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Abstract—Autonomous vehicles (AVs) use complex suites of
sensors to understand the surrounding environment and inform
decision making systems which ensure the efficiency and safety of
their operation. Light Detection and Ranging (LiDAR) sensors
are an important part of the perception subsystems of many
AVs, and are responsible for identifying obstacles to prevent
collisions. This critical function makes LiDAR sensors a prime
target for malicious attacks such as object hiding attacks in which
an attacker uses a laser to spoof a LiDAR point cloud to cause
an object to be “hidden” from the AV. However, despite many
AVs today having multiple LiDAR sensors with overlapping fields
of view, LiDAR spoofing attacks described in existing literature
test only on single LiDAR systems. We hypothesize that sensor
redundancy can effectively “fill-in” spoofed regions if one of the
sensors is attacked, providing some inherent resilience to object
hiding attacks. In this work, we evaluate the effectiveness of two
object hiding attacks, the Object Removal Attack (ORA) and
the Physical Removal Attack (PRA), on an AV digital twin with
one, two, and three LiDAR configurations. We report up to an
83% reduction in attack success rate when using multi-LiDAR
configurations for both ORA and PRA when hiding vehicles and
up to a 100% and 75% reduction for ORA and PRA, respectively,
when hiding pedestrians.

Index Terms—autonomous vehicles, LiDAR, point cloud, spoof-
ing, security

I. INTRODUCTION

Consumer autonomous vehicles (AVs) or “self-driving cars”
represent one of the main research and investment areas for the
automotive industry [1], [2]. Many competing companies such
as Waymo, Wayve, Cruise, and more [3]–[5] are developing
autonomous systems, each with their own approaches to
the physical and software design of their vehicle(s). While
implementations of an AV as a whole may vary widely, one
of the fundamental systems present in all AVs is a perception
system [6].

The perception system enables the AV to “see” the world
around it by fusing sensor data, detecting vehicles, pedestrians,
stop signs, and many other objects. With this information,
other decision making systems can ensure that the vehicle
operates safely and efficiently. AVs use several different types
of sensors to feed information to the perception system.
Cameras, LiDAR, and radar are the most commonly used
sensors, with many AVs using combinations each of these to
get a complete picture of the surrounding environment [7],
[8]. It is important that these sensors are robust and secure as

they are one of the primary tools for avoiding obstacles and
preventing collisions [9]–[11].

Because these sensors are so important to the safe operation
of AVs, they can be the targets of malicious attacks designed to
cause harm to passengers or other individuals or property near
the AV [12]. In this work, we focus on attacks which target an
AV’s LiDAR sensors. LiDAR (Light Detection and Ranging)
is a method of generating a 3D point clouds of an environment
through many range measurements using laser pulses and is a
common feature in AV sensor suites [13], [14].

One method commonly used to attack AV LiDAR system
is a spoofing attack. In a LiDAR spoofing attack, a malicious
actor injects a modified point cloud into the AV system
to cause undesired behavior. Object detection and tracking
algorithms ingest point clouds from the perception systems and
are responsible for identifying objects and obstacles. These can
be fooled by the spoofed point clouds, resulting in dangerous
driving behavior and injury. Remote spoofing methods are able
to inject these modified point clouds without direct physical
access to the target vehicle by detecting outgoing laser pulses
and firing precisely timed and aimed laser pulses in return.
Using such methods, attackers can “add” objects into a point
cloud, causing an AV to see phantom objects [15]–[17].
Attackers can also “hide” real objects through methods such
as the Object Removal Attack (ORA) [18] and the Physical
Removal Attack (PRA) [19], manipulating the point cloud
such that the AV will fail to detect the object. Object hiding
attacks are particularly dangerous as an AV with no knowledge
of an upcoming obstacle could collide with it and cause serious
physical harm.

While ORA and PRA are thoroughly evaluated in their
respective studies, they are only evaluated on single LiDAR
systems. Many AVs use multiple LiDAR systems, often with
some degree of overlapping fields of view [20]–[22]. While
ORA and PRA target one LiDAR sensor to move points away
from their original positions in order to cause misdetections,
having multiple LiDAR sensors would allow the others to
“fill in” the gaps introduced by the attacks. This would
afford the AV some degree of inherent resilience to these
hiding attacks through the use of redundancy. Therefore, it is
important to understand how vulnerable redundant systems are
to such attacks so that AV manufacturers can build in effective
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Fig. 1. Experiment overview; We capture point cloud datasets for each LiDAR configuration using Autoware/AWSIM Labs before applying ORA and PRA
with varying degrees of intensity. The resulting attack-specific datasets are used as input for Autoware’s CenterPoint object detector. The detection results are
then analyzed to determine the effectiveness of the attack.

safeguards to prevent accidents.
In this work, we test this intuition through several experi-

ments. We generate a dataset using digital twins with LiDAR
configurations with one, two, and three LiDAR sensors and
then implement ORA and PRA to fool the digital twins.
We analyze the effectiveness of the attacks on these multi-
LiDAR setups in a simulated environment using the Autoware
autonomous driving stack and the AWSIM Labs simulator
[23], [24]. When hiding vehicles, we report a ∼75% ∼83%
reduction in attack success rate with two and three LiDAR
sensors, even for ORA at maximum attack intensity (point
budget of 400 points). For PRA, we also report a ∼65% and
∼83% reduction in attack success rate for two and three Li-
DAR configurations at maximum attack intensity (attack angle
of 40◦). When hiding pedestrians, we found that our baseline
detection performance was much worse than with vehicles. We
attribute this lack of performance to poor domain adaptation of
our CenterPoint [25] object detection model to our simulated
environment and 3D pedestrian model. Nevertheless, we report
a ∼100% reduction in attack success rate of ORA and a
∼55% and ∼75% reduction in attack success rate of PRA
for two and three LiDAR configurations, respectively. This
indicates similar, although slightly diminished, resilience to
attacks hiding pedestrians.

