. This redundancy can be used to perform addition whereby the carry ripple
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is confined to two adjacent digits. This type of addition is much faster than ripple carry forms and
does not suffer from extremely large fanout and area requirements due to routing that carry-
lookahead forms can require.

2.1. Signed binary addition

Any arithmetic operation can be defined by a table containing all possible pairs of digits and a
corresponding table entry defining the outcome of the operation. In terms of addition, such tables
are referred to as addition tables and contain all possible combinations of the addend and augend
with a corresponding sum digit. One of the first signed binary addition (SBA) tables was given in
Ref. [9]. In this table, each sum was represented as an intermediate sum digit and an intermediate
carry digit. For two cases, 1 +0 and 0 + 1, two possible intermediate sum and carry digits are
included, the selection of which is determined by the arithmetic signs of the next lower ordered
augend and addend. These two digits are part of intermediate values that are combined with a
guarantee of no ripple in the final stage. In this way, the final step of combining the intermediate
carry and sum digits to form a final sum can be accomplished with a guarantee that no carry
ripples will occur. Table 1 is a reproduction of the addition table that originally appeared in Ref.
[9].

As an example, consider the addition of the following two signed digit numbers:

1011100 addend

0110101 augend

1101001 intermediate sum
01101000 intermediate carry
00000001  final sum

As is apparent from the example, the formation of each final sum digit in the ith position de-
pends only upon the addend and augend digits in the ith and (i — 1)th positions. Using this
method, a fast adder of arbitrary length can be built and is illustrated by the block diagram in
Fig. 1.

Table 1 is not the only possible signed binary addition table that exhibits the behavior of
limiting the carry ripple to one digit only. In the work in Ref. [5], a SBD addition table is

Table 1
Signed binary addition table used to prevent long carry propagation chains
Addend + augend digits in Sign information of digits in Intermediate carry Intermediate sum
position i position i — 1 digit, ¢, digit, s,
1+1 Not used 1 0
140 Either are negative 1 1
140 Neither are negative 0 1
0+0 Not used 0 0
141 Not used 0 0
1+0 Either are negative 0 1
1+0 Neither are negative 1 1
1+1 Not used 1 0
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Fig. 1. Parallelism of signed binary adder.

described where all of the intermediate sum digits are restricted to the set {0, 1} and all of the
intermediate carry bits are restricted to the set {0, 1}. This ensures that during the formation of
the final sum no carry will occur since the two possibilities 1 + 1 and 1 4 1 never exist. However,
in order to always form an intermediate sum word with all non-zero values being negative valued
and an intermediate carry word with all non-zero digits being positive valued, the use of a borrow
digit is employed. Addition using this type of table requires two steps; first the borrow digits are
formed and second, the intermediate carry and sum digits are chosen based upon the value of the
borrow digit. Because the intermediate sum values are restricted to the digit set {I,0} and the
intermediate carry values are restricted to {0, 1}, these two intermediate words are guaranteed to
be negative and positive valued respectively. Like the intermediate carry digit, the borrow digit in
the ith place depends only upon the addend and augend digits in the (i — 1)th position. Another
advantage of this scheme is that single bits may be used internally to represent the borrow, in-
termediate sum, and intermediate carry bits since each of these represent only two possible SBD
values. In the circuit described in Ref. [5], the intermediate carry digits were members of the set
{0,1} while the intermediate sum and borrow digits were always values from the set {1,0}. The
addition table for this type of adder is given in Table 2 followed by an example. As an example,

Table 2
Signed binary addition table using intermediate borrows and carries
Addend + augend Intermediate borrow Intermediate borrow Intermediate carry Intermediate
digits in position i, out, b, in, b; digit, ¢y sum digit, s;
Xis Vi
T+1 T T 0 T
1+1 1 0 0 0
1+0 1 1 0 0
1+0 1 0 1 1
0+0 0 1 0 1
0+0 0 0 0 0
1+1 1 1 1 1
1+1 1 0 1 0
140 0 1 0 0
14+0 0 0 1 1
1+1 0 1 1 1
1+1 0 0 1 0
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Fig. 2. Parallelism of signed binary adder using intermediate borrow and carry.

the addition rules given in Table 2 will be used to compute the sum of the same signed binary
numbers as used in the previous example.

