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Arithmetic circuits play a very critical role in both general-purpose and 

application specific computational circuits. Multiple Valued Logic (MVL) provides the 

key benefit of a higher density per integrated circuit area compared to traditional two-

valued binary logic. Quaternary (Four-valued) logic also offers the benefit of easy 

interfacing to binary logic because radix 4 (=22) allows for the use of simple 

encoding/decoding circuits. The functional completeness is proven with a set of 

fundamental quaternary cells. The library of cells based on the Supplementary 

Symmetrical Logic Circuit Structure (SUSLOC) are designed, simulated, and used to 

build several quaternary fixed-point arithmetic circuits such as adders, multipliers. These 

SUSLOC circuit cells are validated using SPICE models and the arithmetic architectures 

are validated using System Verilog models for functional correctness. Quaternary (radix-

4) dual operand encoding principles are applied to optimize power and performance of 

squaring circuits using standard CMOS gates in 130nm and 90nm technologies. 
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This dissertation summarizes the study conducted to research the MVL circuits 

and feasibility of design and validation of quaternary arithmetic circuits using SUSLOC 

technology and also quaternary dual recoding squaring circuits using CMOS gates. The 

research indicates that the quaternary circuits do offer the benefit of lower power 

consumption compared to the traditional two-valued (binary) logic circuits.
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Chapter 1    

INTRODUCTION 

 

Integrated Circuit (IC) design has been evolving from ages of “Small scale 

integration” (SSI), which involves tens of transistors, to the present days of “Very Large 

Scale Integration” (VLSI), that involves millions of transistors on a single-chip. Several 

different circuit technologies have been used in this journey of IC design evolvement. 

Metal Oxide Semiconductor (MOS) technology offered several key benefits along with 

an easy fabrication of basic transistor switch and allowed the scaling (sizing down the 

size of transistor) resulting in IC size reduction periodically. Complementary Metal 

Oxide Semiconductor (CMOS) technology brought the low power consumption 

advantage which revolutionized semiconductor design applications. While Analog 

designs heavily rely on continuous signal response of transistors, digital designs rely on 

discrete logic levels of the signals. The introduction microprocessor designs along with 

their surrounding applications significantly increased the realization of complex real 

world applications using digital ICs for the past couple of decades. Two-level logic 

namely “binary logic” is the decoding method used heavily. Binary logic essentially 

involves only two logic levels: 0 and 1. Another advance in the logic decoding is the use 

of multiple levels namely more than two discrete levels representing the signals. 
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Multiple-Valued Logic (MVL) circuits offer several potential opportunities for 

improvement of present VLSI circuit designs [D99]. 

 

Figure 1: LSI to MSI to VLSI migration 

Fixed point adder and multiplier circuits are fundamental building blocks of 

practically every algorithm ranging from simple arithmetic to graphics and signal 

processing applications. Increased data density, reduced dynamic power dissipation, and 

increased computational ability are among some of the key benefits of Multiple-Valued 

Logic (MVL) [MT08, H84, K90].  

1.1. MVL 

     As elaborated in [MT08], Multiple-Valued Logic (MVL) is a discipline of 

discrete p-valued systems where p>2, or in other words, non-binary valued systems. In 

general sense, both binary-valued and discrete-valued variables with an infinite number 

of values can be considered as MVL systems. Hence forth in this report MVL shall be 

referred to as the system to utilize variables that can take on a discrete set of values with 

cardinality of three or more. MVL principles and methods are general and independent 

from the actual underlying implementation of the circuits. MVL has several applications 

in the modern IC design methods and Electronic Design Automation (EDA) tools. MVL 
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has long history of use in EDA-CAD tools and Hardware Description Languages (HDL) 

for digital circuit simulation and synthesis. While several MVL applications are detailed 

in [MT08], specifically, MVL circuit design applications are focused in the context of 

this report. Figure 2 illustrates the example logic levels for binary (radix-2), ternary 

(radix-3) and quaternary (radix-4) valued circuits. 

 

Figure 2: a) Two valued b) Three valued and c) Four valued 

Higher radix allows representing more functions compared to smaller radix. The 

generic formula for number of "n" variable functions that can be represented using radix 

"r" is . Figure 3 depicts the number of 1-variable (n=1) functions possible for each 

radix starting from two. Increased number of functions is what makes the MVL circuits 

offer higher logic density compared to binary circuits. 

 

Figure 3: No. of 1-Variable Functions of Radix r 
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1.2. SUSLOC Technology 

Several implementation methods have been proposed in the recent past to realize 

the MVL circuits. The MVL circuits can fundamentally be categorized as: Current-mode, 

Voltage-mode and Mixed-mode circuits. Current-mode circuits [B91,CC95] have been 

popular and offer several benefits. But, their power consumption is high when compared 

to Voltage-mode circuits due to their inherent nature of constant current flow during the 

functional operation. 

Alternatively, Voltage-mode circuits consume a large majority of power only 

during the logic level switching plus any additional leakage currents that may be present. 

Hence, Voltage-mode circuits do offer lesser power consumption which has been the key 

benefit of traditional CMOS binary logic circuits from the perspective of dynamic 

switching activity. Lower power consumption has been the key benefit of traditional 

CMOS binary logic circuits for several technology nodes.  Because of increased 

proliferation of portable battery powered personal computation devices, reduced power 

dissipation is an important design constraint and motivates us to explore Voltage-mode 

multiple-valued circuits. As indicated before, MVL technology primarily refers to circuit 

technologies where more than two logic levels are used to represent signal levels design 

larger circuits. There were several MVL architectures proposed and circuits designed 

using the ternary (three levels), quaternary (four levels) penternary (five levels). Several 

approaches for MVL circuit design have been proposed [CC95, B91, C+02, EI88, KK88, 

S88, I98]. Recently, a self-sustaining and consistent circuit architecture called the 

Supplementary Symmetrical Logic Circuit (referred as SUSLOC) structure is proposed 

and patented [O00, OC00]. This proposed circuit architecture also allows the use of 
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readily available circuit elements to construct logic circuits based on any radix number 

system. Previous work has utilized SUSLOC technology for ternary systems [OC00, 

AS+03, OC01].  

As described in [O00, DT+09], three requirements must be met by the circuit 

structure to design and fabricate quaternary MVL circuits using SUSLOC: 

1) there must be three different sources of power available, with each source of power 

representing one of three different logic levels with the ground plane representing 

the fourth level 

2) there must be one controllable path, or branch, from a source of power to an output 

terminal of the circuit per output logic level and 

3) only one controllable path, or branch, conducts from a source of power to an 

output terminal per input logic level, contiguous group of input logic levels, or a 

unique combination of input logic levels. 

 

 

Figure 4:  FETs used for SUSLOC Structure 
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Due to their low cost and high reliability, Insulated Gate Field Effect Transistors, 

(IGFETs, FETs) were chosen in the implementation of ternary logic as described in 

[OC00, AS+03, OC01]. For similar reasons, the same types of transistors are used for the 

work described here.  Figure 4 depicts the symbols used for the four FETs that are used 

for the quaternary gate implementations. This need creates the requirement of the ability 

to vary doping levels to obtain the different VT values to create different types of 

transistors.  These four types of transistors with different threshold voltage selections can 

be used in designing SUSLOC circuits based on any radix [O00] 

P-channel enhancement mode transistor shown in Figure 4 has a gate threshold 

voltage, VGS on of –V. The term VGS on indicates the relative gate threshold voltage at 

which the P-channel enhancement mode transistor turns ON. The relative voltages are 

the gate input voltage and the source voltage. If the gate input voltage differs from the 

source voltage by at least the gate threshold voltage VGSon of –V, the P-channel 

enhancement mode transistor is ON and the source voltage will be conducted to the 

drain. Similarly, N-channel enhancement mode transistor has VGS on of +V.  

Whereas, P-channel depletion mode transistor has a relative gate threshold voltage, 

VGS off of +V. If the gate input voltage differs from the source voltage by at least +V, the 

P-channel depletion mode transistor is off and no conduction will occur between the 

source and the drain. Otherwise, the transistor is on and conducts the voltage from source 

to drain. On the other hand, N-channel depletion mode transistor has got the threshold 

voltage VGS off of -V. 

The maximum and minimum power supply voltages (the output voltages) for 

SUSLOC circuits are determined by the output requirements of the circuit and/or the 
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specifications of the switches being employed. The threshold voltages, VGS(TH), of P-

channel FETs selected or fabricated to be a percentage of a logic level above the highest 

input logic level to which they are to conduct. The threshold voltages, VGS(TH), of N-

channel FETs are selected or fabricated to be a percentage of a logic level below the 

highest input logic level to which they are to conduct. The suggested percentage of each 

should be in the range of 50% to 75% of the logic step voltage (LSV) such that an 

overlap of on branches is obtained when the circuit is switching from one output logic 

level to another. This percentage is called the “overlap percentage” (OP) and should be 

the same for all switches used in digital applications. Analog applications may require 

that the VGS(TH) and/or OP and/or the LSV be variable. 

When developing a logic function or logic synthesizing a circuit, it is necessary to 

calculate the appropriate or required threshold voltages for each of the FETs. In order to 

calculate the VGS(TH) for a particular FET, the appropriate equation is selected according 

equation is selected according to the FETs channel type from the following two 

equations: 

P-channel: VGS(TH) = Vi – (Vo – (OP*LSV))   and 

N-channel: VGS(TH) = Vi – (Vo + (OP*LSV)) 

Where: 

Vi is the input logic level voltage limit (upper or lower as appropriate) to which 

the branch responds; 

Vo is the output logic level voltage; 

LSV is the logic step voltage; and 

OP is the selected overlap percentage preferably in the range of 55% to 75%. 
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The noise immunity of a SUSLOC circuit ranges from approximately 45% of a 

logic level to several logic levels due to the logic level domains, tolerances of the 

switches and power supplies, the high impedance of FETs, and the overlap percentage. 

The output of some functions change one logic level with an input change of two or more 

logic levels, hence the noise immunity in SUSLOC can range several logic levels. 

1.3. Quaternary Logic 

Quaternary logic system is a four valued (radix-4) logic meaning that there are 

four possible values for each digit. 

1.3.1. Radix Selection 

Several factors have influence in deciding the best radix usable. Obviously, in 

theory, higher radix would be best to represent as many numbers as possible. But, in 

practice, the limits of usability and availability of suitable devices limits the usability of 

higher radix based MVL circuits. Following three factors capture the tradeoffs in 

choosing appropriate radix. 

Area : Increased data density of multiple valued logic circuits does help, in 

principle, to reduce the area when compared to equivalent binary circuits [MT08]. Each 

of the circuits stores more information per bit. The net result is that the large amount of 

data sets can be combined and implemented in lesser area. However, at smaller circuits, 

the additional overhead of “supplementary” logic in the proposed SUSLOC circuit 

structures does increase the area when compared to their equivalent binary gates. This is 

depicted in the Figure 5. 



 9      

 

Figure 5: Area Impact of Higher Radix 

So, the area advantages can only be seen in larger circuits. The logic duplication 

due to binary logic spread is avoided in MVL circuits. Also higher radices would allow 

the increased number of functions that can be implemented, making it easier for larger 

and more complex functions implementation. 