II. BACKGROUND AND RELATED WORK

A. Light Detection and Ranging, LiDAR

Autonomous vehicles depend on a suite of sensors to
ingest information about the surrounding environment which
is used to make driving decisions. Combinations of cameras,
LiDAR sensors, radars, and other sensors provide different
modalities of information to an AV system [7], [8], [26].
LiDAR (Light Detection and Ranging) sensors are commonly
used as a means to generate a 3D map of an environment.
A LiDAR sensor emits (using a laser diode) a narrow laser
beam in a direction and receives the beam’s reflections (using
a photodiode), recording the time delay between the initial

emission and the resulting reflections. This delay is used to
measure the distance from the sensor to an object in the
direction of emission. Combining multiple measurements in
different directions results in a point cloud, where each point
represents a distance measurement. Many LiDAR sensors used
in AVs are spinning LiDARs, consisting of stacks of emitters
and receivers that cover different vertical angles, which spin
as they take measurements. This creates rings of points which
together form a 3D point cloud of the environment surrounding
the sensor. These point clouds can be used as input to 3D
object detection and tracking models which inform decision
making within an AV [13], [14].

B. 3D Object detection

Once point clouds from the LiDAR sensors are collected and
processed, they are passed to 3D object detectors which can
operate on the point clouds alone or a fusion of mulitple sensor
outputs [27]–[29]. In this work, we use the point cloud based
detector CenterPoint [25] with a PointPillars [30] backbone.
CenterPoint uses a two-stage process to detect 3D objects
within the point cloud. In the first stage, the point cloud is fed
through a backbone (PointPillars) to create a representation
that is flattened and fed through a 2D convolutional nerual
network (CNN). The CNN detection head estimates several
object properties including the object’s center location, orien-
tation, velocity, and a 3D bounding box. The bounding box
is used in the second stage to extract point features to refine
the object’s position and size, as well as a confidence score.
While fooling 3D object detection models is ultimately the
target of most perception attacks, the attacks we implement
do not directly change or modify the model itself.

C. Perception Attacks

The importance of an AV’s perception system makes it a
target for malicious attacks, and, therefore, identifying possible
avenues for these types of attacks is an evolving and active
area of research. One method of attacking a perception system
is through remote sensor spoofing. In a spoofing attack, an
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attacker manipulates the environment detected by an AV’s
sensors in order to induce some desired behavior. We consider
the attack to be remote if the attacker does not directly access
the target vehicles system and instead manipulates external
stimuli in order to execute the attack. Remote spoofing attacks
have been demonstrated on cameras [31]–[33] and radar [34],
[35], however in this work we focus on remote spoofing attacks
on LiDAR sensors. Recent studies in LiDAR spoofing are
based on an attacker sending fake echoes to a LiDAR sensor
to cause the sensor to detect points at the attacker’s desired
location [15]–[19], [36], [37]. This approach is used for both
object insertion and object hiding. With object insertion, the
goal of the attack is to insert a fake object into an AV’s
perception system. In [17], Cao et al. use adversarial machine
learning methods to generate point cloud patterns that will
be recognized by the target vehicle as an obstacle. This
method of object insertion is also demonstrated in [36], [37].
Conversely, an object hiding attack seeks to hide and object
from an AV’s perception system. Hau et al. [18] and Cao et
al. [19] adapt the same point cloud spoofing methods used in
insertion attacks to instead hide selected objects. They report
high attack success rates when using a single LiDAR sensor.
Hau et al. primarily present the impacts of ORA in terms
of recall. Recall is the proportion of true positives that the
model correctly detects vs. total number of positives in the
dataset. We further discuss recall in Section V. Hau et al.
report up to a ∼65% decrease in recall with PointRCNN
[38] on vehicles and pedestrians when attacked and up to
a ∼70% decrease with Point-GNN [39], which demonstrates
how ORA can affect the performance of 3D object detectors
and lead to misdetections. Cao et al. measure the effectiveness
in terms of attack success rate (ASR), which is the proportion
of objects which are detected by the object detector when not
attacked and not detected when attacked. They achieve >95%
ASR with PRA on both pedestrians and vehicles using Apollo
5.0 [40]. These results are calculated with an intersection
over union (IoU) threshold of 0.7 for vehicles and 0.5 for
pedestrians. These thresholds define how much overlap a
predicted and ground truth bounding box must have to be
considered a valid prediction. IoU in object detection is further
discussed in Section V. Evaluating these attacks on multi-
LiDAR systems is the main focus of this work.

D. Attack Countermeasures

As remote spoofing attacks have been developed, counter-
measures to them have also appeared. Some such as [37], [41]–
[44] analyze point clouds to identify spoofing attacks. These
approaches search for temporal inconsistencies or physically
impossible point placements which would indicate that the
point cloud was spoofed. There is an inherent assumption with
these methods that the AV has a single LiDAR sensor, or that
the spoofed region is only within the field of view of a single
LiDAR sensor. If multiple LiDAR sensors “cover” the spoofing
region, then the resulting point clouds from each sensor can be
compared directly to find inconsistencies. In [44] this is done
with sequentially collected point clouds from a single sensor.

Liu et al. [45] utilize a stereo camera system to perform cross-
sensor validation, ensuring that objects detected by the LiDAR
sensor or cameras are also detected by their counterpart.
This approach leverages the presence of multiple types of
sensors to detect inconsistencies. This multi-sensor approach
and the single sensor assumptions of the previously mentioned
countermeasures motivate and serve as the foundation for
this work. Most AVs in development today have multiple
LiDAR sensors with overlapping fields of view [20]–[22].
In autonomous driving stacks such as Autoware [23] and
Baidu Apollo [40], point clouds from each LiDAR sensor are
concatenated before being used for object detection. If the
LiDARs’ fields of view overlap, any regions where points are
displaced due to object hiding attacks will be partially restored,
allowing the objects to be detected.

