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Abstract—A prototype detection system for side channel attacks 
using a Support Vector Machine and processor performance 
counters is proposed.  The performance and robustness of the 
approach is assessed.  The system is capable of detecting multiple 
malicious exploits simultaneously.   Dimensionality reduction 
techniques are used to improve model performance without losing 
accuracy.  Feature selection techniques are used to determine new 
feature subsets.  Effectiveness is measured using Receiver 
Operating Characteristics. The robustness of the detection system 
is measured using a Gaussian noise model and comparing the Root 
Mean Square Error and accuracy to the standard deviation of 
noise at different noise levels.  e measure.  We assess the robustness 
of the detection system to CPU load using CPU stress applications 
and CPU utilization limits. 
 

Keywords— Edge, embedded, machine learning, feature 
selection, event counter 

I. INTRODUCTION 
     Computing at the edge of a network requires a broad range 
of capabilities to achieve optimal security, energy efficiency, 
connectivity, performance, and machine learning intelligence.  
These capabilities often times must work together to achieve 
desired goals.  For example, protecting an IoT system from a 
malicious attack may require a combination of security, 
performance, and machine learning.  Detecting and suppressing 
malicious attacks in IoT and Edge processing is an on-going 
challenge for researchers and vendors alike [1][2][3]. 

A method for the detection of malware using performance 
counters have been demonstrated and verified [4][5].  
Additionally, embedded and edge-based techniques using 
support vector machines (SVM) have been devised and 
experimentally verified [6][7]. The techniques in [6] and [7] are 
based upon monitoring on-board hardware event counters and 
use a SVM for detection.  The technique requires a minimal 
amount of modification to hosting computer systems since it 
uses pre-existing event counters and supporting circuitry and 
associated system software assets with no additional hardware 
required. 

This paper describes the initial results and the evaluation 
approach of [6][7] under a variety of system stress levels to 
predict robustness of the method.  ROC curves are provided for 
varying discrimination levels of the classifier, enhanced feature 
selection is applied, hyperparameter tuning is applied, and 
varying levels of noise were added to the side channels to 
determine the point at which the system would lose 
functionality. 

II. SIDE CHANNEL ATTACK DETECTION 
The detection approach in [7] has shown effective results in 

detecting common variants of SPECTRE that are running in a 
system that is also executing multiple other non-threatening 
tasks.   

The architecture of the detection system is shown in Fig. 1. 
The Embedded Detection Agent running on the embedded 
device uses “perf” to collect hardware-based event samples 
from the applications running on the target device and sends 
them to the Edge Detector requesting a classification.  If the 
Edge Detector predicts that there is a malicious attack running 
on the embedded device process, it will kill or suspend the 
process.  The embedded devices we target include ARM-based 
systems such as the iMX heterogeneous SoC as well as x86 
based systems.   

Machine learning training and classification is a component 
of the Edge Detector.  Modifications were made to the Linux 
kernel to allow a simulated attack.  Specifically, a victim kernel 
module, which is the SPECTRE module, designed to have a 
vulnerable driver, is implemented in the kernel and is used to 
demonstrate the malware attack against the kernel space.  
Additional kernel modifications were made to grant access to 
the Performance Measurement Unit (PMU) counters from user 
space since the SPECTRE proof of concept uses the PMU 
counters as a timing measurement method. 



 
Fig. 1 Architecture for the detection system 

 
     The sequence diagram showing the interactions between the 
Edge Detector, Embedded Detection Agent, and the embedded 
processes running in user space is shown in Fig. 2.  Our 
detection system continuously polls for top three CPU loaded 
processes for detection analysis in this prototype. 
 

 
Fig. 2 Sequence Diagram for Edge Detection System 

 

III. PREVIOUS RESULTS 
In [6] a SVM was used for detection of a simulated 

SPECTRE attack.  The detection system has shown effective 
results in detecting  a common variant of SPECTRE running in 
a system including multiple other non-threatening tasks 
including; 

1. System idle task 
2. I/O operations on the network file system  
3. I/O operation on a sdcard using iozone file 

benchmarking tool 
4. Graphics operations using an OpenGL benchmark 

called glmark2 
5. TCP/IP communication using iperf measurement tool 

6. I/O operations on the Linux networking file system 
using a tool called fio 

7. Openssl crypto operations 
8. The benchmarking application lmbench which 

measures latency and bandwidth 
9. SPECTRE attack; the standard proof of concept 

SPECTRE attack 

The work in [6] analyzed a variety of different machine 
learning algorithms.  Fig. 3 shows the cross validation results 
of several machine learning classifiers including decision trees, 
gaussian naïve bayes, random forests, K-nearest neighbors 
support vector machines, and multilayer perceptrons. 

