
Regular Research Paper; An Embedded Malware
Detection System Using a Support Vector Machine

Rob Oshana (Contact Author)
Edge Processing Business Line

NXP Semiconductors
Austin, USA

robert.oshana@nxp.com

Mitchell A. Thornton
Darwin Deason Institute for Cybersecurity

Southern Methodist University
Dallas, Texas, USA

mitch@smu.edu

Mike Caraman
Edge Processing Business Line

NXP Semiconductors
Bucharest, Romania

mike.caraman@nxp.com

Nathan Srirama
Southern Methodist University

Dallas, Texas USA
nsrirama@mail.smu.edu

Abstract—A prototype detection system for side channel attacks
using a Support Vector Machine and processor performance
counters is proposed. The performance and robustness of the
approach is assessed. The system is capable of detecting multiple
malicious exploits simultaneously. Dimensionality reduction
techniques are used to improve model performance without losing
accuracy. Feature selection techniques are used to determine new
feature subsets. Effectiveness is measured using Receiver
Operating Characteristics. The robustness of the detection system
is measured using a Gaussian noise model and comparing the Root
Mean Square Error and accuracy to the standard deviation of
noise at different noise levels. e measure. We assess the robustness
of the detection system to CPU load using CPU stress applications
and CPU utilization limits.

Keywords— Edge, embedded, machine learning, feature
selection, event counter

I. INTRODUCTION
 Computing at the edge of a network requires a broad range
of capabilities to achieve optimal security, energy efficiency,
connectivity, performance, and machine learning intelligence.
These capabilities often times must work together to achieve
desired goals. For example, protecting an IoT system from a
malicious attack may require a combination of security,
performance, and machine learning. Detecting and suppressing
malicious attacks in IoT and Edge processing is an on-going
challenge for researchers and vendors alike [1][2][3].

A method for the detection of malware using performance
counters have been demonstrated and verified [4][5].
Additionally, embedded and edge-based techniques using
support vector machines (SVM) have been devised and
experimentally verified [6][7]. The techniques in [6] and [7] are
based upon monitoring on-board hardware event counters and
use a SVM for detection. The technique requires a minimal
amount of modification to hosting computer systems since it
uses pre-existing event counters and supporting circuitry and
associated system software assets with no additional hardware
required.

This paper describes the initial results and the evaluation
approach of [6][7] under a variety of system stress levels to
predict robustness of the method. ROC curves are provided for
varying discrimination levels of the classifier, enhanced feature
selection is applied, hyperparameter tuning is applied, and
varying levels of noise were added to the side channels to
determine the point at which the system would lose
functionality.

II. SIDE CHANNEL ATTACK DETECTION
The detection approach in [7] has shown effective results in

detecting common variants of SPECTRE that are running in a
system that is also executing multiple other non-threatening
tasks.

The architecture of the detection system is shown in Fig. 1.
The Embedded Detection Agent running on the embedded
device uses “perf” to collect hardware-based event samples
from the applications running on the target device and sends
them to the Edge Detector requesting a classification. If the
Edge Detector predicts that there is a malicious attack running
on the embedded device process, it will kill or suspend the
process. The embedded devices we target include ARM-based
systems such as the iMX heterogeneous SoC as well as x86
based systems.

Machine learning training and classification is a component
of the Edge Detector. Modifications were made to the Linux
kernel to allow a simulated attack. Specifically, a victim kernel
module, which is the SPECTRE module, designed to have a
vulnerable driver, is implemented in the kernel and is used to
demonstrate the malware attack against the kernel space.
Additional kernel modifications were made to grant access to
the Performance Measurement Unit (PMU) counters from user
space since the SPECTRE proof of concept uses the PMU
counters as a timing measurement method.

Fig. 1 Architecture for the detection system

 The sequence diagram showing the interactions between the
Edge Detector, Embedded Detection Agent, and the embedded
processes running in user space is shown in Fig. 2. Our
detection system continuously polls for top three CPU loaded
processes for detection analysis in this prototype.