Another important advantage is the reduction of signal connections/wires. The 

reduced wires would reduce the size of the chip and also improve the routability of the 

design. One of the critical challenges in the Deep Sub-Micron technologies is the routing 

congestion and also the printability (fabrication) of close proximity of the wires. The 

limitations of the existing fabrication equipment would create several manufacturing 

defects like shorting of the wires, open of the wires etc. creating lot of part defects and 

yield loss. So, reducing the number of wires would significantly improve the device 

manufacturability and area improvement. 
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One key metric to consider for any MVL circuits though is the interface logic to 

the traditional binary circuits. The interface to and from binary logic to the MVL logic 

does need to have the level conversion to allow successful integration. Circuits namely 

“radix converters” help to address the cross-region interface needs. The radix conversion 

is relatively easy for radices which are power of two. (example, radix-2 (binary), radix-4 

(quaternary) and radix-8, radix-16 etc.) The radix conversion process gets complex and 

requires more careful handling for other radices like radix-3, radix-5, radix-6, radix-7, 

radix-9 etc.  

 

 

Figure 6: Area Impact due to Radix Conversion 

So, in terms of area, the higher the radix, the better it is. Higher radix (like 5 and 

above) would improve the area. But the radices that are not power of two tend to need 

more complicated interface logic than for the radices which are power of two. 

 

Signal-to-noise ratio: Multiple voltage values are used to represent various logic 

levels used in MVL circuits. Increased radix would mean increased number of logic 

levels. Each logic level shall have a dedicated voltage source. And the most important 

issue is how to have a sufficient signal-to-noise ratio that guarantees the circuit operation 
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in the presence of noise. Noise in the signals can be caused by several factors in the 

circuits like power supply noise, cross coupling noise etc. 

 Due to advances in the Deep-Sub Micron (DSM) technologies, the nominal 

operation voltage of circuits is scaling downwards to 1.0V-1.2V range. If MVL circuits 

are to be implemented at these technologies, the voltage step value significantly comes 

down to the range of 300mV to 400mV for quaternary logic. The concept is illustrated in 

Figure 7 which shows the simulation output of the quaternary inverter. Here the voltage 

step value is 1.1V. We can readily see that reducing the step value to 300-400mV would 

leave very small SNR margin to clearly distinguish various logic levels in the circuit.  

 

 

Figure 7: Impact on Signal-to-Noise Ratio 
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The reduced voltage step eliminates the available signal-to-noise margin. The 

signal transitions are to be well constrained to limit the potential voltage swings during 

the logic level switching. The inability to handle the noise would restrict the use of MVL 

technology. So, this poses serious threat to the higher radix circuits. 

 

Cost due to need for several threshold values: Each logic level adds the 

complexity of creating new threshold values for the transistors to be able to switch 

effectively between the logic levels. The increased number of threshold voltages would 

increase the cost of the fabrication due to additional implementation steps. Also 

increased manufacturing variations in the deep submicron technologies would increase 

the variations of the threshold voltages. The multiple valued circuits implemented with 

FETs are very sensitive to the variations in the threshold voltages. Any changes in Vth 

values could directly overlap the close-by logic levels causing catastrophic device 

failures. This poses the threat of yield reduction which again increases the cost of 

products. So, effectively, higher the radix, the costlier it is to manufacture the devices. 

 

Performance: Performance of multiple valued circuits gets better with the 

increased radix. But, again, larger the radix, the more complicated the timing analysis 

would get because we need to account for several design margins for various physical 

and electrical effects. Some examples of the effects are the increase in crosstalk glitches 

at DSM technologies as we had shown in [DS+03] and [D04]. But, primarily, the 

increase in radix would achieve better performance with some caveats of increased 

complexities in the actual timing closure. 
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Power consumption : Power primarily consists of three parts : Dynamic power, 

Active leakage power and Standby leakage power. The Figure 8 illustrates the three 

powers in the context of standard CMOS inverter circuit. 

 

 

Figure 8: CMOS Inverter 

The Dynamic power is also referred to as the Switching power. Typically, this 

power is dominant of total power consisting of 70-75% of the total power. The Active 

leakage being the next higher component, generally consisting of 15-20% range. The 

remaining 5-10% power is the leakage power. 
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                a)  CMOS inverter                      b) Quaternary Radix-4 inverter 

Figure 9: Inverter Comparison : Radix-2 vs Radix-4            

The comparison of power can be done using the Quaternary inverter case. As can 

be seen from the Figure 9, Radix-4 circuit (SUSLOC) requires additional two transistors 

for each logic level. Each additional transistor introduces the additional input 

capacitance. However, for correct comparison, each SUSLOC inverter is equivalent of 

two CMOS binary inverters.  

So, assuming that each transistor’s input capacitance is approximated as C, the 

total capacitance for SUSLOC inverter gate is = 6C 

Whereas, the total capacitance for two CMOS inverters is = 2*2C=4C 

Now, consider the case of logic switch from 0 to 1 in CMOS inverter case. The 

voltage supplies are 0V and 3.3V. Assuming the frequency of operation is f and a 

switching factor of 0.5, the total switching power of the transition from 0 to 1 is  

CV2f = (4C)*(3.3)2*f *0.5 = 21.78*C*f 
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For the case of quaternary SUSLOC, the equivalent transition is from 0 to 1.1V to 

2.2V to 3.3V. The average switching voltage in any given cycle is 1.83V. The average 

toggle factor is 0.75 because there are total 12 switching cases in the total 16 possible 

transition states of quaternary gates. The switching power for each of the transition is  

CV2f = (6C)(1.83)2*f*0.75 = 15.07*C*f  

This shows that the Radix-4(SUSLOC) circuits have switching power 

consumption savings of over 30% when compared to equivalent CMOS binary circuits. 

However, the requirement of larger number of transistors in the quaternary circuits 

would tend to increase the leakage power for the radix-4 case due to excessive standby 

leakage. But, because switching power is the dominant portion, the radix-4 circuits’ fare 

well compared to binary circuits when total power is measured. The previously described 

factors estimated for a 16-bit adder circuit reference and are depicted in Figure 10. 

 

Figure 10: Cost vs. Benefit Comparison of Various Radices 
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For all the factors, radix-2 (binary) is chosen as a reference. As can be seen from 

this estimation, radices above 4 would have exponential cost increase due to the cost 

factors discussed before. While the benefits of area and performance keep getting better, 

exponential cost would prohibit the usage of higher radix MVL circuits with existing 

components and existing technology. May be the new and evolving technologies like 

Quantum devices would allow higher radix MVL circuits to be implemented with lesser 

cost when compared with radix-2 circuits. Also, Brain H. reported in [H01] as shown in 

the Figure 11 that overall benefits would start deteriorating for higher radices. 

 

 

Figure 11: Selection of Radix 

Also, radix-4 is a power of two allowing for efficient interfacing with binary 

circuits and because the Voltage-mode operation offers reduced power dissipation 

characteristics as compared to Current-mode technologies.  

Radix-4 (quaternary) is chosen as the radix for this work. The quaternary 

arithmetic circuits are implemented by extending the basic SUSLOC structures as 
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described in [O00] with the addition of four literal-selection one-place logic gates. The 

logic gates designed are functionally complete set in the sense that any arbitrary 

quaternary switching function can be realized using them. Several different addition 

circuits (ripple-carry, carry-look ahead, and carry-select) and multiplier circuits (serial 

and parallel) are designed and simulated. The area, power, and estimated performance 

are analyzed both among themselves and with equivalent binary versions. 

For the quaternary circuit implementation, the voltage step value chosen as 1.1V. 

The threshold voltage values for each transistor calculated according to the following 

formula obtained from [O00]: 

 

Where Vi is input voltage level, Vo is output voltage level, OP is overlap percentage 

and LSV is logic step voltage. Table 1 lists the voltage sources used for various logic 

levels in the construction of the quaternary gates. 

Table 1:  Quaternary Voltage Sources 

Logic level/Supply Voltage Value (V) 
0/GND 0 
1/V1 1.1 
2/V2 2.2 
3/V3 3.3 

 

1.4. Quaternary (radix-4) Recoding Based Binary Squaring Circuits 

Squaring circuits are widely used in several applications such as signal 

processing, graphics and other arithmetic intensive operations. In several applications, 

existing multiplier circuits are used to perform squaring operation as well. But, a 
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dedicated squaring circuit would enable optimized area and power when there is 

extensive usage of squaring operations. Several squaring circuit approaches were 

proposed previously [C71, D85]. Recent proposal in [M09] takes the advantage of 

symmetry in squaring operation and applies the dual operand radix-4 recoding to 

optimize the power and performance of the squaring circuits. 

We have conducted research on squaring methods and implemented the proposed 

quaternary (radix-4) dual operand recoding squaring method [DTM09]. The synthesis 

experiments were conducted using the 90nm and 130nm technologies. The results 

indicate that quaternary recoded squaring circuits do yield lower power and higher 

performance when compared to equivalent regular binary multiplier circuits.  

1.5. Validation of Quaternary Circuits 

The methodology used is to design the quaternary cells at the transistor level and 

using SPICE simulations to characterize their behavior.  The quaternary cells are then 

used to manually construct the addition and multiplier circuit architectures.  The 

architectures are functionally simulated using the System Verilog language that allows 

for efficient modeling capabilities for the description and simulation of large MVL 

circuits [AG+07]. Analysis of resulting circuits is performed using commercially 

available Synopsys tools. The equivalent two-valued (binary) logic circuits are coded in 

Verilog HDL and synthesized using Synopsys design compiler for benchmarking. Area 

(number of transistors), Switching power and logic depth (number of stages in timing 

critical path) are used as metrics for comparison of quaternary circuits with their binary 

counterparts. 
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1.6. Notations used for Quaternary Algebra 

The quaternary logic circuits used in this work are modeled by a four-valued 

switching algebra over variables that may take on the values {0,1,2,3}.  The notations for 

the different operators used in the quaternary equations in this report are defined in Table 

2.  The notation also includes the explicit specification of state values used. 

 

Table 2: Quaternary Operator Definitions 

Operator Definition 
 Quaternary MIN 
 Quaternary MAX 

{} 
Indicates logic literal values of 
the corresponding quaternary 
variable 

 

The decisive literal of a quaternary variable, x, is denoted by x{0}, x{1}, x{2}, or x{3} 

[E93] where x{a}=3 when x=a, otherwise x{a}=0. There are many possible algebraic 

operators for this logic system: 256 one-place operators and in excess of four billion two-

place operators.  The small subset of operators used in this work corresponds to 

relatively easily implemented SUSLOC circuits.  We use five different one-place 

operators; the quaternary inverter denoted as  where , and the four decisive 

literal functions, x{a}, described previously.  In terms of two-place operators, the MIN and 

MAX functions are utilized as defined in [P21].  The MIN function is denoted as x·y 

where x·y=x if x<y, otherwise x·y=y. When two literals or terms appear next to one 

another, the MIN operator, ·, is implied to be present. The MAX function is denoted by 

x+y where x+y=x if x>y else x+y=y. 
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1.7. Comparison to Current Methods 

Several approaches to MVL circuit design have been proposed in the past as 

indicated in [S88, S93, KK+87, C90]. Recently, there have been several implementation 

techniques proposed for Current-mode MVL circuits. Initial Current-mode multiple 

valued logic circuits using I2L or CMOS have been proposed [DM+77, KK+88] but 

suffer from the current mirror errors and threshold detector errors. Various authors have 

worked on the realization of different types of circuits using Pass Transistor Logic. In 

[I86] the authors proposed pass transistor networks with threshold voltage. Such circuits 

are very much suitable for multiple-valued logic. 