E. Autonomous Driving Software

While many of the prominent AV developers create their
own proprietary autonomous driving (AD) stacks, there are
also open source solutions such as Autoware from the Auto-
ware Foundation [23] and Baidu’s Apollo [40]. These stacks
can be downloaded and run by an individual and can be tested
in 3D simulators such as AWSIM [24], CARLA [46], and
LGSVL [47], among others [48], [49]. These simulators pro-
vide a virtual environment in which AD stacks can be tested.
Most attacks and countermeasures listed in this section are
evaluated in such simulators. We use Autoware and AWSIM
Labs in our experiments.

III. METHODOLOGY

In this work, we implement two external LiDAR spoofing
attacks, the Object Removal Attack (ORA) of Hau et al. [18]
and the Physical Removal Attack (PRA) of Cao et al. [19]
and evaluate their effectiveness against an AV with multiple
LiDAR sensors with overlapping fields of view. These attacks
use the same spoofing mechanism to carry out remote object
hiding attacks. Object hiding attacks cause the AV to fail
to detect real obstacles, unlike insertion attacks which cause
the AV to detect objects that are not real (see Fig. 2). It is
common for AVs to use multiple LiDAR sensors to provide
the most complete coverage of the surrounding environment.
In AD stacks such as Autoware [23], point clouds generated by
these sensors are concatenated into a single point cloud which
is then passed to the perception module to be used by the
object detection/tracking modules. Our motivating intuition is
that multiple LiDAR sensors with overlapping fields of view
can mitigate the effects of these removal attacks, as they can
at least partially restore or “fill in” the hidden or perturbed
sections of the point cloud when the attacked and clean point
clouds are concatenated. As a result, there is some inherent
resilience to remote spoofing attacks, which would require a
more complex attack to overcome. In the remainder of this
section, we describe the primary mechanism that enables ORA
and PRA, as well as the methodology behind each attack.
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Fig. 2. Overview of attack methodology for ORA (center) and PRA (right). In our testing, we adjust the angle and the point budget to evaluate effectiveness
across hardware capability of an attacker.

A. Remote Object Hiding Attacks

Both ORA and PRA are remote object hiding attacks, which
we consider to be attacks that do not require physical access to
any of the hardware components on the target system. Attacks
such as [15]–[19] use a receiver similar to those on the LiDAR
sensor to detect when the target vehicle’s LiDAR sensor fires
a pulse. Upon detection, the attacker fires a pulse of its own
aimed at the target LiDAR after a calculated delay, which
will induce the LiDAR to “detect” a point in the direction of
the original pulse, but at a distance desired by the attacker.
This requires precise timing and aiming of the attacker’s
laser pulse. Spinning LiDAR sensors often have a receiving
window for a short duration after each pulse, during which
received pulses are considered valid and recorded as points
in the point cloud. Thus, the attacker must be able to time
their laser pulse to fall within one of these windows. This is
achievable through researching the specifications of the target
hardware to find the receiving window and incorporating that
window into the delay calculation once a pulse is received by
the attacker’s receiver. There is also an assumption that the
attacker possesses an aiming system which includes an object
tracker which can aim the attacker’s laser pulses at the LiDAR
sensor of a moving vehicle [50].

Previous studies utilizing this method have used different
hardware setups and implementation techniques, resulting in
varying constraints on the maximum horizontal spoofing angle
and spoofing budget of the attacker. We define the maximum
horizontal spoofing angle as the angle defining the sector of
the spinning LiDAR’s 360◦ horizontal field of view in which
points can be spoofed by an attacker at a given location.
We define the spoofing budget as the maximum number of
points that an attacker can replace within one full rotation of
the LiDAR sensor. With hardware and processing methods
constantly improving, we relax these constraints in some
instances as it is feasible that an attacker’s capabilities will
expand over time. Moreover, by assuming an attack with
wider constraints, we create a challenging environment for

countermeasures to maintain robust attack resilience.
Both attacks are evaluated in their original experiments

using the KITTI dataset [51] which is a widely used dataset
for AV applications. Since we are evaluating these attacks on
AV systems with multiple LiDARs and KITTI was captured
with a single LiDAR sensor, we create our own dataset with
two different multi-LiDAR configurations. More details on
the dataset are discussed in Section IV. We now discuss
the methodology behind each of the two attacks and our
implementations of these attacks.

Fig. 3. Examples of the point perturbation of ORA (center) and the point
removal of PRA (right) on a clean point cloud (left) in a 1 LiDAR (top) and
2 LiDAR (bottom) configuration

B. Object Removal Attack, ORA

The intuition behind the Object Removal Attack is that
LiDAR points which would fall within an object’s bounding
box can be spoofed to appear to be outside of the bounding
box, causing the distortion of the 3D features of the object and
ultimately a misdetection by a 3D object detection algorithm.
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Hau et al. [18] are the first, to the best of our knowledge,
to use the spoofing methods described above for an object
hiding attack rather than an insertion attack where the goal
is to insert fake objects. In an imagined attack scenario,
an attacker would set up a spoofing device (consisting of a
receiver, delay component, and emitter) at a location with
line of sight to the target LiDAR sensor. The attacker would
then select a region or object to be hidden and determine its
bounding box relative to the target sensor. The points within
this bounding box would be candidates for spoofing. Some
objects may contain more than the maximum spoofing budget
within the region of their bounding box that falls within the
maximum spoofing angle. This often occurs with large objects
and objects close to the sensor. To address this limitation, Hau
et al. use a random point selection strategy (ORA-Random),
to choose which points to spoof. These selected points are
then spoofed to appear a random distance behind the original
point. This perturbation of the points within the bounding box
causes a misdetection of the object. One key assumption of this
method is that the spinning LiDAR is using strongest return
mode. Light pulses emitted from the sensor may encounter
objects that partially occlude or scatter the beam, resulting
in multiple returns of different intensity which can allow the
sensor to record multiple pulses from a single emission [52].
In strongest return mode, the sensor only records the strongest
return pulse for each emission, resulting in a single point. This
mode is commonly used in AV applications and is the assumed
operation mode for ORA to be effective, so we also make that
assumption [18]. As a result, the attacker in our assumed attack
scenario can only “replace” a point along a legitimate laser
pulse path. Figure 3 (center) demonstrates the perturbation
effects of ORA. Displacing points from their original positions
within an object’s bounding box can disrupt the 3D features
of the object enough to cause a misdetection.