Fig. 2 Sequence Diagram for Edge Detection System

III. PREVIOUS RESULTS
In [6] a SVM was used for detection of a simulated

SPECTRE attack. The detection system has shown effective
results in detecting a common variant of SPECTRE running in
a system including multiple other non-threatening tasks
including;

1. System idle task
2. I/O operations on the network file system
3. I/O operation on a sdcard using iozone file

benchmarking tool
4. Graphics operations using an OpenGL benchmark

called glmark2
5. TCP/IP communication using iperf measurement tool

6. I/O operations on the Linux networking file system
using a tool called fio

7. Openssl crypto operations
8. The benchmarking application lmbench which

measures latency and bandwidth
9. SPECTRE attack; the standard proof of concept

SPECTRE attack

The work in [6] analyzed a variety of different machine
learning algorithms. Fig. 3 shows the cross validation results
of several machine learning classifiers including decision trees,
gaussian naïve bayes, random forests, K-nearest neighbors
support vector machines, and multilayer perceptrons.

Fig. 3 shows the mean recall, precision and F1-score
averaged across all testing folds. All machine learning methods
performed well, and two methods perform perfectly on the
training and test sets: K Nearest Neighbor (KNN) and Support
Vector Machine (SVM). SVM was chosen over KNN because
of the time it takes to predict when the model is deployed.

Fig. 3; Time series validated performance of machine learning models based
on K-fold cross validation

The results from [6] showed true positive rates in excess of
98% with corresponding false positive rates less than 1%. In
many cases, a 0% false positive rate is achieved. This work did
not consider the incorporation of feature selection nor did it
evaluate performance over a range of system stress factors and
operating points.

In [7] the system in [6] was expanded to show detection of

multiple variants of malicious attack with encouraging results.
The results are summarized in Table I which represents SVM
performance for the initial SPECTRE prediction. Table II
shows SVM performance prediction for multiple variants of
malware attack including the original SPECTRE variant, a
micro-ops cache based variant [8], a Chrome browser variant
[9] and a Spook.js malware variant [10]. The results are
consistent with the SPECTRE performance presented in Table
I. The detection system was able to detect all malware variants
simultaneously in the presence of other application processes
executing in parallel.

TABLE I. SVM PERFOMANCE SPECTRE

I

Edge Detector

~ Attack
"-r---1/ Classification

Classification Event Counters

Embedded

User Space

~

Linux Kernel

D- Event counters LJ
f"A7"2or7
~

Edge
Processes I I Edge Detector I

Agent I Detector I
CPU Utilization Request

CPU Utilization/process

Perf counter request process

Perf counters for process

Kill/ignore process 1

Perf counter request process

Pert counters for process

Kill/ignore process 2

Pert counter request process

Pert counters for process

Kill/ignore process 3

Perf counters for process 1

...... __ 1 • ...,_ .. __ .. ··--'--

Pert counters for process 2

Attack dPt.,.rt ··-- 1no

Pert counters for process 3

Attark d-•--• • ·-- 'nn

11 svM d etection
s 1 proces

11 svM d
proces

etection

s 2

1 svMd etection
s 3 proces

Time Series Validated Performance
LOOOo,----.--.-A_cTro_srs•Mr-a_chri,n,e.Lre_a_mni,n_grA_lg;o.rrit~h-mrs~~~~

0.9975

0.9950

0.9925

0.9900

0.9875

0.9850

0.9825

0.9800 ~-"'!'-~---"''-"--'----"_.'-"1'--'CU._ ... UJ._--"!Ulla._l
OT GaussNB RF KNN SVM MLP-10

- Recall

- Fl
- Precision

 Precision Recall F1 Score Support
0 0.999 0.997 0.998 19555
1 0.963 0.990 0.976 1381

 Precision Recall F1 Score Support
0 0.999 0.996 0.998 19551
1 0.960 0.987 0.974 1718

IV. ROBUSTNESS AND PERFORMANCE OF MALWARE
DETECTION SYSTEM

A key part of this detection system method is feature
selection which includes the identification of the relevant event
counters to extract from the system for inferencing and
detection. The selected events should contain counters that
provide relevant information to indicate side-channel attack
operations and their side effects. In [6] the event counters were
selected by subject matter experts. A smaller number of event
counters were selected that met the hardware extraction
constraints for each processor. In [7] the performance counter
selection based on a more rigorous feature selection approach.