The realization of multiple-valued flip-flops (MVFF) also has been studied by 

different authors [ZW90, AH75]. In [EI74] the authors pointed out different approaches 

of realization of MVFFs. In [BZ+04] MVFF using Pass Transistor Logic has been 

proposed and reported increase performance when compared with traditional CMOS 

circuits. System design methodologies and Circuit design methodologies both were 

discussed in [S93]. Both Decoder-Logic-Encoder (DLE) and Theta (θ) based circuit 

design methodologies were discussed. As highlighted in [S93], standard CMOS based 

Current-mode MVL circuits can be slower compared to their binary counterparts. 

The adiabatic design methods for MVL circuits are proposed in [CO+96]. But, 

the limiting factor of the proposed low-energy logic schemes is the problem of efficiently 

generating and distributing the multiple phase power clocks. The scalability of the same 

principles to larger circuits would be the main challenge. Recently, there has been an 

increased interest and research of emerging technologies such as quantum circuits and 

reversible circuits and application of the quantum principles to the MVL circuit design 
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[MT08, QC04, CS+89]. While these technologies provide promising advantages, they 

are still relatively in early stages of large circuit design and adoption into mainstream 

applications. However, quantum ternary logic has the limitation that conventional binary 

logic functions cannot be very easily represented using the ternary base and the 

developed methods are applicable only for logic functions expressed in ternary base. A 

very promising alternative is quaternary logic, using which, besides quaternary logic 

functions, binary logic functions can be expressed by grouping 2-bits together into 

quaternary values. 

Etiemble nicely summarized in [E92] the comparison of development of MVL 

circuits to that of binary circuits. While the argument centers around Current-mode 

circuits, most of the conclusions can be attributed to Voltage-mode MVL circuits as well. 

The main conclusion in this work [E92] suggests that MVL circuits do need to offer 

benefits in the front of interconnect optimization and also in performance and power 

improvements in order for them to be widely used. Also, one of the main suggestions of 

Etiemble is to compare the performance in terms of number of logic levels within the 

same technology. Both of these suggestions are adopted for our work. 

There has been increased interest in quaternary circuits due to their unique 

advantage of ease of interfacing to binary circuits. Mangin et. al [MC86] demonstrated 

the fabricated quaternary encoder and decoder circuits on a gate-array integrated circuit. 

Shanbhag et. al [SN+90] fabricated additional quaternary circuits such as quaternary 

registers using the 2-um CMOS technology. Recently, Shirahama et. al [SH08] proposed 

quaternary adders based on output generator sharing for improving performance of both 

Current-mode and Voltage-mode circuits, and highlighted the observation that Voltage-
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mode circuits do consume low-power when compared to their  

Current-mode counterparts. The voltage swings of 0.4V in the proposed approach are 

very tiny which pose the threat of signal noise margin and hence are not easily 

extendable to larger circuit implementations. Design and verification of quaternary 

adders in Field Programmable Gate Arrays (FPGA) are demonstrated in [DW08].  

Results presented indicate that the quaternary signed digit (QSD) adders do provide 

improved performance compared with ripple carry based adders.  But, it is also 

concluded that the area complexity of QSD adders grows along with size of the operands 

and is more than the other types of adders. Hence, the proposed QSD adders do suffer 

from higher power consumption. 

Recently, an approach structurally similar to that of a static-CMOS binary circuit, 

called the Supplementary Symmetrical Logic Circuit structure (SUSLOC), was proposed 

and patented [O00, OC00, OC01]. SUSLOC MVL circuits theoretically offer a stable 

circuit implementation structure for any integer radix, and also allow the use of readily 

available circuit elements to construct logic circuits. Previous work has utilized SUSLOC 

technology for ternary systems [OC01, KA+03].  Insulated gate Field Effect Transistors 

(FET) are used as the basic building blocks for SUSLOC circuits. 

We tried to address the key concern of modern circuit design: Power. We have 

chosen Voltage-mode to effectively address the power challenge. At the same time, we 

wanted to implement the circuits using the readily available CMOS technologies for 

more immediate applications. We have adopted the proven SUSLOC technology which 

was successfully demonstrated the manufacturability of ternary circuits using the 

standard CMOS process technology. We, however, adopted the quaternary as our radix 
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for the ease of interface with the binary logic to allow mixing of the design circuits with 

the normal binary circuits. With these, we believe we take the advantage of benefits of 

MVL circuits and still come up with readily usable and most importantly, lower power, 

arithmetic circuits. We also applied the quaternary principles into squaring circuits and 

realized low power and high performance squaring circuits. 

1.8. Organization of the Dissertation 

This dissertation report is organized into several chapters. Following are the 

details about the subsequent chapters.   

Quaternary Switching Functions: The background details about topics in 

quaternary switching theory and the functionally completeness proof are elaborated in 

this chapter. 

Quaternary Library Circuits: Details about the implementation of set of 

preliminary quaternary circuits is provided in this chapter.  Transistor level 

implementation details of functionally complete quaternary gates and their SPICE circuit 

simulation results are detailed.  The preliminary set is extended to other gates like 

quaternary sequential cell and 4-to-1 quaternary multiplexer cell as described in this 

chapter. 

Quaternary Arithmetic Circuit Architectures: This chapter starts with details of 

quaternary half adder and full adder circuits. The quaternary arithmetic circuit 

implementation is then extended to higher levels of arithmetic circuits. Different adder 

architectures are implemented using the preliminary quaternary gate set. Two varieties of 

multiplication circuit schemes namely serial and parallel are researched upon whose 

details are provided as well in this chapter. 



 24      

Approximate Squaring Circuit: The details on the work to implement 

approximate squaring circuits utilizing the radix-4 (quaternary) dual recoding are 

provided in this chapter.  

Quaternary Circuits Modeling and Validation: This chapter elaborates on the 

proposed validation techniques for quaternary circuits using the System Verilog. Details 

of System Verilog offerings with which quaternary circuit modeling is attained are 

included in this chapter.  

Results: Quaternary circuits are benchmarked against the equivalent binary 

circuits.  Area, timing and power are analyzed for quaternary circuits and are compared 

with the binary circuits. The benchmarking comparisons for approximate squaring 

circuits are included as well.  

Conclusions and Future Challenges: The final conclusions on the research work 

on quaternary circuits, their implementation and validation methods are summarized in 

this chapter. The remaining challenges for successful quaternary circuits’ wider adoption 

are summarized as well in this chapter. 
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Chapter 2    

QUATERNARY SWITCHING FUNCTIONS 

 

A necessary requirement for the practical use of SUSLOC quaternary logic for 

circuit design is the identification of a set of primitive logic gates that allows any 

arbitrary switching function to be realized.  Furthermore, each logic gate should be easy 

to implement and efficient in SUSLOC technology.  A representation of a quaternary 

switching function that is analogous (but not identical) to the binary sum-of-minterms 

representation can be formulated using the MAX function in place of the binary 

inclusive-OR function, and product terms may be formed using the MIN function in 

place of the binary AND operation.  The truth tables for two-variable MAX and MIN 

functions are given in Figure 12. 

 

Figure 12:  Truth table of Two-input MAX and MIN Functions 
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To show that the collection of operators over the quaternary-valued logic defined 

previously is sufficient to specify all possible switching functions, some definitions are 

provided [MW86]. 

 

Definition 1: A specific product selection term is denoted by JPi where the integer 

index Pi denotes the particular product selection term for which JPi is non-zero.  Pi is the 

numeric value (in the decimal system) given by the digit string k1k2… kn where ki∈{0, 1, 

2, 3} and is in the range [0,4n].                                                                          

 

As an example, consider the case for n=4, then J35=x1
{0}x2

{2}x3
{0}x4

{3} since 

0×43+2×42+0×41+3×40=35. 

 

                                             (1) 

 

Definition 2: A minterm of a quaternary switching function is formed by 

combining the Pi
th logic value in the truth table with the JPi product selection term using 

the MIN operation.                                                                                    

 

Definition 3: A sum-of-minterms (SOM) form of a quaternary function is a form 

consisting of all minterms combined with a MAX operator.                                       
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As an example, consider a quaternary switching function of n variables, f, where 

each function range value corresponding to the Pi
th product term in the truth table is 

denoted as fPi.  The function f can be expressed in SOM form, fSOM, as shown in Equation 

(2). 

 

                                       (2) 

 

Lemma 1: The SOM form of a quaternary function is a canonical representation. 

 

Proof: The truth table for a switching function consists of rows with all possible 

variable assignments and their corresponding function range values.  For a completely 

specified quaternary switching function of n variables, the corresponding truth table 

representation contains 4n rows.  The truth table representation can be expressed as a 

column vector of function range values with each vector component in a well-defined 

order corresponding to the particular assignment of domain variables, the Pi
th term, 

denoted as F.  Any permutation of the vector component values or any change in one or 

more of the vector component values yields a vector (or corresponding truth table) that 

represents a different switching function. Thus, every switching function has a unique 

vector representation.  Because each product selection term is non-zero for one and only 

one product assignment, Equation (2) can be formed as the inner product of a row vector 

whose components are all unique selection product terms (denoted as JP) and F as fSOM= 

JP ⋅F.  Since each F vector is unique for a given switching function and since Equation 

(2) can be formed using F, the proof is complete.                                          
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Theorem 1: The collection of quaternary logic operators consisting of the two-

place MIN and MAX functions, the four decisive literal functions {x{0}, x{1}, x{2}, x{3}}, 

and the constants {0, 1, 2, 3} form a functionally complete set over all possible 

quaternary-valued switching functions. 

Proof: Consider an arbitrary quaternary switching function of n variables of the 

form f:{0, 1, 2, 3}n→{0, 1, 2, 3}.  For a completely specified function, f, the range values 

associated with the Pi
th minterms are constants from the set {0,1,2,3} denoted by fPi. 

Clearly, Equation (2) is a general representation of any arbitrary quaternary switching 

function since the constants denoted by fPi can represent any assignment from {0, 1, 2, 

3}.  From Lemma 1, Equation (2) is also proven to be canonic. Therefore, any 

completely specified function could be represented in the form of Equation (2), which is 

based only on the quaternary MIN, MAX, decisive literal functions,and the set of 

constants {0, 1, 2, 3}.                                                                                                          
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Chapter 3    

QUATERNARY LIBRARY CIRCUITS 

 

We are interested in elementary quaternary circuits that have sufficient 

representative capability to efficiently implement quaternary arithmetic circuits.  We 

extended the SUSLOC implementation principles from [O00] to design a basic set of 

quaternary circuits to form a library of circuits. This set of gates is designed using 

existing CMOS FET components and does not require any special technologies or 

materials to fabricate them [O00,O99].  Subsequent sections in this chapter provide 

implementation details for these circuit library elements and their corresponding SPICE 

simulation results. 