1011100 addend

0110101 augend
01110010 borrow

0011011 intermediate sum
00011010 intermediate carry
00000001  final sum

The main difference between these two methods are the use of a borrow to ensure that all

intermediate sum digits are 0 or 1 and all intermediate carry digits are 0 or 1 in the latter case
while the previous method simply chooses a form of representation for the intermediate carry and
sum digits that will never cause a carry ripple. A comparison of the block diagram for the previous
method as shown in Fig. 1 and that of this method as shown in Fig. 2 indicates that both tech-
niques formulate the final sum digit based only upon the information contained in two conse-
cutive addend and augend digits. However, the latter method requires a borrow generator to be
included in the circuitry versus a digit selection portion as is used in the past method.

3. An alternative class of signed binary addition tables

The basic paradigm used in the method described in Ref. [5] is to ensure that all non-zero digits
in the intermediate carry word have an opposite sign from those in the intermediate sum word.
This was accomplished through the use of a borrow digit. However, many other possibilities exist
for suitable addition tables. As an example, it is possible to choose the intermediate sum and
borrow digits to be members of the set {0, 1} and the intermediate carry digits to be members of
the set {1,0}. It is also possible to allow the intermediate borrow digits to belong to the set
{1,0, 1} which is the entire set of SBDs.

In constructing alternative addition tables based upon this paradigm, it is useful to refer to an
algebraic equation that describes the addend and augend digits as a function of the intermediate
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Table 3
Notation used to represent various intermediate values for signed binary addition

Symbol Description

X; SBD in the ith position of the addend word

¥ SBD in the ith position of the augend word

b; SBD in the ith position of the borrow word

Si SBD in the ith position of the intermediate sum word
¢ SBD in the ith position of the intermediate carry word
z; SBD in the ith position of the final sum word

values. Before this equation is given, the notation used for each of the values is defined in Table 3.
Note that the subscripts for each symbol indicate the power of the radix when the value is written
in radix polynomial form.

Using the notation in Table 3, it is possible to express the relationship between the addend and
augend digits and the intermediate values as shown in Eq. (3).

xi + i = 2(ciy1 + biy1) + 5 — b (3)

It should be noted that the sum x; + y; can contain values from the set {2, 1,0, 1,2} which is not
the signed binary digit set. However, Eq. (3) is extremely useful for building alternative addition
tables since it may be used to find values for b;, b1, s;, and c;;; from the set {1,0,1} that satisfy
x; + y; regardless of whether its value is one of the members of the SBD set.

Using the procedure outlined above, a program was written allowing for the formation of
alternative addition tables. In the first example, an addition table is given that requires the borrow
and intermediate sum digits to be restricted to the values of {0, 1} and the intermediate carry to be
restricted to {1,0}. The result is given in Table 4.

Since the only requirement for this class of addition tables is that the non-zero digits in the
intermediate sum and carry words have dissimilar arithmetic signs, it is not necessary to re-
strict the borrow digits to a subset of the SBDs. The following two addition tables illustrated
in Tables 5 and 6, are examples where the intermediate borrow digits are members of the set
{1,0,1}.

The three alternative addition tables presented here are new and are examples of tables from a
larger class. The defining relationship is that all entries must satisfy Eq. (3) and that each non-zero
digit in the intermediate sum and carry words have a dissimilar arithmetic sign. Based on these
criteria it is possible to formulate many other addition tables. As an example, this class of addition
tables was used to derive a signed binary addition circuit that always produces sum values with an
even parity representation [20].

As an example the addition performed previously will be performed again using Table 6.

1011100 addend

0110101 augend
10101000  borrow

1000001 intermediate sum
11000010 intermediate carry
00000011  final sum
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Table 4
Alternative signed binary addition table using intermediate borrows and carries

Addend + augend digits  Intermediate borrow  Intermediate borrow Intermediate carry  Intermediate

in position i, x;, ; out, b, in, b; digit, ¢y sum digit, s;
1+1 0 0 1 0
1+1 0 1 1 1
140 0 0 1 1
1+0 0 1 0 0
0+0 0 0 0 0
0+0 0 1 0 1
14+1 1 0 1 0
1+1 1 1 1 1
1+0 1 0 1 1
1+0 1 1 0 0
1+1 1 0 0 0
1+1 1 1 0 1
Table 5

Signed binary addition table with no restrictions on the borrow digits

Addend + augend digits  Intermediate borrow  Intermediate borrow Intermediate carry  Intermediate

in position i, x;, y; out, b;,; in, b; digit, ¢; sum digit, s;
1 0 1
1+1 1 0 0 0
1 1 1
_ _ T 0 0
1+0 1 0 1 1
1 1 0
1 0 1
0+0 0 0 0 0
1 1 1
] T 0 T
1+1 0 0 0 0
1 1 1
T 0 0
1+0 0 0 1 1
1 1 0
1 0 1
1+1 1 0 0 0
1 1 1