A. Performance Counters Constraints
The hardware event counters, which are a core component

to this solution, are limited resources. For example, the i7-
6950X x86 Broadwell processor used in previous investigation
comprises 5 physical counters in the Performance Monitoring
Unit, while the i7-6600U x86 Skylake processor selected for
this investigation comprises only 4 counters. ARM Cortex-A72
cores present in i.MX8 processors comprises 6 counters. This
limits how much information can be extracted in each cycle
from the processor.

 New enhancements to modern kernels and the perf tool
provide software mechanisms for counter multiplexing and
cycle scaling. Using cycle normalization allows for an extended
list of events to be captured with high precision. perf provides
a grouping mechanism for events which improves the precision
even further. This is accomplished by sampling the cycle
counters for each sub-group.

 Our approach focused on feature selection methods from a
larger set of counters which capture side channel attack
operations and related side effects. Key categories include
speculative execution, branch prediction and cache operations
In particular, for x86 Skylake we identified 35 relevant counter
types. On Arm A72 we identified 38 relevant counter types that
match these criteria.

B. PCA Dimensionality Reduction
Dimensionality reduction techniques can be used to reduce

the number of features in our dataset without losing accuracy
and information so that its possible to preserve or improve the
model performance.

PCA is a dimensionality reduction approach that focuses on

feature extraction. PCA can compress a dataset into a lower

dimensional feature subspace with the principal goal of
maintaining most of the relevant data [11][12]. Here we use
PCA to determine which features are important for best
describing the variance in the data set.

Table III shows a summary of the results of PCA for the x86

and Arm based systems. Thirty five x86 counters were collected
for the SPECTRE based attacks. The top twelve principal
components provide 90% variance on the data. A similar
number of Cortex-A72 counters were collected for the same
attacks. For Cortex-A72, the top ten principal components
provide 90% variance on the data. Our cumulative variance
target was 90%.

Principle

Component
Variance x86 Variance

Arm A72
1 0.33 0.35
2 0.16 0.15
3 0.11 0.11
4 0.07 0.10
5 0.05 0.05
6 0.04 0.05
7 0.03 0.04
8 0.03 0.03
9 0.03 0.02
10 0.02 0.02
11 0.02
12 0.02

Total 0.903 0.92

In Fig. 4 shows the transformed counter data in the planar
space of the top two principal components for x86 and Cortex-
A72. The counter contribution to these principal components is
highlighted with the red arrows representing the eigen vectors.
Fig. 4 also shows the transformed counters data into the 3D
space of the top three principal components and highlights the
variance and separation of the data in the new sub-space.

TABLE II. SVM PERFORMANCE ALL ATTACKS

TABLE III. PCA RESULTS FOR X86 AND ARM CORTEX-A72 PERFORMANCE
COUNTER DATA. PRINCIPLE COMPONENTS AND FEATURE CONTRIBUTIONS

I I

I I

•
0.8

• •
0.6 -i---- -+--------t-..

rm1411Zi • g 0,4 ~ ,
0.2

••• •
•

•
0.0 0.2 0.4 0.6 0.8

PCl

a. x86

b. Cortex A72

Fig. 4 : 2D and 3D representation of the top two principal components with the
contribution of each performance counter data for SPECTRE attack variant for

a. x86 and b. Cortex-A72

 PCA has shown that a subset of the event counters we chose
can we reduced but still achieve at least 90% variance of the
data. But we still may have missed an important feature in our
manual selection process. In order to assess this, we use
algorithmic techniques search for missing features to improve
detection system performance.