In our implementation of this method, we follow the pseu-
docode provided in [18] with one modification. We relax the
original work’s maximum horizontal spoofing angle constraint
of 10◦ and instead consider any points within the bounding
box of the target object to be valid spoofing candidates. This
results in a more complete perturbation of the point cloud than
if only the points within the bounding box and within the
10◦ maximum horizontal spoofing angle could be spoofed.
We also slightly relax the spoofing budget from 200 to up
to 400 points. With more recently developed hardware setups
such as the one in [19] of 45◦ and up to ∼3600 points, an
attacker could plausibly move all the points in the bounding
box even for a large vehicle. However, the original experiments
demonstrate a decrease in performance upon perturbing only
a subset of the points in the bounding box. Thus, in keeping
with the motivation of the original experiments, we chose to
double the original spoofing budget and remove the horizontal
spoofing angle constraint to simulate an enhanced attacker
capability without fundamentally changing the attack. The
original experiments do not specify a range from which the
random distances to spoof the point is selected. Therefore, we
chose to randomly select a distance between one and three

meters, as this keeps the displacement on the same scale as a
vehicle with a footprint of about 4x2 meters and a pedestrian
with a footprint of about 0.5x0.5 meters. Our modified ORA-
Random implementation is described in Algorithm 1.

Algorithm 1 Modified ORA-Random
Note that ← denotes insertion to a list.

Input: raw pc[]
target bbox = (loc, dim, orient)
[dispmin,dispmax] // random displacement range
budget // spoofing budget
Output: spoofed pc[]
object pts[]← PointInBBox(raw pc, target bbox)
spoofed pc[]← [p for p ∈ raw pc if p /∈ object pts]
random pts[]← RandSample(object pts, budget)
for all p in object pts do

if pt in random pts then
random disp← Random(dispmin, dispmax)
spoofed pc← SpoofPoint(p, random disp)

else
spoofed pc← p

end if
end for
return spoofed pc

C. Physical Removal Attack, PRA

The Physical Removal Attack of Cao et al. [19] aims to
completely remove a portion of a detected point cloud to
induce misdetection. This is accomplished by spoofing points
to be much closer to the target sensor, which causes them to be
filtered or cropped from the sensor’s output point cloud. The
spoofing region defines the area into which the attacker must
spoof points in order to remove them from the LiDAR sensor’s
output point cloud. By spoofing all points within a given attack
angle θ into the spoofing region, an attacker can effectively
remove an entire sector of the point cloud, preventing the AV
from detecting any object within the spoofed sector. One of
the mechanisms enabling this is the Minimum Operational
Threshold (MOT). The MOT is the distance from the LiDAR
sensor below which points are typically ignored or filtered. The
MOT for a given sensor varies depending on the hardware and
firmware of the device [52], [53]. A detected pulse that would
place the point below this threshold is usually considered to
be the result of an error or random event that is not relevant to
the task. Thus, sensors either automatically filter these points
out or have an option to do so in firmware.

An AV may also have a self cropping step in its processing
pipeline which can have a similar filtering effect. Spinning
LiDARs are often placed in locations on a vehicle where the
vehicle itself occupies a portion of the sensor’s field of view.
This results in detected points which are reflections from the
vehicle itself and not from any relevant external objects. To
prevent the 3D object detection and tracking models from
constantly detecting an obstacle on itself, AV pipelines such
as Autoware will remove points which fall within its own
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bounding box. Together, the regions defined by the MOT and
the self bounding box form the LiDAR’s spoofing region. In an
attack scenario, we assume an attacker has knowledge of this
spoofing region from the specifications of the target vehicle V
and its LiDAR sensor model. With this knowledge, an attacker
would choose an object to be hidden H . The attacker would
then determine the spoofing direction ϕ which extends from
the V to the center of H . Finally, the attacker would spoof
all points emitted within a chosen attack angle θ around ϕ to
be within this spoofing region, thus removing a portion of the
target’s point cloud. With no points to process, a 3D object
detection and tracking system would fail to detect objects in
the region which could lead to a collision. Figure 3 (right)
gives an example of the point removal of PRA. Removing
points within the region completely hides the pedestrian from
the point cloud.

In our implementation of PRA, we used the same maximum
horizontal spoofing angle constraint of 45◦ and point budget
of ∼3600 points as in the original work. Since PRA involves
spoofing all of the points within a given attack angle, the
maximum horizontal spoofing angle is dependent on the
spoofing budget. Spinning LiDARs in operation will have a
vertical and horizontal resolution which defines how many
points will be captured within a given horizontal angle. Thus,
the maximum horizontal spoofing angle will be determined by
the spoofing budget. Thus the constraint of 45◦ is based on the
specifications Velodyne VLP-16 which captures ∼3600 points
over 45◦ [52]. We did not explicitly constrain the spoofing
budget, although the maximum horizontal angle we use is 40◦.
Our mean points removed for a 40◦ attack was ∼3100 points.
We did not consider the specific MOT or self bounding box
dimensions of our virtual LiDAR sensor, as our attack was
implemented on captured data and we assume the attacker’s
ability to successfully spoof points into the spoofing region.
Our implementation is further described in Algorithm 2

Algorithm 2 Physical Removal Attack, PRA
Note that ← denotes insertion to a list.