4. Experimental results

This section will discuss the experimental results of this work where we formed 192 different
signed binary addition tables and synthesized each in an attempt to find adder circuitry with
superior area and delay characteristics as compared to the circuit described in Ref. [8].
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Table 6
Alternative signed binary addition table with no restrictions on the borrow digits

Addend + augend digits Intermediate borrow  Intermediate borrow Intermediate carry  Intermediate
in position i, x;, y; out, b, in, b; digit, ¢;yy sum digit, s;

1 1 1

1+1 1 0 0 0

1 0 1

1 1 0

1+0 0 0 1 1

1 0 0

1 1 1

0+0 0 0 0 0

1 0 1

- T T 1

1+1 0 0 0 0

1 0 1

1 1 0

1+0 1 0 1 1

1 0 0

1 1 1

I1+1 1 0 0 0

1 0 1

To automate the process of developing the SBA tables, a program was written in c++ that
created all combinations of SBA tables given the permissible digit sets for the carry, borrow and
intermediate sum values. The program also varied the bit encodings for each of the values in
{1,0,1}. After the program computed each table, it translated them to a .pla file which was
then used as input to the SIS synthesis tool. The synthesized and mapped resultant circuit was
then compared to the results of mapping the adder circuit described in Ref. [8] to the same
cell library. In all, 192 different SBA tables were created and the resultant circuits were synthe-
sized.

The result of this phase of the investigation produced several SBA tables that yielded circuits
which had favorable characteristics when compared to the addition circuit in Ref. [8]. As an
example, the SBA table given in Table 4 and the resulting synthesized circuit are shown in detail in
order to provide specific data concerning the improvement in area, speed and power dissipation as
compared to the circuit in Ref. [8]. The binary encodings used for this circuit for the input and
output digits are 1 < 00, 0 < 01 and 1 « 10 (the 11 encoding was unused in this instance of the
circuit). The allowable digit sets for the carry is {0, 1}, the borrow is {0, 1}, and the intermediate
sum value is {0, 1}.

4.1. Addition circuit synthesis results

The chosen addition table and the circuit described in Ref. [8] are both described functionally
in .eqn format in Fig. 3. The set of equations describing the rba circuit were obtained from Ref.
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NAME=rba; NAME = sba;
INORDER = xsi xai ysi yai pilbar cilbar; INORDER = ci bi ys ym xs xm;
OUTORDER = pibar cibar zsi zai; OUTORDER = cil bil zs zm;
pibar = !(xsi + ysi); bil = !(ys + x8);
cibar = !( t1 = 1(
(! (xsi*ysi) * xai * yai) (M (ys + ym + xm))
+ ((xai ~ yai) * pilbar) + (! (ym + xs + xm))
)s )5
zsi = !(xai ~ yai ~ pilbar) * cilbar; t2 = !(ym * ('xm) * (!'bi));
zai = !( t3 = 1((!bi) * xm * (lym));
('( xai ~ yai ~ pilbar) + cilbar) t4 = 1 (('xm) * (lym) * bi);
* t5 = !(bi * ym * xm);
(! (! (xai~yai“pilbar)*cilbar)) cil = '(t1 * t2 * t3);
)5 ui = (2 * t3 * t4 * t5);
zm = !(ci "~ ui);
zs = !(ci+ (lui));

Fig. 3. EQN descriptions of the SBA circuit in Ref. [8] (left) and the NEW SBA (right).

[8] and, those for the new circuit sba resulted from our search program. The .eqn files
were converted to .pla format and the ESPRESSO PLA minimization tool [2] was run on each
in exact mode. The ESPRESSO results indicated that the circuit described in Ref. [8] re-
duced to 13 product terms requiring 44 different literals total. The circuit derived from the SBA
table shown in Table 4 resulted in 15 product terms requiring a total of 56 different liter-
als. Therefore, the two-level minimization results for the new circuit require two additional
product terms. The .pla files resulting from invoking ESPRESSO with the exact flag are shown in
Fig. 4.