C. Feature selection optimization
 While PCA attempts to reduce dimensionality by exploring
how one feature of the data is expressed in terms of the other
features (linear dependency), feature selection is a search
technique for proposing new feature subsets, along with an
evaluation measure which scores the different feature
subsets. This can reduce computational cost as potentially
improve the performance of the model [13][14]. In our case
this can also be used to adhere to the constraints on the
hardware available for extracting event counters from the
processor. This is done by selecting a subset of core events that
are most effective in prediction accuracy.

We used the LASSO feature selection functions from the
scikit library to determine feature importance. LASSO (Least
Absolute Shrinkage and Selection Operator) is a statistical
formula with the main purpose of feature selection and
regularization of the data model [15]. In our detector, the
features (input variables to the model) are the core events.
Choosing the right input variables improves the accuracy of our
model. The features selection phase of LASSO helps in the
proper selection of these variables.

The results of the feature selection for x86 and Arm are listed
in and Table IV and Table V.

TABLE IV: KEY X86 CORE EVENTS

Event count Event description

r0248 Number of times a request needed a FB entry but
there was no entry available for it

r0480 Cycles where a code fetch is stalled due to L1
instruction cache miss.

r0CA3 Execution stalls while L1 cache miss demand load
is outstanding

r40D1 Retired load instructions which data sources were
load missed L1 but hit FB due to preceding miss to
the same cache line with data not ready

r8889 Taken speculative and retired mis-predicted
indirect branches with return mnemonic

r0283 Instruction fetch tag lookups that miss in the
instruction cache (L1I)

r3824 Requests from the L1/L2/L3 hardware prefetchers
or Load software prefetches that miss L2 cache

r010D Core cycles the allocator was stalled due to
recovery from earlier clear event

r01C5 Mis-predicted conditional branch instructions
retired

r8189 Taken speculative and retired mis-predicted macro
conditional branches

rF824 Requests from L2 hardware prefetchers

TABLE V: KEY A72 CORE EVENTS

Event
count

Event description

r7C Barrier speculatively executed - ISB
r7D Barrier speculatively executed - DSB
r7E Barrier speculatively executed - DMB
r1B Operation speculatively executed
r12 Predictable branch speculatively executed
r4C Level 1 data TLB refill - Read
r75 Operation speculatively executed - VFP

0.1

0.6

t

0.0 0.2 0.4

PCl

0.2

...

0.0 0.2 0.4

PCl

0.6

•

...
I

0.6

• •

...

0.8

0.8

0.02

0.04

0.4

0.2

0.0pc:3

•

QI

.04

0.02

0.04

0.8
0.6
0.4

o:/C3

0.0

-0.2

I

We integrated the performance counter events in Tables IV and
V into our detection system and did a comparison of the SVM
performance results. Table VI shows detector performance for
negative results (normal applications) comparing the same sets
of event counters discussed previously:

• Row “6 event counters” - the baseline manual selection
of event counters used in [6].

• Row “35 event counters” - all 35 relevant event counters
used in detection, prior to feature selection.

• Row “11 principal components” - the key principal
components accounting for 90% variation.

• Row “11 features selection” – a reduced set of 11 event
counters selected from the superset of 35 event counters
using embedded approaches to feature selection,
specifically Lasso and Gradient Boost feature selection
methods from scikit

• Row “5 features selection” - the top 5 event counters
selected from the superset of 35 event counters using
embedded approaches to feature selection, specifically
Lasso and Gradient Boost feature selection methods
from scikit

 Similarly, Table VII shows SVM performance for positive
results (attacks) comparing the same event counter (feature)
options.

 The comparison from Table VI and Table VII shows that the
new list of event counters proposed in this study, based on
principal component analysis and feature selection algorithms,
provides significantly better results than [7] and with similar
performance to the experiment with the larger number of
counters.