Input: point cloud[] // raw point cloud from sensor
PosV = [xv, yv, zv] // V
PosH = [xh, yh, zh] // H
θ // attack angle
Output: spoofed point cloud[]
ϕspoof = HeadingToPoint(PosV , PosH)
for all point in point cloud do
ϕpoint = HeadingToPoint(PosV , point)
if ϕpoint > (ϕspoof + θ/2)&ϕpoint < (ϕspoof − θ/2)
then

spoofed point cloud← point
end if

end for
return spoofed point cloud

IV. EXPERIMENTS

To test the effects of these attacks on an AV with multiple
LiDAR sensors, we create a custom LiDAR dataset using
multiple LiDAR configurations in a simulated environment
using the Autoware autonomous driving stack and the AWSIM
Labs scene simulator [23], [24]. We then apply ORA and
PRA attacks on the raw captured point clouds and replay
the scenario using the “attacked” point clouds as input to
simulate the attack. We analyze the object tracking results
from the replayed scenario to evaluate the effectiveness of
the attacks on the system. This pipeline is described in Figure
1. The following section will describe our experimental setup,
procedure, and datasets.

A. Sensor Configurations

Our evaluation dataset consists of three LiDAR sensor
placement configurations with one, two, and three LiDAR
sensors. These configurations described below are chosen
to provide multiple degrees of redundancy rather than to
represent commonly used or optimal configurations in practice.
In the single sensor configuration, the LiDAR sensor is placed
in the center of the roof of the vehicle with a 360◦ FOV. The
two and three sensor configurations allow us to investigate
redundancy in multiple ways. The double sensor configuration
has the same LiDAR sensor as in the single configuration,
but we place a redundant LiDAR sensor stacked vertically,
∼70mm between the laser arrays of the two sensors. This
results in an essentially identical horizontal FOV, and is the
closest thing to a purely redundant sensor setup—however, this
redundancy is less realistic because it does not mirror how
current LiDAR system are configured. For the triple sensor
setup, we again place one sensor on the middle of the roof,
but we place the other two sensors 0.554m on either side of the
center LiDAR, better mirroring current AV systems. Optimal
LiDAR sensor placement is an ongoing field of research [54],
[55] and placement configurations vary between manufactures
[20]–[22]. Sensors may be set up such that there is one
sensor on the roof with a roughly 360◦ FOV and individual
sensors covering the front, sides, and rear views. This results
in a similar level of overlapping coverage as our three sensor
setup, with each directional LiDAR’s FOV overlapping with
the central roof mounted sensor. To verify that there is a
negligible difference in FOV between our redundant LiDARs,
we calculate the intersection over union (IoU) of the FOVs,
considering each to be a circle with radius R (maximum range
of the LiDAR sensor) at horizontal distance d apart.

Aintersection = 2R2 cos−1

(
d

2R

)
− d

2

√
4R2 − d2 (1)

Aunion = 2πR2 −Aintersection (2)

IoU =
Aintersection

Aunion
(3)

Since our sensors in our two sensor configuration are only
displaced vertically, we consider their IoU to be 1. With a
horizontal displacement d of 0.554m and R of 100m, we
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get an IoU of 0.993, i.e. each of our redundant sensors in
this configuration has over 99% overlap in FOV with the
main sensor. This allows us to consider any object within
the main sensor’s FOV to also be in the additional sensors’
FOVs, giving us complete redundant coverage of the scene.
This provides us with the largest region within which we can
test attack effectiveness even if the LiDAR configuration of a
real AV may not have the same full coverage. The combined
redundant regions of a particular LiDAR configuration from an
existing AV for example could be represented as a subregion
of the redundant coverage in our fully redundant configuration.
Thus our experiments can generalize to configurations used in
practice efficiently without needing to emulate so many unique
setups.

B. Dataset

We generate our datasets in AWSIM Labs. AWSIM Labs
is an open-sourced, Unity [56] based 3D simulator created
for use with Autoware. For our LiDAR sensor, we use a
virtual Velodyne VLP-16 spinning LiDAR sensor supported
by AWSIM Labs which is built on RobotecAI’s GPU LiDAR
package [57]. We use AWSIM Labs’ provided digital twin
of the Shinjuku Tokyo area as our setting, which consists of
a 3D model of the area and an accompanying lanelet2 map.
Within this setting, we generated a dataset of 3,115 scenes
containing varying numbers of pedestrians and vehicles per
scenes. We used the same pedestrian and vehicle model for
all scenes. We record the raw point clouds of each sensor
within each scene as a to serve as the input data in our
evaluations as well as the bounding boxes of the surrounding
vehicles and pedestrians as ground truth. Autoware is built
using Robot Operating System 2 (ROS 2) [?], allowing us
to save the input and ground truth data in “rosbags.” We
process these rosbags using the Python utilities packaged with
Autoware. The front-near region of the point cloud is often
of particular importance, as it is the region of space into
which the vehicle is most likely traveling. However, we place
pedestrians and vehicles in all directions around the vehicle
to generate the most instances of detection and tracking. For
each of the three LiDAR placement configurations and for
both ORA and PRA, we apply the chosen attack as described
in Section III to all pedestrians and vehicles throughout the
scene. We also vary the parameters of each method: point
budgets of {0, 100, 200, 400} for ORA and attack angles of
{0◦, 5◦, 10◦, 20◦, 40◦} for PRA. In all scenes, we attack
the same central LiDAR sensor as its placement is constant
in all configurations. We do not consider attacks on multiple
LiDAR sensors simultaneously. The spoofing device described
in Section III could theoretically be deployed as an array of
spoofing devices, each aimed at a different sensor. However
a synchronized attack between multiple spoofing devices has
not appeared in literature, to the best of our knowledge, and
could be a target for future work. We revisit this topic briefly
in the context of our experimental results in Section V.

C. Model and Hardware

We use Autoware’s implementation of CenterPoint [25] with
a PointPillars [30] backbone as our object detection/tracking
model. The baseline model packaged with Autoware is trained
on the nuScenes dataset [58] and the internal dataset of TIER
IV, with about 39,000 total LiDAR frames. We did not perform
any tuning on our datasets. We run all processing steps of the
sensing and perception modules in Autoware leading up to the
object detection/tracking results. We generate our dataset and
run all simulations with an Intel Core i7-14700K CPU, RTX
4080 Super GPU, and 32GB of RAM. Each simulation run
is about 90-100 seconds on average with the slight variance
attributed to Autoware startup times.