3.1. Quaternary One-variable Circuits  

In general, for a single variable function in radix r, r possible output values are 

available for each of the r possible input values [S88]. Accordingly, there are rr such 

one-variable functions. Therefore, there are a total of 44(=256) possible unary functions 

possible in quaternary logic, which means that there is considerable room for choice 

when selecting a subset of quaternary one-place logic cells for implementation. A total of 

four out of 256 functions have constant output values. The remaining 252 functions 

produce non-constant output logic value combinations for different logic values at the 

input.  
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For the purpose of this work, five of the 252 functions are selected for circuit 

implementation. These are : 

• r-x-1 inversion circuit 
• J0 literal selection circuit 
• J1 literal selection circuit 
• J2 literal selection circuit 
• J3 literal selection circuit 

 

3.1.1. The r-x-1 Inversion Circuit 

A quaternary circuit that performs the r-x-1 inversion operation is shown in 

Figure 13. The r-x-1 circuit is also referred to as a “diametrical negation” or “inversion” 

function.  

 

Figure 13: Quaternary r-x-1 Inversion Circuit, Truth Table & SPICE Sim Result 
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The four-valued variable for which the reference input string is (0,1,2,3) causes 

the r-x-1 circuit to produce output string (3,2,1,0). This circuit is useful in constructing 

the quaternary MAX and MIN functions and several larger quaternary circuits. 

The operation of quaternary inversion circuit is described here. The logic state 

“0” at the IN input produces the required bias to turn the F5 transistor ON. The output 

pin OUT is then driven by supply V3, which forces logic state “3” at the OUT pin. On the 

other hand, logic states “1” and “2” trigger the required bias to turn ON the transistor 

pairs F3-F4 and F1-F2 respectively.  The output pin OUT is driven by the V2 and V1 

supplies to respectively force logic states “2” and “1” at the OUT pin. Finally, the 

voltage value of state “3” at the IN pin forces the required bias to F0 transistor to turn 

ON. This condition forces the OUT pin to be shorted to Ground which means state “0”. 

The depicted circuit is simulated using SPICE models for the transistors. The waveforms 

shown in the Figure 13 confirm the circuit’s correct functionality. 

3.1.2. Quaternary J0 and J3 Circuits 

The quaternary one-place literal selection functions J0 and J3, and their circuit 

implementations are discussed in this section. The two circuits and their simulated 

behavior are depicted in Figure 14. 
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Figure 14: (a) Quaternary J0  (b) Quaternary J3 Functions & SPICE Sim Results 
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The quaternary circuit J0 is very similar to a standard binary CMOS inverter 

circuit. The threshold voltages of both the P-FET and N-FET are chosen to produce the 

quaternary J0 function. The J3 circuit is constructed simply by connecting two back-to-

back J0 circuits. The threshold voltages of the transistors in this circuit are selected to 

ensure that the circuit exhibited the required J3 behavior.  

3.1.3. Quaternary J1 and J2 Circuits 

This section discusses the remaining two quaternary one-place literal selection 

functions, J1 and J2, along with their circuit implementations. The circuits and their 

simulated behaviors are shown in Figure 16 and Figure 16. 

 

 

Figure 15: Quaternary J1 Function & SPICE Sim Result 
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Figure 16: Quaternary J2 Function & SPICE Sim Result 

The quaternary circuit implementations for functions J1 and J2 are the same, 

except for the fact that different threshold voltage values are used for the individual 

transistors. In the case of the J1 circuit, transistor F4 is turned ON only when the logic 

state at the IN input is between states “1” and “2”. This forces supply V3 to drive the 

OUT pin to logic state “3”.  Alternatively, in the case of the J2 circuit, the logic state at 

the IN input has to be between states “2” and “3” to enforce the same behavior. 
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3.2. Quaternary Two or More Input Circuits 

The previous sections discussed the implementation of the one-place quaternary 

circuit cells.  In order to complete the cell library, additional circuits must be included 

that have two or more inputs.  There are a significantly large number of possible two-

variable (416) and three-variable (464) functions to consider. We selected a small number 

of useful two-variable and three-variable quaternary functions to be part of the 

quaternary circuit library.  Two other important circuit elements, the quaternary flip-flop 

circuit and the 4-to-1 quaternary multiplexer circuit are also implemented. The following 

is the list of the multiple-variable quaternary circuits implemented: 

• Two-input MAX-inversion and MAX circuits 
• Two-input MIN-inversion and MIN circuits 
• Three-input MIN-inversion and MIN circuit 
• D Flip-flop circuit 
• 4-to-1 multiplexer circuit 
 

3.2.1. Two-input MAX-inversion Circuit 

Traditionally, very commonly used multiple-valued circuits have been the 

maximum (MAX) and minimum (MIN) functions [MT08].  For multiple-valued variables 

 

 is the largest xi 

 The two-variable maximum (MAX) function outputs the larger of the two values 

presented. The MAX-inversion circuit produces an r-x-1 inverted value of MAX function. 

The two-input MAX-inversion circuit structure in Figure 17 is analogous to the two-input 

NOR gate circuit in binary logic.  A voltage level of logic state “0” on both of the inputs, 

A and B, would force the upper-most transistor pair to be turned ON. This enforces the 
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supply V3 to drive the OUT port and hence produce logic state “3”. Alternatively, when 

either one of the inputs, A or B, reaches logic state “3”, the respective transistor in the 

bottom-most pair is turned ON. This forces the OUT port to be shorted to Ground (logic 

state “0”).  

 

Figure 17: Quaternary MAX-Inversion Circuit, Truth Table & SPICE Sim Result 
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When either of the inputs reaches logic state “1” and the other input is less than 

or equal to logic state “1”, power supply V2 drives the OUT pin. Similarly, when either 

of the inputs reaches the logic state “2” and the other input is less than or equal to logic 

state “2”, the power supply V1 drives the OUT pin. The Two-input MAX function is 

implemented by connecting an r-x-1 inversion circuit at the output of a two-input MAX-

inversion circuit as shown in Figure 18.  

 

Figure 18: Quaternary Two-input MAX Circuit 

 

3.2.2. Two-input MIN-inversion Circuit 

Another widely used multiple valued function is the MIN function.  For multiple-

valued variables  

 is the smallest xi 

The two-variable minimum (MIN) function outputs the smaller of the two values 

presented at the inputs. The two-input MIN-inversion circuit structure in Figure 19 is 

analogous to the binary-valued two-input NAND gate circuit when implemented using 

static CMOS technology.  The threshold voltages of the transistors are selected 

appropriately to derive the required logic states at the OUT pin.  The quaternary two-
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input MIN function is also implemented by connecting an r-x-1 inversion circuit at the 

output of the MIN-inversion circuit. 

 

Figure 19: Quaternary MIN-inversion Circuit, Truth Table, and SPICE Sim Result 
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3.2.3. Three-input MIN-inversion Circuit 

Another useful quaternary function that is implemented as part of the library is 

the three-input MIN-inversion circuit. Essentially, the three-input MIN-inversion circuit 

is a simple extension of the two-input MIN-inversion circuit with an additional parallel 

path from the third input.  The circuit, its truth table, and the SPICE simulation results 

are shown in Figure 20.  The functionality of this circuit is the same as the two-input 

circuit, except for the fact that there are three inputs from which the minimum value was 

selected. The size of the truth table is significantly larger than that for the two-input 

circuit. 
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Figure 20: Quaternary Three-input MIN-Inversion Circuit & SPICE Sim Result 
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3.2.4. Quaternary D-Flip Flop Circuit with Binary Clock 

The quaternary circuits discussed thus far can be used to design any 

combinational function since they form a functionally complete set of operations (with 

constants) from a mathematical view.  The implementation of synchronous sequential 

circuits such as counters, and shift registers require memory elements.  Flip-flops can be 

used as one-digit memory elements and are essential elements of synchronous sequential 

circuits.  As part of the quaternary library, a D-type quaternary flip-flop circuit with a 

binary clock input is designed. The block diagram and SPICE simulation results for the 

quaternary flip-flop are shown in Figure 21. 
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Figure 21: Quaternary D Flip-Flop Circuit and SPICE Simulation Result 
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The quaternary flip-flop circuit retains four possible values. A rising edge 

(transition from logic state “0” to logic state “3”) on the CLK input pin latches the logic 

state at the D input.  The stored value is maintained at the output pin Q with the help of 

an internal feedback loop. The output signal QBAR is the r-x-1 inverted value of the 

output Q. This circuit’s functionality is verified by supplying a series of pulses on the 

CLK input. In addition, the voltage state at the D input is altered periodically such that all 

four possible voltage values are validated. As illustrated in the simulation waveforms, for 

every rising edge transition at the CLK input, the logic state at the D input is correctly 

stored and held constant at the Q and QBAR outputs. 

3.2.5. Quaternary 4-to-1 Multiplexer Circuit 

Another important function that is useful for implementing complex quaternary 

functions is the data selector or multiplexer. A multiplexer circuit selects one of many 

input signals and forwards the selected input to a single output line.  In the case of 

quaternary logic, a multiplexer of 4n inputs has n select bits, which are used to select one 

of the inputs to be sent to the output. The quaternary 4-to-1 multiplexer circuit shown in 

Error! Reference source not found. is another addition to the quaternary library. 

The multiplexer is designed using the MIN, MAX, and the other basic one-

variable functions (J0, J1, J2 and J3). The one-variable functions J0, J1, J2 and J3 are used 

to detect the voltage value at the select (S) input. The outputs of these single variable 

functions are input to the two-input MIN circuits along with their respective inputs.  This 

configuration forces the selected input logic value along with three logic “0” values. 

Three additional two-input MAX circuits then generate the final output at the OUT pin. 

This four-to-one multiplexer circuit is verified using the SPICE simulator by supplying a 
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series of voltage state changes at each primary input along with different voltage values 

on the S pin. The waveforms captured by the SPICE simulation are shown below. 

 

 

Figure 22: Quaternary 4-to-1 Multiplexer Circuit & Spice Simulation Result 
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Chapter 4    

QUATERNARY ARITHMETIC CIRCUIT ARCHITECTURES 

 

The focus of this work is to design the quaternary arithmetic circuits for primitive 

addition (+) and multiplication (*) operations using circuits from the cell library 

described in Chapter 3.  Several architectural options are available for implementing 

addition and multiplication arithmetic circuits.  Different adder and multiplier 

architectures are analyzed by implementing the quaternary circuits whose details are 

described in this chapter.  

4.1. Quaternary Adder Circuit Architectures 

An adder is one of the most common arithmetic circuits and also serves as a 

building block for realizing many other arithmetic operations. Single-digit half- and full-

adders are versatile building blocks that are used in larger adders and many other types 

of arithmetic circuits.  Three different adder circuit architectures are implemented using 

half- and full-adder circuits as basic building blocks [DT+09].  These are the Ripple 

Carry (RC), Carry look ahead (CLA), and Carry Select (CS) addition circuits. 
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4.1.1. Quaternary Half-adder 

A binary half-adder (HA) receives two input bits, x and y, producing a sum output 

bit and a carryout bit . In the case of quaternary logic, the half-adder 

circuit receives two input quaternary digits and produces quaternary sum and carryout 

digits. A half-adder can be viewed as a single-digit quaternary adder that produces the 

two-digit sum of its single-digit inputs, namely, . A truth table for the 

quaternary half-adder circuit is shown in Table 3. 