Fig. 3 shows the mean recall, precision and F1-score 
averaged across all testing folds. All machine learning methods 
performed well, and  two methods perform perfectly on the 
training and test sets: K Nearest Neighbor (KNN) and Support 
Vector Machine (SVM).   SVM was chosen over KNN because 
of the time it takes to predict when the model is deployed.  
 

 
Fig. 3; Time series validated performance of machine learning models based 
on K-fold cross validation 

The results from [6] showed true positive rates in excess of 
98% with corresponding false positive rates less than 1%. In 
many cases, a 0% false positive rate is achieved.  This work did 
not consider the incorporation of feature selection nor did it 
evaluate performance over a range of system stress factors and 
operating points.  

 
In [7] the system in [6] was expanded to show detection of 

multiple variants of malicious attack with encouraging results. 
The results are summarized in Table I which represents SVM 
performance for the initial SPECTRE prediction. Table II 
shows SVM performance prediction for multiple variants of 
malware attack including the original SPECTRE variant, a 
micro-ops cache based variant [8], a Chrome browser variant 
[9] and a Spook.js malware variant [10]. The results are 
consistent with the SPECTRE performance presented in Table 
I.  The detection system was able to detect all malware variants 
simultaneously in the presence of other application processes 
executing in parallel. 

 

 

 
 

 

TABLE I. SVM PERFOMANCE SPECTRE 
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 Precision Recall F1 Score Support 
0 0.999     0.997    0.998     19555 
1  0.963     0.990    0.976      1381 

 

 
 Precision Recall F1 Score Support 
0 0.999 0.996 0.998 19551 
1 0.960 0.987 0.974 1718 

 

IV. ROBUSTNESS AND PERFORMANCE OF MALWARE 
DETECTION SYSTEM 

A key part of this detection system method is feature 
selection which includes the identification of the relevant event 
counters to extract from the system for inferencing and 
detection. The selected events should contain counters that 
provide relevant information to indicate side-channel attack 
operations and their side effects. In [6] the event counters were 
selected by subject matter experts.  A smaller number of event 
counters were selected that met the hardware extraction 
constraints for each processor.  In [7] the performance counter 
selection based on a more rigorous feature selection approach. 

A. Performance Counters Constraints  
The hardware event counters, which are a core component 

to this solution, are limited resources. For example, the i7-
6950X x86 Broadwell processor used in previous investigation 
comprises 5 physical counters in the Performance Monitoring 
Unit, while the i7-6600U x86 Skylake processor selected for 
this investigation comprises only 4 counters. ARM Cortex-A72 
cores present in i.MX8 processors comprises 6 counters.  This 
limits how much information can be extracted in each cycle 
from the processor.  
 
    New enhancements to modern kernels and the perf tool 
provide software mechanisms for counter multiplexing and 
cycle scaling. Using cycle normalization allows for an extended 
list of events to be captured with high precision. perf provides 
a grouping mechanism for events which improves the precision 
even further.  This is accomplished by sampling the cycle 
counters for each sub-group. 
 
  Our approach focused on feature selection methods from a 
larger set of counters which capture side channel attack 
operations and related side effects.  Key categories include 
speculative execution, branch prediction and cache operations  
In particular, for x86 Skylake we identified 35 relevant counter 
types.  On Arm A72 we identified 38 relevant counter types that 
match these criteria. 

B. PCA Dimensionality Reduction  
Dimensionality reduction techniques can be used to reduce 

the number of features in our dataset without losing accuracy 
and information so that its possible to preserve or improve the 
model performance.   

 
PCA is a dimensionality reduction approach that focuses on 

feature extraction. PCA can compress a dataset into a lower 

dimensional feature subspace with the principal goal of 
maintaining most of the relevant data [11][12].  Here we use 
PCA to determine which features are important for best 
describing the variance in the data set. 