V. RESULTS AND DISCUSSION

We compare object detection results across the parameters
of point budget for ORA and attack angle for PRA and across
our three sensor placement configurations. The following
section will describe our performance metrics and the results
of these experiments.

A. Evaluation Metrics

We evaluate the effectiveness of ORA and PRA in the
context of the performance of our CenterPoint object detection
model using several metrics: confidence score, attack success
rate (ASR), and recall. Confidence score is a direct output
of CenterPoint which expresses on a scale of [0.0, 1.0],
resembling a probability that the detection is “correct”. For
inference, we use the default confidence threshold of 0.35 to
filter valid detections. However, we can also plot confidence
over attack parameters, which can show how the model’s
certainty changes as the attack becomes more extreme. We
consider the attack success rate to be the proportion of
detections that were missed in the attack dataset versus the
clean dataset:

Attack Success Rate =
TPbaseline − TPattack

TPbaseline

where TPbaseline is the count of true positives on the clean (no
attacks) dataset and TPattack is the count of true positives on a
dataset with attacks. This ratio communicates the effectiveness
of the attack overall and is less coupled to a specific object
detection model. For ORA, we also measure performance
on recall to match the evaluations from the original ORA
experiments [18].

Recall =
TP

TP + FN
Recall is a relevant metrics for ORA since we want to test the
model’s ability to detect all the objects, including those the
attacker is trying to hide. In object detection evaluations, it
is common to use an intersection over union (IoU) threshold
in addition to a confidence threshold to assess whether the
predicted bounding box overlaps sufficiently with the ground
truth bounding box to be considered a valid detection. Thus,
a low IoU threshold would mean that even if the bounding
box is poorly localized, a predicted detection would still
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Fig. 4. Attack Success Rate, Confidence, and Recall over point budget for one,
two, and three LiDAR configurations, with a point budget of zero representing
no attack.

be considered correct. We use IoU thresholds of 0.7 and
0.2 for vehicles and pedestrians, respectively, in our metrics.
Thresholds of 0.7 and 0.5 are used in the original ORA and
PRA works, however we relax the IoU to 0.2 for pedestrians to
account for poor domain adaptation of our CenterPoint model.

B. Object Removal Attack Results

In the first row of Figure 4, we see ASR of ORA on vehicles
and pedestrians, evaluated with IoU thresholds of 0.7 and 0.2,
respectively. We can see a clear difference in the effectiveness
of ORA on the single vs multi-sensor configurations. While the
ASR does increase slightly with point budget for the two and
three LiDAR configurations, the single LiDAR configuration
is notably more susceptible. There is a similar trend with
pedestrians, with no successful attacks on the multi-LiDAR
configurations. The two redundant configurations maintain a
more consistent ASR, with no successful attacks with any
point budget for pedestrians and a ∼75% and ∼83% decrease
in ASR with the two and three LiDAR configurations.

The second row of Figure 4 shows the object detection
confidence over point budget for each LiDAR configuration.
For vehicles, we see a steady decrease in confidence in the
single LiDAR configuration as the point budget increases. The
confidences for the two and three LiDAR configurations stay
relatively steady, although there is a slight decrease as well.
Our model is not confident on pedestrians in the single LiDAR
configuration even with no attack present (point budget of
zero), making it difficult to identify a trend from the confidence
plot.

The bottom row of Figure 4 shows the recall curves for
vehicles and pedestrians over point budget for each LiDAR
configuration. There is a clear negative trend in recall as point

budget increases for vehicles, reducing the recall to ∼30% at
a point budget of 400 points. As more points get perturbed,
the 3D features of the vehicles are more disrupted resulting
in fewer detections. However, recall for the two and three
LiDAR configurations remains at >99% for all attacks. This is
a ∼330% increase in recall at a point budget of 400 points—
redundant configurations effectively prevent vehicle removal
attacks. For pedestrians, object detection performs poorly in
the single LiDAR configuration, even with no attacks. Since
we cannot see a trend in recall in the single, LiDAR configu-
ration, we cannot conclude that ORA is less effective against
multi-LiDAR configurations despite seeing much higher recall
in the two and three LiDAR configurations.

Discussion: In both recall and model confidence, the per-
ception system appears to be more resilient in the two and
three LiDAR configurations than in the single configuration
for vehicles. As points are spoofed away from the original
bounding box, the 3D features of the vehicle are somewhat
preserved by the additional points from the redundant LiDAR
sensors. While we would expect higher performance with
redundant points even without an attack, we would also expect
similarly decreasing performance trends to the single LiDAR
configuration for the two and three LiDAR configurations un-
less the redundant points were adding resilience to the system.
Based on the consistent performance of the two and three
LiDAR configurations as the point budget increases across
all metrics, we conclude that redundant LiDARs improve the
resilience of the system to ORA attacks for vehicles.

For pedestrians, the poor confidence and recall performance
in the single LiDAR configuration makes it difficult to make
a strong conclusion about the effects of the redundant LiDAR
sensors, despite seeing a large reduction in ASR when using
redundant LiDAR sensors. We note that original CenerPoint
detection model [25] reports pedestrian tracking accuracies
of about 58% on the Waymo Open Dataset [59]. In our
implementation, we see reduced performance for pedestrians
detection, with recall scores less than 5%. We attribute this
performance drop primarily to poor domain adaptation. As
such, fine tuning of the CenterPoint model may improve
recall on pedestrians in our simulations. Even so, we can
still investigate the trends in attack success rates for the
CenterPoint model.

C. Physical Removal Attack Results

We evaluate PRA based on the attack success rate (ASR)
and the confidence of the CenterPoint model with IoU thresh-
olds of 0.7 and 0.2 for vehicles and pedestrians, respectively. In
some attack samples, only a portion of the object is removed—
e.g., when a vehicle close to the target is spoofed with a small
attack angle. While the goal of PRA is to completely remove
the object, an evaluation of confidence will identify trends
in confidence for vehicles and pedestrians which were only
partially removed.