 

Table 3:  Quaternary Half-adder Truth Table 

Outputs x y cout sout 
0 0 0 0 
0 1 0 1 
0 2 0 2 
0 3 0 3 
1 0 0 1 
1 1 0 2 
1 2 0 3 
1 3 1 0 
2 0 0 2 
2 1 0 3 
2 2 1 0 
2 3 1 1 
3 0 0 3 
3 1 1 0 
3 2 1 1 
3 3 1 2 

 

The equations used to represent the sum (sout) and carry (cout) outputs of the half-

adder circuit are shown in Figure 23 in sum-of-minterms (SOM) form. 
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Figure 23: Quaternary Half-adder Equations 

Cells from the quaternary library are used to implement the half-adder circuit 

structure. The equations are optimized using algebraic manipulations and one-hot 

encoding, including optimizing SOM sets [BK99]. WE also used 4-to-1 quaternary 

multiplexers to realize the half-adder function, as shown in Figure 24.  

 

 

Figure 24: Quaternary Half-adder Based on Multiplexer Implementation 
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The advantage of multiplexer based implementation is that it is simple and 

straightforward. However, a multiplexer based circuit architecture may suffer the 

disadvantage of being larger in area (number of transistors) than an implementation 

architecture that uses the quaternary library gates. Moreover, the performance and 

dynamic power may be also be worse due to non-optimized circuit design. The 

quaternary half-adder circuit that is shown here is one of the fundamental building blocks 

of complex adder and multiplier circuits. 

 

4.1.2. Quaternary Pseudo Full-adder 

The quaternary pseudo full-adder is an extension to the quaternary half-adder 

circuit.  It includes an additional input called the carry-in, referred to as cin. This circuit 

adds two quaternary digits and also the quaternary cin digit to generate quaternary the 

sum and carry outputs.  The circuit is referred to as “pseudo” because the cin pin is 

assumed to only have values of “0” and “1”. This assumption simplifies the circuit’s 

implementation and still results in a useful circuit for implementing quaternary adders 

and multipliers. Table 4 depicts the truth table of the pseudo full-adder. 
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Table 4: Quaternary Pseudo Full-adder Truth Table 

  cin= 0 cin = 1 
x y cout sout cout sout 
0 0 0 0 0 1 
0 1 0 1 0 2 
0 2 0 2 0 3 
0 3 0 3 1 0 
1 0 0 1 0 2 
1 1 0 2 0 3 
1 2 0 3 1 0 
1 3 1 0 1 1 
2 0 0 2 0 3 
2 1 0 3 1 0 
2 2 1 0 1 1 
2 3 1 1 1 2 
3 0 0 3 1 0 
3 1 1 0 1 1 
3 2 1 1 1 2 
3 3 1 2 1 3 

 

When pseudo full-adders are configured as multi-digit operand adder circuits, the 

output signal values “0” and “1” are the only possible values for the carry output. The 

equations for the sum and carry outputs of the quaternary pseudo full-adder circuit are 

shown in Figure 25.  As expected, the carryout function is optimized due to the limited 

range of output values.  Further optimization of the circuit implementation could be 

possible by extending the quaternary library to include more two- or three-input circuit 

cells.  
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Figure 25: Quaternary Pseudo Full-adder Equations 

4.1.3. Quaternary Full-adder 

The quaternary full-adder circuit includes the complete full-adder functionality 

supporting all possible logic values for cin. The full-adder circuit is often referred to as a 

3-to-2 compressor circuit, since the circuit compresses three quaternary inputs into two 

quaternary outputs [CIL06, WT89, SH08].  
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Table 5: Quaternary Full-adder Truth Table 

  cin=0 cin=1 cin=2 cin=3 
x y cout sout cout sout cout sout cout sout 
0 0 0 0 0 1 0 2 0 3 
0 1 0 1 0 2 0 3 1 0 
0 2 0 2 0 3 1 0 1 1 
0 3 0 3 1 0 1 1 1 2 
1 0 0 1 0 2 0 3 1 0 
1 1 0 2 0 3 1 0 1 1 
1 2 0 3 1 0 1 1 1 2 
1 3 1 0 1 1 1 2 1 3 
2 0 0 2 0 3 1 0 1 1 
2 1 0 3 1 0 1 1 1 2 
2 2 1 0 1 1 1 2 1 3 
2 3 1 1 1 2 1 3 2 0 
3 0 0 3 1 0 1 1 1 2 
3 1 1 0 1 1 1 2 1 3 
3 2 1 1 1 2 1 3 2 0 
3 3 1 2 1 3 2 0 2 1 

 

As shown in Table 5, all four possible values of cin are supported.  This form of 

adder is necessary for addition circuits that support multiple operand words summation.  

For two-operand adders, the pseudo full adder is sufficient since the only possible 

carryout values that can occur are {0,1}.  The circuit in Figure 26 illustrates the 

multiplexer based implementation of the quaternary full-adder circuit and it consists of 

three logic levels for both outputs.  
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Figure 26: Multiplexer Based Implementation of Quaternary Full-adder Circuit 

The sum and carry output circuits each contain 21 four-to-one quaternary 

multiplexers.  As is the case with a half-adder circuit, the full-adder circuit can also be 

implemented using the quaternary MAX, MIN, and other one-variable functions 

4.1.4. Quaternary Ripple-Carry Adder 

The quaternary half-, pseudo full-, and full-adder circuits are used to design 

arithmetic circuit types such as adders and multipliers with multi-digit operands. 
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Figure 27: Four-digit Quaternary Adder Architectures 
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Three different multi-digit adder architectures are implemented: the Ripple Carry 

(RC), Carry Look-Ahead (CLA), and Carry Select (CS) versions.  Figure 27 shows all 

three adder architectures with a four-digit word size example.  The ripple-carry adder is 

constructed using a serial cascade of one-digit full-adder circuits and is depicted in 

Figure 27a. 

The quaternary RC adder is simple and relatively easy to implement as compared 

to the CLA and CS architectures. It is also the most area efficient when compared to the 

other two types. The well known disadvantage of the RC adder is its limited performance 

(speed of operation).  The decrease in this circuit’s speed of operation is caused by the 

serial propagation of the carry digit. As depicted in Figure 27a, the Most Significant 

Digit (MSD) result depends on the carryout digit from the previous stages.  Essentially, 

the summation output for each digit is delayed until the carry out from the previous digit 

is available.  This results in a speed of operation that is directly proportional to the 

operand word size. 

4.1.5. Quaternary Carry Look-Ahead Adder 

The CLA architecture is a widely used adder architecture that achieves high 

performance by utilizing the so-called carry generate and propagate logic functions.  A 

quaternary carry look-ahead adder is proposed in [TS+01] and is implemented here using 

the newly developed SUSLOC cell library.  A 32-digit quaternary carry look-ahead 

adder was designed using the SUSLOC gates. The overall structure of the addition circuit 

is illustrated with a four-digit example in Figure 27b. The “generate” and “propagate” 

circuit blocks produce the required g0, g1, p0, and p1 signals. The equations for the 

quaternary case are shown in Figure 28.  Note that the quaternary carry-out output of the 
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two-digit adders can only have “0” or “1” as a value, for example, 34 + 34 = 124. Hence, 

the pseudo full-adder circuit is employed in the carry-out path to conserve circuit area. 

 

 

 

 

Figure 28: Equations for the Generate & Propagate Signals of Radix-4 Adder Digits 

The  32-digit adder circuit is implemented with the necessary carry look-ahead 

logic resulting in increased area as compared to the RC adder due to the carry generation 

and propagation logic.  Alternatively, the CLA adder has a greater speed of operation as 

compared with the RC adder. 

4.1.6. Quaternary Carry Select Adder 

The carry select adder is another well known adder circuit architecture that deals 

with the carry propagation challenge in a different way.  The addition operation is 

duplicated with the assumption of different input carry possibilities, and the correct adder 

output is finally selected based on the actual carry value.  A four-digit example of the 

pseudo quaternary carry select adder is shown in Figure 27c.  In this case, only values of 

“0” and “1” are assumed as possibilities at cin.  The need for redundant adders in this 

adder architecture would result in an area increase.  However, the performance of the CS 

adder is improved because the addition operation outputs with different possible carry 



 56      

values are readily available and can be selected when the actual carry value is available. 

This feature significantly reduces the carry propagation time.  The circuit area could be 

further optimized by replacing the full-adders with equivalent custom half-adders due to 

the presence of the constant values at the carry input.  

4.2. Quaternary Multiplier Circuit Architectures 

The multiplier is another important arithmetic circuit that is used in almost every 

modern application and algorithm [B51, R55, R75, D65, W64, E90, CC94, CC95, 

IO+97]. Two types of quaternary multiplier circuits are designed, a digit serial and 

parallel version.  In the architecture of the serial multiplier, the multiplication output is 

obtained by performing multiplication and addition in an iterative manner.  The net result 

is obtained after n clock cycles, where n is the width of the multiplicand or multiplier, 

whichever is larger. On the other hand, in the case of a parallel multiplier architecture, 

the multiplication output is generated in a single clock cycle [D65,W64].  

The advantage of a serial multiplier is its smaller area and smaller power 

dissipation compared to a parallel multiplier.  The advantage of a parallel multiplier is its 

speed of operation because the whole multiplication operation is complete in one cycle.  

4.2.1. Quaternary Serial Multiplier Circuit 

The quaternary serial multiplier circuit architecture is depicted in the block 

diagram of Figure 29. The architecture used in this circuit is a sequential “multiply, 

accumulate, and add” architecture.  
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Figure 29: Quaternary Sequential Multiplier Block Diagram 

In each clock cycle, one digit of the multiplier operand is used to multiply the 

entire multiplicand value by using several single-digit quaternary multiplier cells.  The 

result is then added to the accumulated partial product.  The partial product is stored in a 

quaternary register after every clock cycle.  This quaternary register also acts as a shift 

register to shift the partial product value by two-bits (One-quaternary digit) in every 

clock cycle.  Therefore, after n clock cycles of “multiply, add, and shift” operations, the 

net multiplication result is available.  There are only two sets of quaternary quantities 

added at a time. Because there are only two quantities to be added each time, half-adder 

and incrementer circuits can be used in the adder architecture to reduce the total area of 

the multiplier instead of using the more costly full-adder.  The two important elements 
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used in the serial multiplier’s architecture are a single-digit quaternary multiplier circuit 

and a quaternary incrementer circuit. 