 
Table III shows a summary of the results of PCA for the x86 

and Arm based systems.  Thirty five x86 counters were collected 
for the SPECTRE based attacks.  The top twelve principal 
components provide 90% variance on the data.  A similar 
number of Cortex-A72 counters were collected for the same 
attacks.  For Cortex-A72, the top ten principal components 
provide 90% variance on the data.  Our cumulative variance 
target was 90%. 

 
Principle 

Component 
Variance x86 Variance 

Arm A72 
1 0.33 0.35 
2 0.16 0.15 
3 0.11 0.11 
4 0.07 0.10 
5 0.05 0.05 
6 0.04 0.05 
7 0.03 0.04 
8 0.03 0.03 
9 0.03 0.02 
10 0.02 0.02 
11 0.02  
12 0.02  

Total 0.903 0.92 
 

In Fig. 4 shows the transformed counter data in the planar 
space of the top two principal components for x86 and Cortex-
A72.  The counter contribution to these principal components is 
highlighted with the red arrows representing the eigen vectors.  
Fig. 4 also shows the transformed counters data into the 3D 
space of the top three principal components and highlights the 
variance and separation of the data in the new sub-space. 

 

TABLE II. SVM PERFORMANCE ALL ATTACKS 
 

TABLE III. PCA RESULTS FOR X86 AND ARM CORTEX-A72 PERFORMANCE 
COUNTER DATA. PRINCIPLE COMPONENTS AND FEATURE CONTRIBUTIONS 
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Fig. 4 : 2D and 3D representation of the top two principal components with the 
contribution of each performance counter data for SPECTRE attack variant for 

a. x86 and b. Cortex-A72 

     PCA has shown that a subset of the event counters we chose 
can we reduced but still achieve at least 90% variance of the 
data.  But we still may have missed an important feature in our 
manual selection process.  In order to assess this, we use 
algorithmic techniques search for missing features to improve 
detection system performance.  

C. Feature selection optimization 
     While PCA attempts to reduce dimensionality by exploring 
how one feature of the data is expressed in terms of the other 
features (linear dependency), feature selection is a search 
technique for proposing new feature subsets, along with an 
evaluation measure which scores the different feature 
subsets.  This can reduce computational cost as potentially 
improve the performance of the model [13][14].  In our case 
this can also be used to adhere to the constraints on the 
hardware available for extracting event counters from the 
processor.  This is done by selecting a subset of core events that 
are most effective in prediction accuracy. 
 

We used the LASSO feature selection functions from the 
scikit library to determine feature importance.  LASSO (Least 
Absolute Shrinkage and Selection Operator) is a statistical 
formula with the main purpose of feature selection and 
regularization of the data model [15].  In our detector, the 
features (input variables to the model) are the core events.  
Choosing the right input variables improves the accuracy of our 
model.  The features selection phase of LASSO helps in the 
proper selection of these variables. 

The results of the feature selection for x86 and Arm are listed 
in and Table IV and Table V. 

 

 

TABLE IV: KEY X86 CORE EVENTS 

Event count   Event description 

r0248 Number of times a request needed a FB entry but 
there was no entry available for it 

r0480  Cycles where a code fetch is stalled due to L1 
instruction cache miss. 

r0CA3  Execution stalls while L1 cache miss demand load 
is outstanding 

r40D1  Retired load instructions which data sources were 
load missed L1 but hit FB due to preceding miss to 
the same cache line with data not ready 

r8889 Taken speculative and retired mis-predicted 
indirect branches with return mnemonic 

r0283  Instruction fetch tag lookups that miss in the 
instruction cache (L1I) 

r3824 Requests from the L1/L2/L3 hardware prefetchers 
or Load software prefetches that miss L2 cache 

r010D Core cycles the allocator was stalled due to 
recovery from earlier clear event  

r01C5 Mis-predicted conditional branch instructions 
retired 

r8189 Taken speculative and retired mis-predicted macro 
conditional branches 

rF824 Requests from L2 hardware prefetchers 
 

TABLE V: KEY A72 CORE EVENTS 

Event 
count 

Event description 

r7C Barrier speculatively executed - ISB 
r7D  Barrier speculatively executed - DSB 
r7E  Barrier speculatively executed - DMB 
r1B Operation speculatively executed 
r12 Predictable branch speculatively executed 
r4C  Level 1 data TLB refill - Read 
r75 Operation speculatively executed - VFP 
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We integrated the performance counter events in Tables IV and 
V into our detection system and did a comparison of the SVM 
performance results. Table VI shows detector performance for 
negative results (normal applications) comparing the same sets 
of event counters  discussed previously: 

• Row “6 event counters” - the baseline manual selection 
of event counters used in [6]. 