The first row of Figure 5 shows the trends of ASR as the
attack angle increases. We see in the one LiDAR configuration
how the effectiveness of PRA increases as the attack angle
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Fig. 5. Attack Success Rate, Confidence, and Recall over point budget for one,
two, and three LiDAR configurations, with an attack angle of zero representing
no attack.

increases and thus a greater proportion of each objects bound-
ing box is hidden by the attack. The ASR for the two and
three LiDAR configurations remains more consistent. At an
attack angle of 40◦, we see an ∼65% and ∼83%, respectively,
decrease in ASR compared to the single LiDAR configuration.
This means that the two and three LiDAR configurations
maintain some degree of detection in ∼65% and ∼83% of
the attacks at the largest attack angle. We see a similar
ASR result for pedestrians, reaching a maximum ∼55% and
∼75% reduction in ASR. As discussed in our ORA results,
the CenterPoint model performs poorly on pedestrians in our
experiments, resulting in a similar but less pronounced contrast
between the one LiDAR configuration and the two and three
LiDAR configurations.

The second row of Figure 5 shows the confidence of
the object detection model (CenterPoint) as the attack angle
increases. For vehicles, we see that for small attack angles,
only portions of the vehicle’s point cloud are removed, and
thus the model maintains confidence even in the single LiDAR
configuration. However, this confidence decreases to 0 at an
attack angle of 40◦ when the majority of a vehicle’s point
cloud is removed but a small portion remains. As with all
previous pedestrian results, the poor performance in the single
LiDAR configuration even with no attacks prevents us from
identifying confidence trends across attack angle.

Discussion: The trends in ASR with increasing attack
angle demonstrate the effectiveness of PRA at hiding objects.
Especially with vehicles, the redundant LiDAR sensors afford
a great deal of resilience to these attacks, as they compensate
for the regions hidden from the main LiDAR. While it is not
the main goal of PRA, the confidence of the model is still
degraded significantly in the single LiDAR configuration even
when the vehicle is well localized. The redundant LiDARs
restore the missing portions of the vehicle, maintaining the
model’s confidence. The pedestrian results show a reduced
level of resilience in our ASR evaluations and inconclusive

results in our confidence evaluations. That is, the overall
trend for resilience is similar to vehicles, but the detection
performance for pedestrians is not sufficient to make strong
conclusions. We also note that the reduction in ASR from
the single LiDAR to two LiDAR configurations shows that
as long as a single sensor is operating normally, the attacks
are significantly less effective. This indicates that in the event
of a synchronized, multi-spoofer attack on multiple LiDAR
sensors as referenced in Section IV, the attacker would need
to deploy spoofers for every sensor whose FOV contains the
target object in order for the attack to be effective.

VI. CONCLUSION

In this work, we test the resilience of a multi-LiDAR system
to two “remote object hiding” spoofing attacks: the Object
Removal Attack (ORA) and the Physical Removal Attack
(PRA). We employ two redundant LiDAR systems using
digital twins, where each configuration has an overlapping
field of view with the original LiDAR sensor. We find that a
redundant LiDAR sensor is able to supplement any perturbed
or missing points caused by these attacks, providing the target
system inherent resilience. We find strong resilience when
vehicles are hidden, reporting a ∼75% and ∼83% reduction
in ASR with two and three LiDAR sensors, even at maximum
attack intensity (point budget of 400 points). Furthermore,
we find an ∼65% and ∼83% reduction in attack success
rate for two and three LiDAR configurations for PRA at
maximum attack intensity (attack angle of 40◦). We also find
that redundant LiDAR sensors provide slightly less consistent
resilience when pedestrians are hidden—likely stemming from
the poor detection performance of LiDAR in detecting our 3D
pedestrian model, particularly from longer distances. Fine tun-
ing the detection model, CenterPoint, could lead to improved
pedestrian performance in future work.

Many AV’s in production or development today have mul-
tiple LiDAR sensors [20]–[22] which, based on this work,
may afford them this same resilience to remote object hiding
attacks. In our literature review, we find few works investigat-
ing attacks which can affect redundant sensors simultaneously.
Extending existing attack methods to account for sensor redun-
dancy is an avenue of future work. If successful, another area
of future work will be in enhancing existing spoofing coun-
termeasures to account for these redundant sensors attacks.

REFERENCES

[1] R. Baldwin, “Self-driving-car research has cost $16 billion.
what do we have to show for it?” 2020, accessed: 2025-02-
12. [Online]. Available: https://www.caranddriver.com/news/a30857661/
autonomous-car-self-driving-research-expensive/

[2] C. Metinko, “Funding to autonomous driving startups
surprisingly starts to move again,” 2020, accessed: 2025-02-
12. [Online]. Available: https://news.crunchbase.com/transportation/
autonomous-driving-startup-funding-wayve-cruise/

[3] Waymo, “Waymo official website,” accessed: February 12, 2025.
[Online]. Available: https://waymo.com/

[4] Wayve, “Wayve official website,” accessed: February 12, 2025.
[Online]. Available: https://wayve.ai/

[5] C. LLC, “Cruise official website,” accessed: January 27, 2025. [Online].
Available: https://www.getcruise.com

47 



[6] A. Yoganandhan, S. Subhash, J. Hebinson Jothi, and V. Mohanavel,
“Fundamentals and development of self-driving cars,” Materials Today:
Proceedings, vol. 33, pp. 3303–3310, 2020, international Conference on
Nanotechnology: Ideas, Innovation and Industries. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214785320333848

[7] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh,
“Sensor and sensor fusion technology in autonomous vehicles:
A review,” Sensors, vol. 21, no. 6, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/6/2140

[8] H. A. Ignatious, Hesham-El-Sayed, and M. Khan, “An overview
of sensors in autonomous vehicles,” Procedia Computer Science,
vol. 198, pp. 736–741, 2022, 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks / 11th
International Conference on Current and Future Trends of Information
and Communication Technologies in Healthcare. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050921025540

[9] S. Jain and I. Malhotra, “A review on obstacle avoidance techniques for
self-driving vehicle,” International Journal of Advanced Science and
Technology, vol. 29, no. 06, pp. 5159–5167, 2020.