 

 

Figure 30: Quaternary Serial Multiplier using Carry-Select Adders 

The serial multiplier shown in Figure 29 is using the serial ripple carry type of 

adder architecture for adding the intermediate partial products in each clock cycle. The 

two other adder architectures, Carry-Select and Carry Look-Ahead adders are also used 

in the serial multiplier architecture as shown in Figure 30 and Figure 31. The comparison 

metrics of area, performance and power of serial multipliers are all benchmarked for the 

multipliers with all three different adder architectures embedded. 
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Figure 31: Quaternary Serial Multiplier using Carry-Look-Ahead (CLA) Adders 

4.2.2. Quaternary Single-digit Multiplier Circuit 

The quaternary single-digit multiplier circuit uses two single-digit quaternary 

inputs and produces the two-digit product output.  The quaternary single-digit multiplier 

is implemented using the MIN, MAX, and r-x-1 inverter gates.  The truth table for the 

quaternary single-digit multiplier circuit is provided in Table 6. 
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Table 6: Quaternary Single-digit Multiplier Truth Table 

Single-digit 
quaternary 
Multiplier x y 

MSD LSD 
0 0 0 0 
0 1 0 0 
0 2 0 0 
0 3 0 0 
1 0 0 0 
1 1 0 1 
1 2 0 2 
1 3 0 3 
2 0 0 0 
2 1 0 2 
2 2 1 0 
2 3 1 2 
3 0 0 0 
3 1 0 3 
3 2 1 2 
3 3 2 1 

 

The algebraic equations used to describe the MSD and LSD digits of the 

quaternary single-digit multiplier circuit are shown in Figure 32a.  A multiplexer based 

implementation of the quaternary single-digit multiplier is shown in Figure 32b. 
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                                                            (a) 

 

Figure 32: One-digit Multiplier (a) Equations (b) Multiplexer Based 

Implementation 
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4.2.3. Quaternary Incrementer Circuit 

In the serial multiplier architecture, the outputs of the single-digit quaternary 

multipliers are added to the cout outputs of the half-adder circuits.  As seen in the 

quaternary single-digit multiplier truth table, values of “0”, “1”, and “2” are the only 

possible logic values for the MSD output.  It is also the case that cout can only have 

values of “0” or “1” at the output of the quaternary half-adder circuit.  These 

observations allow the creation of an area optimized quaternary increment circuit whose 

truth table is shown in Table 7.  Implementation equations corresponding to Table 7 are 

shown in Figure 33.  The circuit is implemented using the cells from the quaternary 

library.  The main difference between the incrementer circuit and the half-adder circuit is 

that there is no carryout generated in the case of the increment circuit. 

Table 7: Quaternary Incrementer Truth Table 

A B INCROUT 
0 0 0 
0 1 1 
1 0 1 
1 1 2 
2 0 2 
2 1 3 

 

 

Figure 33:  Quaternary Incrementer Equations 
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4.2.4. Quaternary Parallel Multiplier 

The entire multiplication operation is performed in a single clock cycle [P00, 

EL04, D65, W64, SH08] in the parallel multiplication circuit.  Single cycle operation is 

achieved since all partial products are generated simultaneously followed by summing 

them together with a multi-operand adder. Figure 34 contains details of the partial 

product generator designed using an array of single digit quaternary multipliers where 

each partial product is generated in carry-save format consisting of a four-digit carry 

word and a separate four-digit sum word.  
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Figure 34: Diagram of 4*4 Partial Product Generator 
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Figure 35 contains a diagram of the circuit used to accumulate all partial products 

to form the final eight-digit product word.  Quaternary half-adders and full-adders are 

used appropriately to reduce and optimize the area of the multi-operand addition tree 

used to sum the partial products. The form of the array of full-adders (FA) and half-

adders (HA) in Figure 35 is described in [P71] and the internal configuration of the FAs 

and HAs is described in [DT+09].  Inputs to the addition array are denoted by n[s,c]i 

where i represents the ith digit of the nth partial product and [s,c] indicates whether the 

digit is from the carry or sum word of each partial product. 

 

Figure 35: Diagram of 4*4 Partial Product Accumulation Array 
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The parallelism in the circuit increases the area of the multiplier circuit.  At the 

same time, the benefit of parallelism is that the entire multiplication operation is 

completed within one clock cycle.  The parallel multiplier does provide higher efficiency 

when used in the context of large multiply operations because each multiplication 

operation is finished in a single clock cycle.  However, its higher area is the main 

disadvantage of the parallel multiplier when compared to the serial multiplier.  

 

Figure 36: 4*4 Parallel Multiplier with Wallace-Tree Addition 

There are alternate ways to implement the addition operation of the generated 

partial products. One of the main disadvantages of the array type of adder architecture is 

its long propagation delays. We implemented the Wallace-Tree [W64] adder architecture 

for a 4-digit quaternary parallel multiplier as shown in Figure 36 to compare the 

differences in area, timing and power of both architectures. 
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Chapter 5    

APPROXIMATE SQUARING CIRCUIT 

 

Approximate squaring circuits have numerous applications as mentioned in 

[FW01, KG98, PA96, YK+97, WS+99] such as cryptography, computation of Euclidean 

distance among pixels for a graphics processor or in rectangular to polar conversions in 

several signal processing circuits where full precision results are not required. As 

indicated in [PA96, LF00], customized squaring modules do have important applications 

in digital signal processing. Specifically, in [AB+99], a method is described where 

resolution can be increased during a graphics blend operation through the incorporation 

of a squaring operation implemented by a multiplier followed by a truncation circuit. 

Clearly, the approach described in this work allows for improvement in such application.  

In [JM95], a method for frame synchronization in a digital radio is described where a 

digital squaring circuit is integral to the process. Hardware transcendental function 

designs [F81] have also employed approximate squaring circuits.  These are just a few 

examples where high-performance approximate squaring circuits are desirable. 

Often, designers implement a squaring operation using a multiplier circuit. 

Approximate multiplication has been investigated using a truncated multiplier [WS+01]. 

The multiplier may utilize a radix-4 or radix-8 Booth recoding to reduce the size of the 

partial product array [P00, K81, EL04]. The squaring operation yields symmetry in the 
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partial product array when compared to a standard multiplier. This property has been 

investigated to provide optimizations in multiplier design at the bit level [L70, C71]. The 

design focusing on a squaring circuit employing this symmetry was proposed in [D85], 

and numerous studies optimizing binary squaring circuits appear in [FW01, KG98, 

PA96, YK+97, WS+99]. These designs primarily optimized by using hardwired bit 

product arrangements to reduce array sizes for efficient accumulation, mostly focusing 

on low precision. Since squaring is a unary operation, lookup tables have also been 

incorporated in proposed designs of squaring circuits [WS+01, WS98]. Extension to the 

design of a radix-4 squaring circuit employing Booth recoding and “folding” of the 

partial products was introduced in [DS01], with further implementation optimization 

studies discussed in [E03, SD03].  

Booth recoded multipliers yield partial products whose formation requires the 

complexities of both sign extension and two’s complementation. The Booth-folded 

recoded squarer in [DS01] reduces two’s complementation to a straightforward one’s 

complementation. Avoidance of two’s complementation particularly simplifies the 

generation of integer squares modulo the integer word size, as further investigated in 

[MM+08]. In this work, we investigate implementations of a new radix-4 operand dual 

recoding method [M09] for the squaring operation. The recoding yields non-negative 

partial squares avoiding need for sign extensions and furthermore yields a radix-16 

reduced array of partial products. This recoding is particularly effective for the design of 

an approximate squaring circuit where the partial squares can be generated with shifts 

and one’s complements using a few guard bits.  
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5.1. Squaring Methodology 

As introduced in [C71, D85], the squaring operation for an operand in binary can 

be realized by a modified partial product array of about one half the size of the full 

multiplier array without the need for the traditional Booth multiplier recoding. 

Specifically, for binary squaring of the normalized p-bit operand , the p2 

bit product terms of the multiplication array may be reduced to p(p+1)/2 terms 

employing bi
2 = bi and bibj+bjbi = 2bibj for i<j. This provides an array of just over half 

the size with a depth ⎡(p+1)/2⎤. Furthermore, the depth of the array can be reduced to 

⎡(p/2)⎤ by incorporating the half adder relation bibi+1 + bi = 2bibi+1 + bi(~bi+1) in the array 

formation. 

For a state-of-the-art approximate radix-2 squarer we employ this reduced depth 

array design from [PBD97] and truncate the lower order half of the array, except for a 

couple of columns of guard bits to tightly bound the approximate square. This optimized 

approximate radix-2 squarer array is of order about 1/4th the size of a comparable full 

multiplier array, or equivalently about ½ the size of the truncated approximate multiplier.  

Recently [M09] an operand “dual recoded” radix-4 squaring method has been 

introduced which is particularly suited for approximate squaring. We adopt the method 

from [M09] and perform various implementation studies. Before proceeding to 

performance comparison of this high-radix squarer, we summarize the methodology and 

foundation for the new dual recoded radix-4 squarer. 

For the squaring operation, the single operand assumes both the role of the 

multiplier and multiplicand. The high radix dual recoding recognizes these distinct 
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asymmetric roles of the single operand. The dual recoding concurrently provides a 

“squarer” digit string in the high radix and a corresponding sequence of successively 

truncated “squarands” in binary form. The ith squarer digit multiplies the ith squarand in 

the ith partial square generator, with the array of partial squares summed to generate the 

square. The following summary is taken from [M09]. 

For the left-to-right leading digit dual recoding, the ith squarand is determined 

only from bits of lesser or equal significance to the bits determining the ith high radix 

squarer digit. The catalyst for characterizing the left-to-right higher radix dual recoding 

is the sequence of two’s complement tails of the operand. 

Definition: Given the p-bit normalized operand , the radix-4 two’s 

complement tails of x are  and  for , 

where . 

The two’s complement tails are related to the Booth radix-4 representation. 

Observation 1:     

where   is the ith Booth 

radix-4 digit of x. 

Proof: Note that:   so 

, and  is 

recognized as the ith Booth recoded radix-4 digit. 
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The squares of the two’s complement tails are now shown to provide the 

foundation for our operand dual recoding. 

Theorem 1:   Let for 0 ≤ i ≤ (p+1)/2.  Then .  

Furthermore, when di and qi are both non zero, they have the same sign , so then: 

. 

Proof: Note that , and 

 It is readily shown that: 

, and , so  for 

. 

By performing the two’s complement when dictated by  and deleting 

the resulting sign, we obtain: 

  

where  for , and . 
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In summary then our dual radix-4 recoding for squaring provides the sequence 

 of squarer digits where  is the ith 

radix-4 Booth recoded digit for .  The dual recoding concurrently 

provides the sequence  of squarands, with  the ith 

partial square for . 

The radix-4 operand dual recoding for left-to-right squaring has a number of 

properties of considerable practical value for applications: 

• The partial squares  are all non-negative, so no sign extensions are 

needed. 

• The partial squares are each scaled down by another power of 16, so an n-

term sum provides an approximate square of about 4n bits of accuracy. 

• The partial square generators are similar in design to Booth radix-4 partial 

product generators but simpler in two ways – no sign extensions are needed, 

and, on average, they are about half the size for the same precision. 

For more details on the operand dual recoding see [M09]. It is illustrative to 

consider a sample squaring operation as shown in the tables.  Consider the 16-bit 

squaring operation with x normalized in the interval [½,1), in particular 

x=0.11000101100010112 in Example 1. This example uses the Radix-2 optimizations 
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that were discussed before [PBD97]. As can be seen, the array contains 8 rows and 95 

terms including guard bits.  To visualize the optimizations achieved with the proposed 

Radix-4 method, the array in Example 2 below can be referred to. This utilizes a radix-4 

dual recoding and employs g=3 guard bits yielding a result that has a 1½ ulp lower 

bound on x2. In comparison, the array has only 4 rows and 50 terms respectively. 