• Row “35 event counters” - all 35 relevant event counters 
used in detection, prior to feature selection. 

•  Row “11 principal components” - the key principal 
components accounting for 90% variation. 

• Row “11 features selection” – a reduced set of 11 event 
counters selected from the superset of 35 event counters  
using embedded approaches to feature selection, 
specifically Lasso and Gradient Boost feature selection 
methods from scikit 

• Row “5 features selection” - the top 5 event counters 
selected from the superset of 35 event counters using 
embedded approaches to feature selection, specifically 
Lasso and Gradient Boost feature selection methods 
from scikit 

  Similarly, Table VII shows SVM performance for positive 
results (attacks) comparing the same event counter (feature) 
options. 

 The comparison from Table VI and Table VII shows that the 
new list of event counters proposed in this study, based on 
principal component analysis and feature selection algorithms, 
provides significantly better results than [7] and with similar 
performance to the experiment with the larger number of 
counters. 

 
Features/ 

Negative results 
Preci
sion 

Recall F1 Score Support 

6 event counters from [6] 0.987 0.982 0.984 7381 
35 event counters 1.000 1.000 1.000 7347 

11 principal components 1.000 1.000 1.000 7353 
11 features selection 1.000 1.000 1.000 7393 
5 features selection 1.000 0.999 0.999 7291 

 
 

Features/ 
Negative results 

Precisi
on 

Recall F1 
Score 

Support 

6 event counters from [6] 0.978 0.983 0.981 5922 
35 event counters 1.000 1.000 1.000 5956 
11 principal comp 1.000 1.000 1.000 5950 

11 features selection 1.000 1.000 1.000 5910 
5 features selection 0.999 1.000 0.999 6012 

 

V. RECEIVER OPERATING CHARACTERISTIC 

    We diagnose the effectiveness of our detection system using 
a receiver operating characteristic (ROC) curve which plots the 
true positive rate (TPR) against the false positive rate (FPR) at 
various discrimination threshold settings [16][17].  We 

generated the ROC by re-combining and re-splitting the 
collected event counter data randomly.  

    The TPR defines how many correct positive results occur 
among all positive samples available during the test. FPR, on 
the other hand, defines how many incorrect positive results 
occur among all negative samples available during the test. 

True Positive Rate = Sensitivity = !"#$	&'()*)+$(
!"#$	&'()*)+$(,-./($	0$1.*)+$(

 
= Probability of detection 

 

False Positive Rate = (1 – Sensitivity) = 
-./($	&'()*)+$(

-./($	&'()*)+$(,!"#$	0$1.*)+$(
 = Probability of false alarm 

    Fig. 5 shows the ROC for the detection system.  Classifiers 
that produce curves closer to the top-left corner indicate a better 
performance. As a baseline, a random classifier is expected to 
give points lying along the diagonal where FPR = TPR.  The 
ROC in Fig. 5 indicates that our detection system is performing 
well. 

 
Fig. 5.   ROC for Detection System 

    The Area Under the Curve (AUC) aggregates the 
performance of the model at all threshold values and performs 
well as a general measure of predictive accuracy [18].  The best 
possible value of AUC is 1 which indicates a perfect classifier.  
The AUC for our detection system is 0.99. 

VII.  HYPERPARAMETER OPTIMIZATION 
    Hyperparameter optimization was used to assess additional 
performance improvements for our detection system [19][20]. 
We used a Grid Search algorithm available in scikit to spot 
check the data by defining a search space as a bounded domain 
of hyperparameter values and randomly sampling points in that 
domain.  
    The hyperparameter tuned SVM performed exactly the same 
as the default on the testing dataset. Table VIII shows a 
summary of the hyperparameter search. The "mean_test_score" 
and "std_test_score" are the portion of the training dataset that 
was used during cross-validation during training.  In total, 180 
models were tested.  The "mean" and "std" rows are the mean 
and standard deviation of all 180 models' performances. 