Each of the .eqn descriptions were also used as initial input into the SIS logic synthesis tool [3],
version 1.3. The standard optimization script, script.rugged was invoked and the circuits were
technology mapped to 20 different standard cell libraries that are included in the SIS distribution.
The synthesis results are shown in Table 7. Table 7 contains columns that give the name of the
particular cell library used followed by the synthesis results in terms of number of area, power
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.i6 .16
.0 4 .0 4
.i1b xsi xai ysi yai pilbar cilbar .ilb ci bi ys ym xs xm
.ob pibar cibar zsi zai .ob cil bil zs zm
.p 13 .p 15
1111-- 0100 --00-0 1000
-1-110 0001 ---000 1000
-0-010 0001 01-1-1 0010
0-0--- 1000 11-1-1 0001
-1-000 0001 01-0-0 0010
-0-100 0001 00-1-0 1010
-1-011 0011 00-0-1 1010
-0-111 0011 11-0-0 0001
-1-101 0011 10-1-0 1001
-0-001 0011 10-0-1 1001
---00- 0100 01-1-0 0001
-0--0- 0100 01-0-1 0001
-0-0-- 0100 00-1-1 0001
.e --0-0- 0100
00-0-0 0001

.e

Fig. 4. PLA descriptions of the SBA circuit in Ref. [8] (left) and the NEW SBA (right).

dissipation and delay. The area measures are the total number of literals in the optimized ex-
pressions, the number of cells required from each library and a percentage of area reduction (in
terms of the total cell sizes) of the new circuit versus the one in Ref. [8].
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Table 7
Comparison of synthesis results of the SBA circuits
Cell library ~ SBA circuit in Ref. [§] New SBA circuit Comparison of circuits
Literals  Cells Power  Literals Cells Power % area % power % delay
reduction  reduction  increase

22-1 54 31 1.49 38 22 1.05 29.4 29.5 8.9
22-2 46 18 1.72 35 15 1.24 22.0 27.9 -23
33-1 51 28 1.47 37 21 1.06 26.6 27.9 8.9
33-2 41 18 1.75 33 14 1.25 25.4 28.6 -23
334 44 15 1.71 30 12 1.24 24.5 27.5 13.2
43-5 39 14 1.68 30 12 1.24 21.6 26.2 13.2
44-1 49 26 1.44 37 21 1.06 22.7 26.4 22.0
44-2 39 16 1.70 33 14 1.25 20.0 26.5 13.2
44-3 39 14 1.68 30 12 1.24 21.6 26.2 13.2
44-6 39 14 1.68 30 12 1.24 21.6 26.2 13.2
asynch 40 16 1.29 26 10 0.95 28.1 26.4 0.0
example 41 18 1.51 32 12 1.10 32.7 27.2 2.8
lib2 46 17 1.48 35 12 1.11 29.8 25.0 44
menc-subset 47 15 1.53 37 13 1.10 25.0 28.1 9.9
menc 46 14 1.52 37 13 1.10 25.0 27.6 10.0
minimal 53 30 1.48 37 21 1.04 30.2 29.7 7.9
msu 46 14 1.52 26 10 0.95 25.0 37.5 -21.6
nand-nor 53 30 1.50 37 21 1.06 30.2 29.3 14.0
stdcell2_2 41 16 1.48 26 10 0.95 28.1 35.8 —19.4
synch 45 16 1.59 26 10 0.95 30.4 40.3 -21.6

The power dissipation column contains an estimate of the dynamic power (in mW) assuming
uncorrelated, equiprobable switching probabilities for the primary inputs and a source voltage
value, Va4, of 3.3 V with a throughput rate of 500 MHz. Also included is a column containing the
relative reduction in power dissipation when the new circuit is compared against the previous
implementation using the power estimates.

In terms of delay comparisons, the slack parameters were compared where slack is the differ-
ence between the required delay and the estimated delay from the circuit. The slack values were
computed by SIS using a simple zero-delay model for input arrival times. A relative increase in
delay of the newer circuit versus the previous one is given based on the most-negative slack values.

In all cases, the required area and estimated power dissipation was better for the new SBA
circuit. In 14 of the 20 synthesis runs, the delay estimates produced using a zero-delay static slack
model were worse for the new SBA circuit, one case produced the same slack and five cases were
better. Over all of the 20 cell libraries used, the comparison of the two circuits yielded an average
reduction in area of 26%, an average reduction in power dissipation of 29% with an average
increase in delay of 4.4%.

5. Conclusion

A generalized method for producing addition tables using a redundant signed binary number
system has been described. A systematic method for generating the tables through the use of an
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algebraic equation has been given and several example tables were derived using this technique.
The obvious advantage of high speed addition using these tables can be augmented with other
advantages allowing for more compact designs due to the added flexibility in the choice of the
actual digits produced by the circuitry [20]. An example of a compact circuit with desirable area
and power dissipation characteristics was shown as an example and compared to a previously
published signed binary addition circuit. These results indicated that average area and power
dissipation were reduced by 26% and 29% respectively with a penalty of increasing the overall
relative delay of only 4.4%.
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