Features/

Negative results
Preci
sion

Recall F1 Score Support

6 event counters from [6] 0.987 0.982 0.984 7381
35 event counters 1.000 1.000 1.000 7347

11 principal components 1.000 1.000 1.000 7353
11 features selection 1.000 1.000 1.000 7393
5 features selection 1.000 0.999 0.999 7291

Features/
Negative results

Precisi
on

Recall F1
Score

Support

6 event counters from [6] 0.978 0.983 0.981 5922
35 event counters 1.000 1.000 1.000 5956
11 principal comp 1.000 1.000 1.000 5950

11 features selection 1.000 1.000 1.000 5910
5 features selection 0.999 1.000 0.999 6012

V. RECEIVER OPERATING CHARACTERISTIC

 We diagnose the effectiveness of our detection system using
a receiver operating characteristic (ROC) curve which plots the
true positive rate (TPR) against the false positive rate (FPR) at
various discrimination threshold settings [16][17]. We

generated the ROC by re-combining and re-splitting the
collected event counter data randomly.

 The TPR defines how many correct positive results occur
among all positive samples available during the test. FPR, on
the other hand, defines how many incorrect positive results
occur among all negative samples available during the test.

True Positive Rate = Sensitivity = !"#$	&'()*)+$(
!"#$	&'()*)+$(,-./($	0$1.*)+$(

= Probability of detection

False Positive Rate = (1 – Sensitivity) =
-./($	&'()*)+$(

-./($	&'()*)+$(,!"#$	0$1.*)+$(
 = Probability of false alarm

 Fig. 5 shows the ROC for the detection system. Classifiers
that produce curves closer to the top-left corner indicate a better
performance. As a baseline, a random classifier is expected to
give points lying along the diagonal where FPR = TPR. The
ROC in Fig. 5 indicates that our detection system is performing
well.

Fig. 5. ROC for Detection System

 The Area Under the Curve (AUC) aggregates the
performance of the model at all threshold values and performs
well as a general measure of predictive accuracy [18]. The best
possible value of AUC is 1 which indicates a perfect classifier.
The AUC for our detection system is 0.99.

VII. HYPERPARAMETER OPTIMIZATION
 Hyperparameter optimization was used to assess additional
performance improvements for our detection system [19][20].
We used a Grid Search algorithm available in scikit to spot
check the data by defining a search space as a bounded domain
of hyperparameter values and randomly sampling points in that
domain.
 The hyperparameter tuned SVM performed exactly the same
as the default on the testing dataset. Table VIII shows a
summary of the hyperparameter search. The "mean_test_score"
and "std_test_score" are the portion of the training dataset that
was used during cross-validation during training. In total, 180
models were tested. The "mean" and "std" rows are the mean
and standard deviation of all 180 models' performances.

TABLE VI. SVM PERFORMANCE COMPARISON ON X86 – NEGATIVE RESULTS

TABLE VII. SVM PERFORMANCE COMPARISON ON X86 – POSITIVE RESULTS

Receiver operating characteristic example

LO

08

!! I
,0

"' ., 06
i ..
e. ., 04 ;e

02

-- ROC curve (area =0.99)
00-1"-----.-----,-----.-----r------l

00 02 04 06 08 LO
False Positive Rate

Likewise, min, max, and the percentages refer to quartiles. The
min and max were the minimum and maximum values found
from the models, and the percentages rows are the values of
models found at the respective quartiles. The hyper-tuned SVM
has more false-negative predictions as shown in the confusion
matrix Fig. 6. As the amount of training data is increased, the
hyper-tuned SVM records fewer false negatives. Additionally,
as the amount of training data is increased, there are more false
negatives the default-SVM records. This difference is small,
just 1-2 false negative values in total, since there were already
very few false negatives to begin with. The hyper-tuned SVM
is less prone to overfitting as the size of input data increases,
which we believe is related to the lower standard deviation of
the training validation scores. The hyper-tuned model
parameters were found to have lower standard deviation on
their testing scores than the default parameters.