TABLE VI. SVM PERFORMANCE COMPARISON ON X86 – NEGATIVE RESULTS 

TABLE VII. SVM PERFORMANCE COMPARISON ON X86 – POSITIVE RESULTS 
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Likewise, min, max, and the percentages refer to quartiles. The 
min and max were the minimum and maximum values found 
from the models, and the percentages rows are the values of 
models found at the respective quartiles.  The hyper-tuned SVM 
has more false-negative predictions as shown in the confusion 
matrix Fig. 6.  As the amount of training data is increased, the 
hyper-tuned SVM records fewer false negatives. Additionally, 
as the amount of training data is increased, there are more false 
negatives the default-SVM records.   This difference is small, 
just 1-2 false negative values in total, since there were already 
very few false negatives to begin with.  The hyper-tuned SVM 
is less prone to overfitting as the size of input data increases, 
which we believe is related to the lower standard deviation of 
the training validation scores.  The hyper-tuned model 
parameters were found to have lower standard deviation on 
their testing scores than the default parameters.  
 

TABLE VIII: GRID SEARCH MEAN RESULTS 

METRIC MEAN TEST 
SCORE 

STD TEST 
SCORE 

Count 180 180 
Mean 0.949039 0.001029 
Std 0.113166 0.001531 
Min 0.551556 0.000000 
25% 0.970107 0.000066 
50% 0.987477 0.000337 
75% 0.999081 0.001228 
Max 0.999963 0.006937 

 

 
Fig. 6   Hyper-Tuned SVM Confusion Matrix 

VIII. GAUSSIAN NOISE ANALYSIS 

   We assess the robustness of our detection system using 
different level of “noisy” inputs and analyze the impact on 
the confusion matrix results.  We used the normal 
distribution function from the “NumPy” (numerical python)  
package to generate the median and the mean of the data 
[21]. 

   We repeatedly rerun the trained classifier using test data 
with offsets generated from a standard distribution with 
increased values of standard deviation with a mean of zero.  
The noise standard deviation values ranges from 1 to 70% 
of the test data standard deviation.  Fig. 7 plots the TP, TN, 
FP, and FN results over the standard deviation of noise 
percentage.  The results show the detection system behaving 

well in the presence of noise with a standard deviation up to 
35% of the original testing data. 

 

 
Fig.  7  Confusion Matrix results for gaussian noise with different standard 

deviations 

IX.CPU LOAD ANALYSIS 

    We analyze the robustness of our detection system to CPU 
load using CPU stress applications and CPU utilization limits.  
We use the “tasket” Linux tool to set the CPU affinity for the 
running attack process using its Process ID (pid) as well as the 
stress applications to specific cores used for jamming. In the 
first experiment the Linux scheduler assures CPU fairness and 
divides the cycles between the processes (33% to attack and 
33% to each of the two CPU stress applications).  We tested 
multiple CPU stress applications such as YouTube, a subset of 
the stress applications described in [7], and other custom 
applications.  In a second experiment we limited the CPU 
cycles when the attack process was running alone without stress 
using the “cpulimit” Linux tool which is used to limit the CPU 
usage of a process. 

    In both scenarios, no change in detection system 
performance was observed. The CPU load has no negative 
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impact on the detection system because we normalize the side 
channel counter information by the number of cycles. 

X.CONCLUSION 
We expand on a method for the detection of branch 

prediction and speculative side channel attacks using hardware 
performance counters and a support vector machine. The 
technique is based upon monitoring on-board, hardware event 
counters rather than characteristics of the targeted data. The 
technique requires a minimal amount of modification to an edge-
based computer system since it uses pre-existing event counters 
and supporting circuitry and associated system software assets 
with no additional hardware required.  Multiple variants of the 
attack were reproduced and detected concurrently including a 
standard SPECTRE variant, a micro-ops cache based variant, a 
Chrome browser variant and a Spook.js malware variant. 

A more robust method for selecting event counters was 
investigated and validated against the original SPECTRE attack.  
Feature selection algorithms were used to determine the 
optimum event counters to achieve maximum performance.  The 
performance of the new counter selections was compared 
against the original selection based on subject matter expert 
analysis and showed significantly better results. 

We measured the effectiveness of our detection system to 
distinguish between classes using ROC and AUC and 
determined that the detection system performs robustly. 

We assessed speed and quality of our detection system 
learning process using hyperparameter optimization and 
concluded that our detection system was optimized. 

  We assessed the robustness of the detection system by 
executing experiments with increasing amounts of application 
noise using a gaussian model with a scalable selection of random 
noise as well as experiments in varying the CPU loading of the 
stress applications and attack processes. 
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