     Guard bits 

1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 

  0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

    0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

      0 1 1 1 0 0 0 0 0 0 0 1 0 

        0 0 0 0 0 0 0 0 0 0 0 

           0 1 1 0 0 0 0 0 

            0 0 1 0 1 0 0 

              1 1 0   

1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 

Figure 37: Truncated Radix-2 Squarer Array 

 

                                 Guard bits Squarer digits 

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 2 

    1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 -2 

         0 0 1 1 0 0 0 1 0 1 1 

             1 0 1 1 1 0 -1 

1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0  

Figure 38: 16-bit Radix-4 Approximate Squarer Array 
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5.2. Squaring Circuit Implementation 

A block diagram of the squaring circuit is shown in Figure 39. The Verilog™ 

HDL used to implement the circuits and the Synopsys Design Compiler™ is used to 

synthesize the circuit using both 130nm and 90nm cell libraries from Texas Instruments.  

Various squaring circuits were synthesized for operand sizes of n=12, 16, and 24 bits. In 

each of these cases additional guard bits of g=2, 2, and 3 respectively were included to 

ensure that the approximation is bounded by at most 2 ulps accuracy.  The resulting 

circuits were also analyzed for maximum path delay and power dissipation.  For 

comparison purposes, an n-bit operand truncated multiplier was also synthesized into the 

same cell libraries with an n-bit product and an appropriate number of guard bits as this 

type of circuit is commonly used for the generation of an approximate square. 
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Figure 39: Block Diagram of Truncated Squaring Circuit 
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Chapter 6    

QUATERNARY CIRCUITS MODELING AND VALIDATION  

 

The functionality of the quaternary arithmetic circuit architectures are validated 

by simulation. The basic gates and functions are verified using a circuit simulator such as 

SPICE for transistor level verification. However, SPICE simulation runtime increases 

significantly with circuit size, prohibiting its use for larger circuits.  For this reason, the 

larger circuits are validated by modeling them with higher level languages and then using 

a faster simulator [AG+07, GFD03].  Equivalent circuit models are created for the 

quaternary circuits to validate their functionality.  

6.1. Quaternary Circuit Modeling 

Traditional two-valued (binary) circuits are modeled and verified using a 

hardware description language such as Verilog or VHDL.  However, MVL circuit 

implementations require extended data types and support for variable types that can 

handle more than two values.  Verilog and VHDL languages both lack such features.  

For these reasons, we use System Verilog to model and verify the quaternary functions.  

As introduced in [AG+07], System Verilog is a very effective modeling language for 

modeling MVL circuits. The functionality of a circuit can be verified by simulating 

different possible input conditions to verify that the circuit produces valid outputs. The 

modeling of the basic quaternary functions is shown in this section. System Verilog 
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descriptions of the quaternary one-variable functions are shown in Figure 40. As can be 

seen from the System Verilog modeling, a variable type integer was used to model the 

four logic values required for quaternary circuits. 

 

Figure 40: Quaternary One-variable Function Modeling with System Verilog 

The preliminary quaternary gates and quaternary half-adder circuit are modeled 

with System Verilog as shown in Figure 41.  System Verilog made it possible to model 

the MAX and MIN functions using simple comparison operators. Half-adder functionality 

is modeled using the “case” statement of System Verilog. The carry-out and sum-out 

outputs of the half-adder are assigned values that depended directly on the conditions of 

the “a” and “b” inputs.  
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Figure 41:  System Verilog Models for Basic Quaternary Gates and Half-adder 

 



 79      

The quaternary full-adder listing in the System Verilog language is shown in 

Figure 42.  The full-adder functionality was also implemented using the case statement 

but extended it to three inputs.  The case statement became larger because of the increase 

in the combinations of possible input values.  The main advantage of the case statement 

is that it makes it easier for a designer to debug. 
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Figure 42: Quaternary Full-adder Modeling with System Verilog 
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The next illustration in Figure 43 shows the System Verilog modeling for the 

quaternary four-to-one multiplexer and the quaternary rising edge D flip-flop.  The 

ability to reuse previously modeled functions simplifies the modeling of complex MVL 

circuits.  The flip-flop circuit contains the feedback loops to retain the clocked input 

value.  To avoid a potential race condition in the simulation, delay values are inserted 

when modeling the feedback loops in the flip-flop circuit. 

 

 

 

Figure 43: Quaternary 4-to-1 Multiplexer & D Flip-Flop System Verilog Models 
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The System Verilog listing of the quaternary single-digit multiplier is shown 

below in Figure 44. The most significant digit (MSD) and least significant digit (LSD) 

output values of the One-digit multiplier circuit are modeled using the case procedure 

that has dependency on the circuit inputs “a” and “b”. 

 

Figure 44: Quaternary One-digit Multiplier Modeling with System Verilog 

6.2. Testbench Modeling 

A testbench is constructed to simulate all possible input combinations in order to 

verify the quaternary circuit models. System Verilog is also very useful for the 

development of the testbench modules.  For example, Figure 45 illustrates how System 

Verilog can be used to construct a testbench to verify the functionality of the quaternary 

rising edge D flip-flop.  The output response of the design under test is captured in both 

textual and waveform formats for functional check and debug.  The testbenches for other 

complex circuits are also constructed using System Verilog modeling in a similar 

fashion. 
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Figure 45: Quaternary D Flip-Flop Testbench in System Verilog 

All of the System Verilog models are validated using the Synopsys© VCS© 

environment. The arithmetic circuits are also modeled in a similar fashion using System 

Verilog to verify their functionality. 
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Chapter 7    

RESULTS 

 

The logic library gates and multiplier circuits are modeled and verified using the 

System Verilog language to validate proper functionality.  Additionally, functionality of 

the library cells is verified at the transistor level using the HSPICE tool. Characterization 

of the power dissipation, area, and performance of the adders and multipliers is 

accomplished by benchmarking the circuits with their binary equivalents for operand 

word sizes. The corresponding binary circuits are synthesized using the Synopsys design 

compiler synthesis tool for different operand word sizes.  A 130 nm standard cell library 

from Texas Instruments is used for the binary circuits.  It is noted that state-of-the-art 

synthesis optimization algorithms are used for the binary cases; however, no such 

synthesis tools are available for quaternary circuit synthesis hence the multiplier 

architectures are designed manually.  

7.1. Quaternary Adder benchmarking 

The comparison in Table 8 summarizes the observations for the various adder 

architectures for both quaternary and binary circuits. 
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7.1.1. Adders Circuit Area 

In terms of area benchmarking, the number of transistors required for each of the 

quaternary and binary equivalent circuits are used as the metric.  The reason for this 

increase is the fact that the SUSLOC structure adds additional transistor components to 

guarantee circuit stability and non-overlapping logic state resolution.  Moreover, the 

binary circuits compared here are area optimized using the latest design synthesis tools.   

 

Table 8: Quaternary Adders Benchmarking Comparison 

  QUATERNARY BINARY 
 WORDSIZE 32-DIGIT 64-BIT 

Area (trans.) 15341 11792 
Power(uW) 128.6 218 Ripple-Carry 
Levels(trans.) 224 342 
Area (trans.) 32062 23936 
Power (uW) 261.8 441 Carry-Select 
Levels(trans.) 116 118 
Area (trans.) 16538 12454 
Power (uW) 138 238 CLA 
Levels(trans.) 82 94 

 

It should be noted that the transistors used in the quaternary cells are typically 

larger than the transistors used for the binary circuit design. However, there is a 

reduction in signal routing because the quaternary versions of the circuits require fewer 

data signals due to their increased data density.  With the current trends in modern device 

scaling and routing, the area reduction due to halving the signal conductor traces is very 

significant but cannot be measured until a design is actually physically implemented on a 
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die. Three power distribution networks are required for the quaternary valued circuits 

versus the single power distribution network required for the binary circuits.  The area 

requirements due to these differences in interconnects are also not accounted for in the 

comparison.  

7.1.2. Adders Circuit Power 

Another important comparison is the switching power. As shown in the results, 

the quaternary adder circuits exhibit lower switching power consumption when 

compared to the equivalent binary circuits. For the binary circuits, dynamic power 

analysis was accomplished through the use of the Synopsys PrimeTime-PX tool with the 

assumption of a 50% switching activity of all internal signals.   

The quaternary circuit dynamic power dissipation is estimated by using Equation 

(3) and techniques in [N94, IY96]. 

                                                      (3) 

Ctot represents the total capacitance estimated from the total number of transistors 

in the circuit. Total capacitance of the binary circuits is estimated by multiplying the 

number of equivalent two-input NAND gates with their input capacitance as shown in 

Equation (4). Correspondingly, Equation (4) is also used for the quaternary circuits using 

two-input MIN gate equivalents. 

                                                                           (4) 

Vavg is the average voltage swing occurring during a transition.  The quaternary 

transistor models utilize a 3.3V supply with 1.1V swings between the voltage encoded 

logic levels of V0, V1, V2, and V3.  Assuming all logic transitions are equally likely for 
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consistency with the binary case, there are 12 cases when voltage swings occur ranging 

from swings of 3.3V to 1.1V.  Therefore Vavg=1.83V. 

asw represents the switching activity and is the probability that a non-zero voltage 

transition occurs within a given clock cycle.  Each quaternary signal conveys the 

equivalent of two bits of information per conductor, thus the equivalent switching 

activity factor is 75%.  The 75% switching factor arises from assuming the quaternary 

signal is equally likely to transition from its present logic level to any other within a 

clock cycle.  Because there are a total of 12 non-zero transitions out of 16 possibilities, 

asw =75%. 

The term f refers to the frequency of operation. The frequency used for the power 

calculations is derived using the Equation (5). 

                                                                                       (5) 

The Tmax term is obtained from the timing analysis results of the equivalent 

binary circuits. The factor two is used to accommodate enough margin for proper 

operation of both binary and quaternary circuits. The fundamental reason for this power 

saving is the fact that quaternary circuits have more intermediate logic levels and require 

less voltage swing on average when compared to traditional binary circuits.  It should 

also be noted that the amount of switching power can vary per logic-level change in the 

quaternary circuits since switching from logic value 0 to logic value 3 requires more 

power than a switch from logic value 0 to logic value 1 due to the larger voltage swing. 
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7.1.3. Adders Circuit Speed 

When reporting the performance, the longest gate path from input to output is 

used as a metric. Total number of transistors in such long timing path is used as 

benchmarking. In all cases, as shown in Table 8, the quaternary adder circuits exhibited 

better timing performance than the binary equivalent circuits as measured by the depth 

(no. of transistors) of the critical path. The savings in number of levels could be 

attributed to the fact that the quaternary circuits do have higher data integrity and hence 

reduced number of levels. 

7.2. Quaternary Multiplier Benchmarking 

Both the serial and the parallel multiplier circuits are implemented for three 

different operand word sizes.  For benchmarking, traditional binary circuits with the 

equivalent operand sizes are also implemented.  The three configurations chosen for the 

benchmarking and their binary equivalent sizes are:  

• 16-digit quaternary(32-bit binary) 

• 32-digit quaternary (64-bit binary) 

• 64-digit quaternary (128-bit binary) 

The benchmarking results are summarized in Table 9 as noted in [DT10, DTJ10]. 