TABLE VIII: GRID SEARCH MEAN RESULTS

METRIC MEAN TEST
SCORE

STD TEST
SCORE

Count 180 180
Mean 0.949039 0.001029
Std 0.113166 0.001531
Min 0.551556 0.000000
25% 0.970107 0.000066
50% 0.987477 0.000337
75% 0.999081 0.001228
Max 0.999963 0.006937

Fig. 6 Hyper-Tuned SVM Confusion Matrix

VIII. GAUSSIAN NOISE ANALYSIS

 We assess the robustness of our detection system using
different level of “noisy” inputs and analyze the impact on
the confusion matrix results. We used the normal
distribution function from the “NumPy” (numerical python)
package to generate the median and the mean of the data
[21].

 We repeatedly rerun the trained classifier using test data
with offsets generated from a standard distribution with
increased values of standard deviation with a mean of zero.
The noise standard deviation values ranges from 1 to 70%
of the test data standard deviation. Fig. 7 plots the TP, TN,
FP, and FN results over the standard deviation of noise
percentage. The results show the detection system behaving

well in the presence of noise with a standard deviation up to
35% of the original testing data.

Fig. 7 Confusion Matrix results for gaussian noise with different standard

deviations

IX.CPU LOAD ANALYSIS

 We analyze the robustness of our detection system to CPU
load using CPU stress applications and CPU utilization limits.
We use the “tasket” Linux tool to set the CPU affinity for the
running attack process using its Process ID (pid) as well as the
stress applications to specific cores used for jamming. In the
first experiment the Linux scheduler assures CPU fairness and
divides the cycles between the processes (33% to attack and
33% to each of the two CPU stress applications). We tested
multiple CPU stress applications such as YouTube, a subset of
the stress applications described in [7], and other custom
applications. In a second experiment we limited the CPU
cycles when the attack process was running alone without stress
using the “cpulimit” Linux tool which is used to limit the CPU
usage of a process.

 In both scenarios, no change in detection system
performance was observed. The CPU load has no negative

parameter-tuned SVM

Neg
Actual Values

• 14000

12000

10000

0000

6000

4000

2000

800

700

600

500

400

300

200

100

0

0

7250

7000

6750

6500

6250

6000

5750

5500

0

FN
FP

10 20

TN

TP

10 20

30 40
Noise stddev %

30 40
Noise stddev %

50

50

60 70

60 70

impact on the detection system because we normalize the side
channel counter information by the number of cycles.

X.CONCLUSION
We expand on a method for the detection of branch

prediction and speculative side channel attacks using hardware
performance counters and a support vector machine. The
technique is based upon monitoring on-board, hardware event
counters rather than characteristics of the targeted data. The
technique requires a minimal amount of modification to an edge-
based computer system since it uses pre-existing event counters
and supporting circuitry and associated system software assets
with no additional hardware required. Multiple variants of the
attack were reproduced and detected concurrently including a
standard SPECTRE variant, a micro-ops cache based variant, a
Chrome browser variant and a Spook.js malware variant.

A more robust method for selecting event counters was
investigated and validated against the original SPECTRE attack.
Feature selection algorithms were used to determine the
optimum event counters to achieve maximum performance. The
performance of the new counter selections was compared
against the original selection based on subject matter expert
analysis and showed significantly better results.

We measured the effectiveness of our detection system to
distinguish between classes using ROC and AUC and
determined that the detection system performs robustly.

We assessed speed and quality of our detection system
learning process using hyperparameter optimization and
concluded that our detection system was optimized.

 We assessed the robustness of the detection system by
executing experiments with increasing amounts of application
noise using a gaussian model with a scalable selection of random
noise as well as experiments in varying the CPU loading of the
stress applications and attack processes.

REFERENCES

[1] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, Toon
Verwaest, Spectre is here to stay An analysis of side-channels and
speculative execution, Feb 2019,

[2] Agarwal, A., O’Connell, S., Kim, J., Yehezkel, S., Genkin, D., Ronen,
E., and Yarom, Y., “Spook.js: Attacking Chrome strict site isolation via
speculative execution”

[3] Ren, X., Moody, L., Taram, M., Tullsen, D., Jordan, M., and Venkat, A.,
“I see dead µops: leaking secrets via Intel/AMD micro-op caches”,
International Symposium on Computer Architecture (ISCA), 2021.