[10] J. Li, H. Bao, X. Han, F. Pan, W. Pan, F. Zhang, and D. Wang, “Real-
time self-driving car navigation and obstacle avoidance using mobile 3d
laser scanner and gnss,” Multimedia Tools and Applications, vol. 76, pp.
23 017–23 039, 2017.

[11] N. S. Manikandan, G. Kaliyaperumal, and Y. Wang, “Ad hoc-obstacle
avoidance-based navigation system using deep reinforcement learning
for self-driving vehicles,” IEEE Access, vol. 11, pp. 92 285–92 297,
2023.

[12] M. Pham and K. Xiong, “A survey on security attacks and defense
techniques for connected and autonomous vehicles,” Computers &
Security, vol. 109, p. 102269, 2021.

[13] C. Wang, X. Yang, X. Xi, S. Nie, and P. Dong, Introduction to LiDAR
Remote Sensing, 1st ed. CRC Press, 2024.

[14] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,
2020.

[15] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and lidar,” Black
Hat Europe, vol. 11, no. 2015, p. 995, 2015.

[16] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications,” in
Cryptographic Hardware and Embedded Systems – CHES 2017. Cham:
Springer International Publishing, 2017, pp. 445–467.

[17] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao,
and S. Rampazzi, “You can’t see me: Physical removal attacks
on LiDAR-based autonomous vehicles driving frameworks,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 2993–3010. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/cao

[18] Z. Hau, T. Kenneth, S. Demetriou, and E. C. Lupu, “Object removal
attacks on lidar-based 3d object detectors,” in Workshop on Automotive
and Autonomous Vehicle Security (AutoSec), vol. 2021, 2021, p. 25.

[19] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao,
and S. Rampazzi, “You can’t see me: Physical removal attacks
on LiDAR-based autonomous vehicles driving frameworks,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 2993–3010. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/cao

[20] S. Jeyachandran, “Meet the 6th-generation waymo driver: Optimized
for costs, designed to handle more weather, and coming to riders faster
than before,” accessed: February 12, 2025. [Online]. Available: https:
//waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver

[21] Wayve, “Introducing radar: Wayve’s sensor stack explained,” accessed:
February 12, 2025. [Online]. Available: https://wayve.ai/thinking/
introducing-radar-wayves-lean-sensor-stack-explained/

[22] V. Vijayenthiran, “Gm’s ultra cruise drive-assist tech em-
ploys 20 sensors, lidar,” accessed: February 12, 2025.
[Online]. Available: https://www.motorauthority.com/news/1134110
make-payments-from-your-mercedes-with-just-a-fingerprint

[23] T. A. Foundation, “Autoware,” 2025, accessed: January 27, 2025.
[Online]. Available: https://github.com/autowarefoundation/autoware

[24] ——, “Awsim labs,” 2025, accessed: January 27, 2025. [Online].
Available: https://github.com/autowarefoundation/AWSIM-Labs

[25] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 11 784–11 793.

[26] B. Shahian Jahromi, T. Tulabandhula, and S. Cetin, “Real-time
hybrid multi-sensor fusion framework for perception in autonomous
vehicles,” Sensors, vol. 19, no. 20, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/20/4357

[27] Y. Wang, Q. Mao, H. Zhu, J. Deng, Y. Zhang, J. Ji, H. Li, and Y. Zhang,
“Multi-modal 3d object detection in autonomous driving: a survey,”
International Journal of Computer Vision, vol. 131, no. 8, pp. 2122–
2152, 2023.

[28] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and
A. Mouzakitis, “A survey on 3d object detection methods for au-
tonomous driving applications,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[29] J. Mao, S. Shi, X. Wang, and H. Li, “3d object detection for autonomous
driving: A comprehensive survey,” International Journal of Computer
Vision, vol. 131, no. 8, pp. 1909–1963, 2023.

[30] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 12 697–12 705.

[31] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I can
see the light: Attacks on autonomous vehicles using invisible lights,”
in Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1930–1944. [Online].
Available: https://doi.org/10.1145/3460120.3484766

[32] N. Wang, Y. Luo, T. Sato, K. Xu, and Q. A. Chen, “Does physical ad-
versarial example really matter to autonomous driving? towards system-
level effect of adversarial object evasion attack,” in 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), 2023, pp. 4389–
4400.

[33] F. Xu, Y. Li, C. Yang, W. Wang, and B. Xu, “Adversarial attacks
against traffic sign detection for autonomous driving,” in 2023 7th CAA
International Conference on Vehicular Control and Intelligence (CVCI),
2023, pp. 1–6.

[34] R. Komissarov and A. Wool, “Spoofing attacks against vehicular
fmcw radar,” in Proceedings of the 5th Workshop on Attacks and
Solutions in Hardware Security, ser. ASHES ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 91–97. [Online].
Available: https://doi.org/10.1145/3474376.3487283

[35] O. Toker, “Chapter 4 - radar architectures and cyberattacks from an
autonomous vehicles perspective,” in Handbook of Power Electronics
in Autonomous and Electric Vehicles, M. H. Rashid, Ed. Academic
Press, 2024, pp. 45–57. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780323995450000051

[36] T. Sato, Y. Hayakawa, R. Suzuki, Y. Shiiki, K. Yoshioka, and
Q. A. Chen, “Lidar spoofing meets the new-gen: Capability improve-
ments, broken assumptions, and new attack strategies,” arXiv preprint
arXiv:2303.10555, 2023.

[37] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, and W. Xu, “Laser-based lidar
spoofing: Effects validation, capability quantification, and countermea-
sures,” IEEE Internet of Things Journal, 2024.

[38] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 770–
779.

[39] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 1711–1719.

[40] B. Inc., “Apollo,” https://github.com/ApolloAuto/apollo, 2025, accessed:
January 27, 2025.
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