7.2.1. Multiplier Circuit Area 

Area is compared in the third and sixth rows of Table 9 and is measured in units 

of transistors. Area due to wiring interconnects is not included since the circuits were not 

placed and routed in physical design layout.  The number of internal signal conductors is 

reduced by one-half in the quaternary circuits as compared to the binary case; however, 
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there are also two additional supply voltage distribution networks required to supply the 

V1 and V2 rail voltages for the quaternary circuits.  Based on this observation, it is 

anticipated that area due to interconnect networks will be approximately equivalent.  In 

the case of the serial multiplication circuits, an average of 26% more transistors are 

required for the quaternary implementation.  However, the quaternary parallel multiplier 

circuits exhibited a decrease of 13%, 20%, and 25% in number of transistors respectively 

for the same operand word sizes.  The reason that the area decreases as word size 

increases in the parallel case is due to the exponential growth in the number of transistors 

with respect to word size (in units of digits) for the binary case and the corresponding 

word size is smaller for the quaternary circuits. 

Table 9: Quaternary Multiplier Benchmarking Comparison 

  QUATERNARY (DIGITS) BINARY (BITS) 
 WORDSIZE 16 32 64 32 64 128 

Area (trans.) 10619 20731 40955 8238 16380 32654 
Power (uW) 90.27 176.24 348.15 154.34 306.88 611.77 Serial 
Levels(trans.) 134 262 518 189 381 765 
Area (trans.) 75052 282054 1055993 85596 349744 1404789 
Power (mW) 0.44 1.69 4.89 0.91 3.91 12.63 Parallel 
Levels(trans.) 240 442 806 332 638 1594 

 

7.2.2. Multiplier Circuit Dynamic Power 

Rows four and seven of Table 9 compare the dynamic (switching) power 

dissipation among the binary and quaternary multipliers.  The serial multipliers indicated 

on an average a 43% decrease in power dissipation for the quaternary case versus the 

binary circuits.  Whereas in the case of parallel multipliers, a very significant decrease in 
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power dissipation is also observed for quaternary cases, averaging an approximate 60% 

decrease. 

7.2.3. Multiplier Circuit Speed 

Rows five and eight of Table 9 estimate and compare circuit speed of both 

quaternary and binary cases. The speed is indicated here as the number of transistor 

levels in the performance critical paths. The number of transistors in the maximum depth 

path in each circuit is measured. The smaller the number of transistors, the higher the 

speed of operation of the corresponding circuit.  In all cases, the quaternary 

multiplication circuits show reduced path length (and hence increased speed of 

operation) when compared to the binary circuits.  In the case of serial multipliers, the 

quaternary maximum path length was, on average, reduced by an approximate 31%.  In 

the case of parallel multipliers, path length decreases of approximately 28%, 31%, and 

50% respectively achieved for the 16-, 32-, and 64-digit multipliers as compared to the 

equivalent binary circuits. 

7.3. Quaternary Serial Multiplier Implementation Analysis 

As discussed previously in the multiplier section, the adders in the serial 

multiplier circuit can be implemented using the different possible adder architectures. 

Three different adder architectures are used to implement the quaternary serial multiplier, 

Ripple-Carry, Carry-Select (CS) and Carry-look-ahead (CLA) for different operand 

sizes. Table 10 provides the estimated benchmarking of all three different quaternary 

serial multiplier implementations. 
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Table 10: Quaternary Serial Multiplier Benchmarking Comparison 

  QUATERNARY SERIAL 
MULTIPLIER 

 METRIC 16-DIGIT 32-DIGIT 64-DIGIT 

Area (trans.) 10619 20731 40955 
Power (uW) 90.27 176.24 348.15 Ripple-Carry 

Adder Based 
Levels 134 262 518 
Area (trans.) 22088 43120 85186 
Power (uW) 187.76 366.57 724.15 Carry-Select 

Adder Based 
Levels 68 134 266 
Area (trans.) 11522 22908 46361 
Power (uW) 96.59 192.62 390.28 CLA  

Adder Based 
Levels 52 92 146 

 

7.4. Quaternary Parallel Multiplier Implementation Analysis 

As discussed previously, addition operation of the partial products in the 

quaternary parallel multiplier circuits can be implemented in different ways. We 

implemented the addition operation using traditional array type adders and also using the 

Wallace tree architecture. Table 11 captures the results of the both implementations for 

the 4X4 quaternary multiplier case. 
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Table 11: Quaternary 4*4 Parallel Multiplier Architecture Comparison 

 METRIC 4-DIGIT 

Area (trans.) 22262 

Power (uW) 122.36 Array tree 

Levels 63 

Area (trans.) 20370 

Power (uW) 92.08 Wallace tree 

Levels 24 
 

7.5. Results of Squaring Circuit Optimization 

Table 12 and Table 13 contain the synthesis results in terms of path delay, power 

dissipation and area. We note that these results do not include delay due to routing 

however, since the multiplier adder array is more complicated than the reduced squaring 

adder arrays, the comparison of the truncated multiplier array to the squaring circuits is 

likely very conservative after including actual wire delays. 

The results show that both the radix-2 and the radix-4 circuits yield a dramatic 

improvement in performance, power and area compared to the truncated multiplier 

circuit. The reductions range from a factor of two-to-three for delay, three-to-four for 

area and five-to-six for power. 
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Table 12: Synthesis Results using 130nm Cell Library 

Dynamic Leakage Area 

Circuit Delay(ps) Freq(Hz) 

Power 

(mW) 

Power 

(nW) 

(Gate 

count) 

12-bit Truncated Multiplier 2160 4.63E+08 15.54 48.01 4001 

16-bit Truncated Multiplier 2950 3.39E+08 41.18 105.65 8669 

24-bit Truncated Multiplier 4690 2.13E+08 133.06 258.91 22140 

12-bit Radix-2 Squarer 1030 9.71E+08 4.43 18.54 1659 

16-bit Radix-2 Squarer 1180 8.47E+08 8.69 34.1 3480 

24-bit Radix-2 Squarer 1740 5.75E+08 23.72 76.53 7140 

12-bit Radix-4 Squarer 860 1.16E+09 3.33 14.57 1310 

16-bit Radix-4 Squarer 1030 9.71E+08 7.71 30.65 2826 

24-bit Radix-4 Squarer 1620 6.17E+08 21.23 61.67 5790 

 

The radix-4 squarer performs better than the radix-2 squarer by about 10-to-20% 

in all metrics with the greatest reduction being in area. Figure 46 illustrates the 

comparisons of the radix-2 and radix-4 squarers in more details showing greater 

improvements as the size of the operand increases. 
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Table 13: Synthesis Results using 90nm Cell library 

Dynamic Leakage Area 

Circuit Delay(ps) Freq(Hz) 

Power 

(mW) 

Power 

(nW) 

(Gate 

count)  

12-bit Truncated Multiplier 1700 5.88E+08 7.09 98.89 4119 

16-bit Truncated Multiplier 2390 4.18E+08 17 188.54 7680 

24-bit Truncated Multiplier 3380 2.96E+08 58.81 523.62 21112 

12-bit Radix-2 Squarer 770 1.30E+09 2.16 46.3 1802 

16-bit Radix-2 Squarer 930 1.08E+09 4 73.3 3262 

24-bit Radix-2 Squarer 1390 7.19E+08 10.8 160.67 6783 

12-bit Radix-4 Squarer 650 1.54E+09 1.82 38.40 1522 

16-bit Radix-4 Squarer 800 1.25E+09 3.03 59.61 2470 

24-bit Radix-4 Squarer 1250 8.00E+08 9.97 145.47 5253 

 

To summarize, the savings obtained with the approximate squaring circuit when 

compared with the equivalent sized radix-2 multiplier, Figure 46 contains comparison 

charts that illustrate the delay, power and area results of the 12-, 16-, and 24-bit operand 

approximate squaring circuits. It is clearly seen that the proposed circuit has significant 

savings and the efficiency of the proposed circuit gets better with increasing operand 

size. 
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Figure 46: Metrics Comparison of Radix-4 & Radix-2 Squaring Circuit 
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Chapter 8    

CONCLUSIONS AND FUTURE CHALLENGES 

 

8.1. Conclusions 

The feasibility of Voltage-mode quaternary circuits based on SUSLOC 

technology is demonstrated. A library of preliminary quaternary gates is designed using 

transistors based on the SUSLOC structure.  The preliminary quaternary gates are 

simulated using the SPICE models. The larger quaternary arithmetic circuits are then 

implemented using the preliminary gates. Modeling techniques using System Verilog are 

successfully adopted for the modeling of the quaternary circuits.  To verify the 

functionality, the quaternary circuits are also simulated using the System Verilog 

simulator using the test benches along with required input stimulus. 

The quaternary circuits are benchmarked with equivalent two-valued (binary) 

circuits. The results show that the proposed adder and multiplier quaternary circuits are 

better than the equivalent binary circuits in the aspects of switching power and logic 

depth.  The area optimization of the quaternary circuits will be possible with the 

availability of more application specific quaternary cells.  In addition, the availability of 

any design optimization and synthesis CAD tools would further optimize the quaternary 

circuits.  The advantages of lower power, higher performance, and reduced interconnect 

congestion motivate the use of quaternary circuits in a wide variety of applications.  
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8.2. Future Challenges 

The reduced scaling of semiconductor process technologies periodically allow the 

increased logic integration and reduced power consumption. There are significant circuit 

implementation challenges, even for binary circuits, at advanced deep submicron 

technologies when the supply voltages are below 1.0V range(which is true for 65nm, 

45nm and beyond). Some of the potential challenges in implementing quaternary (for 

that matter, any MVL) circuits at DSM technologies are discussed here. 

8.2.1. Signal-to-Noise Ratio (SNR) 

As discussed before in this report, SNR plays very important role in the design of 

reliable circuits. The quaternary circuits implemented as part of this work use the step 

voltage value of 1.1V. Larger voltage fluctuations in the signal values would leave very 

small SNR margin to clearly distinguish various logic levels in the circuit. So, the main 

challenge of adoption of quaternary circuits is to choose reliable circuit techniques and 

sufficiently large voltage step values to give sufficient SNR margins. 

8.2.2. Process (manufacturing) Variations. 

 Extremely small transistor and wire dimensions are making the circuits (even 

normal CMOS binary circuits) to be very sensitive to the manufacturing (fabrication) 

variations. The printability (fabrication) of the transistors with the available laser 

technology is heavily impacted at ultra-DSM technologies. The MVL circuits would be 

more sensitive to these variations. The reason is, threshold voltage of transistors can have 

large local variation in DSM technologies. MVL circuits are very sensitive to any 
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variation in the threshold voltages as it simply makes the circuits non-functional and 

have logic level overlaps. 

8.2.3. Threat of Crosstalk Delays. 

As it is reported in [DS+03] and [D04], shrinking geometries at the deep 

submicron technologies are making the circuits to be susceptible to crosstalk noise. 

 

 

Figure 47: Crosstalk Challenge 

As shown in the Figure 47, the signal transitions in the neighboring wires would 

essentially create signal surges and dips depending on the direction of the original 

transition. This is affecting even the traditional binary CMOS circuits in DSM 

technologies. These crosstalk effects would pose serious challenges to the MVL circuits 

at DSM technologies. The increase and decrease in the signal levels would make the 

receiving circuits incorrectly responding or latching onto unwanted noise. 

The ongoing research and potential future research in the field of MVL logic is 

expected to address the highlighted challenges and other applicable challenges for wider 

adoption of MVL circuits. 
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