[4] L. Congmiao, J. Gaudiot, “Detecting Spectre attacks using hardware
performance counters”, IEEE Transactions on Computers, May 2021

[5] John Demme Matthew Maycock Jared Schmitz Adrian Tang Adam
Waksman Simha Sethumadhavan Salvatore Stolfo, “On the Feasibility of
Online Malware Detection with Performance Counters”, ACM

SIGARCH Computer Architecture NewsVolume 41Issue 3June 2013 pp
559–570

[6] R. Oshana, M. Thornton, X. Roumegue, E. Larson, “Real-time edge
processing detection of malicious attacks using machine learning and
processor core events”, 15th Annual IEEE International Systems
Conference, April 15, 2021.

[7] R.Oshana, M. Thornton, M. Caraman, “A side channel attack detection
system using processor core events and a support vector machine” 11th
Mediterranean Conference on Embedded Computing, 2022.

[8] Ren, X., Moody, L., Taram, M., Tullsen, D., Jordan, M., and Venkat, A.,
“I see dead µops: leaking secrets via Intel/AMD micro-op caches”,
International Symposium on Computer Architecture (ISCA), 2021, pp
361-374

[9] Agarwal, A., O’Connell, S., Kim, J., Yehezkel, S., Genkin, D., Ronen,
E., and Yarom, Y., “Spook.js: Attacking Chrome strict site isolation via
speculative execution”, https://www.spookjs.com/files/spook-js.pdf

[10] S. Rottger and Artur Janc, “A Spectre proof-of-concept for a Spectre proof
web”,https://security.googleblog.com/2021/03/a-spectre-proof-of-
concept-for-spectre.html, March 2021

[11] Reddy G., et al “Analysis of dimensionality deduction techniques on big
data”, IEEE Xplore, March 16, 2020

[12] Han, X., Xu, L., and Ren, M., “A naive bayesian network intrusion
detection algorithm based on principal component analysis”, 2015 7th
International Conference on Information Technology in Medicine and
Education

[13] Anam Fatina, Ritesh Maurya, Malay Dutta, Radim Burget, and Jan
Masek, “Android malware detection using genetic algorithm based
optimized feature selection and machine learning”, 42nd International
Conference on Telecommunications and Signal Processing”, 2019

[14] P Illavarason and B Kamachi Sundaram, “A study of intrusion detection
system using machine learning classification algorithm based on different
feature selection approach”, Third International Conference on I-SMAC,
2019

[15] R Muthukrishnan and R Rohini, “LASSO: A feature selection technique
in predictive modeling for machine learning”, 2016 IEEE International
Conference on Advances In Computer Applications.

[16] Wang Xu-Hui, Shu Ping, Cao Li, and Wang Ye, “A ROC curve method
for performance evaluation of support vector machine with optimization
strategy”, 2009 International Forum on Computer Science-Technology
and Applications, December 2009

[17] Ronaldo Cristiano Prati, Gustavo Batista, and Maria Carolina Monard,
“Evaluating classifiers using ROC curves”, IEEE Latin America
Transactions, August 2008

[18] Jin Huang and C.X. Lin, “Using AUC and accuracy in evaluating learning
algorithms”, IEEE Transactions on Knowledge and Data Engineering,
2005

[19] Abdullah Ammar Karcioglu and Hasan Bulut, “Performance evaluation
of classification algorithms using hyperparameter optimization”, 6th
Annual International Conference on Computer Science and Engineering,
2021

[20] Hussain Alibrahim and Simone A. Ludwig, “Hyperparameter
optimization: comparing genetic algorithm against grid search and
baysian optimization”, IEEE Congress on Evolutionary Computation,
2021

[21] Sophia Susan Raju, Boyan Wang, Kashyap Mehta, Ming Xiao,
“Application of noise to avoid overfitting in TCAD augmented machine”,
2020 International Conference on Simulation of Semiconductor Processes
and Devices, 2020

