

DESIGN AND VALIDATION OF QUATERNARY ARITHMETIC CIRCUITS

Approved by:

Dr. Mitchell Thornton (Chair & Dissertation Director)

 Dr. Sukumaran Nair

Dr. David Matula

Dr. Ping Gui

Dr. Stephen Szygenda

DESIGN AND VALIDATION OF QUATERNARY ARITHMETIC CIRCUITS

A Dissertation Presented to the Graduate Faculty of

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Engineering

by

Satyendra Ravi Prasad Raju Datla

(B.S., IETE, New Delhi)
(M.S. Computer Engineering, SMU, Dallas)

December 19th 2009

 iii

ACKNOWLEDGEMENTS

I want to take the opportunity to thank all the people who supported me in this

endeavor. In particular, I owe a great deal of gratitude to my advisor, Professor Mitchell

Thornton, who encouraged me all throughout the Ph.D. program. This dissertation would not

have been possible without the expert guidance of Dr. Thornton. I have known Dr. Thornton

for around 7 years and I learned many good things in life from my association with him and I

have tremendous respect for him. I also sincerely thank Prof. Sukumaran Nair for motivation

and guidance he provided me during last 6-7 years of my association with him. I also worked

closely with Prof. David Matula for last few years on arithmetic problems and I thank Dr.

Matula for his support and guidance.

My special thanks also go to my committee: Prof. Sukumaran Nair, Prof. David

Matula, Prof. Ping Gui and Prof. Stephen Szygenda for readily agreeing to be on the

dissertation committee. I also thank them for providing very useful suggestions during the

project work. I would like to offer special thanks to Synopsys for providing simulation tools

at SMU which helped me during the project. I hereby thank all the friends and staff in CSE,

EE, Research Departments and my colleagues at Texas Instruments for helping me during the

project and for sharing their knowledge and experiences. I also thank Luther Hendrix and

Dave Henderson for the discussions during the project.

 iv

I thank my parents, Ramasita and Trinatha Raju, and grandparents, especially my

grandmother, Subbayamma, for providing an excellent and vibrant childhood, which I

cherish my entire life. They also taught me the importance of the education and social

consciousness. I thank my elder brother, Krishnam Raju, and all my cousins for encouraging

me all throughout my education.

I also thank my wife, Sumitra, for her unwavering support during the many long days

that went into this endeavor. It took pretty good understanding and support from her, to

enable me to undertake the part-time Ph.D. program in addition to my full time working

position. I would like to tell our little 2.5 years old son, Sanjith, that he brought great deal of

joy and happiness to our family. I am blessed to have such a lovely family. I am also grateful

to all of my other family members and so many well wishers whose love and care upon me

always encouraged me. And last, but not least, I would like to thank God Shriram for

everything in my life.

 v

Datla, Satyendra R. P. Raju B.S., IETE, New Delhi, 1999
 M.S.Comp.Engg, SMU, Dallas, 2004

Design and Validation of Quaternary Arithmetic Circuits

Advisor: Professor Mitch Thornton

Doctor of Philosophy conferred December 19th, 2009

Dissertation completed December 4th, 2009

Arithmetic circuits play a very critical role in both general-purpose and

application specific computational circuits. Multiple Valued Logic (MVL) provides the

key benefit of a higher density per integrated circuit area compared to traditional two-

valued binary logic. Quaternary (Four-valued) logic also offers the benefit of easy

interfacing to binary logic because radix 4 (=22) allows for the use of simple

encoding/decoding circuits. The functional completeness is proven with a set of

fundamental quaternary cells. The library of cells based on the Supplementary

Symmetrical Logic Circuit Structure (SUSLOC) are designed, simulated, and used to

build several quaternary fixed-point arithmetic circuits such as adders, multipliers. These

SUSLOC circuit cells are validated using SPICE models and the arithmetic architectures

are validated using System Verilog models for functional correctness. Quaternary (radix-

4) dual operand encoding principles are applied to optimize power and performance of

squaring circuits using standard CMOS gates in 130nm and 90nm technologies.

 vi

This dissertation summarizes the study conducted to research the MVL circuits

and feasibility of design and validation of quaternary arithmetic circuits using SUSLOC

technology and also quaternary dual recoding squaring circuits using CMOS gates. The

research indicates that the quaternary circuits do offer the benefit of lower power

consumption compared to the traditional two-valued (binary) logic circuits.

 vii

TABLE OF CONTENTS

LIST OF FIGURES………………………………..………...…………………………..ix

LIST OF TABLES ..………………………………..……...…………………………….xi

Chapter

1. INTRODUCTION ..1 

1.1.  MVL..2 

1.2.  SUSLOC Technology ...4 

1.3.  Quaternary Logic ..8 

1.3.1.  Radix Selection ...8 

1.4.  Quaternary (radix-4) Recoding Based Binary Squaring Circuits..............17 

1.5.  Validation of Quaternary Circuits ...18 

1.6.  Notations used for Quaternary Algebra ..19 

1.7.  Comparison to Current Methods ...20 

1.8.  Organization of the Dissertation ...23 

2. QUATERNARY SWITCHING FUNCTIONS..25 

3. QUATERNARY LIBRARY CIRCUITS ...29 

3.1.  Quaternary One-variable Circuits ...29 

3.1.1.  The r-x-1 Inversion Circuit ...30 

3.1.2.  Quaternary J0 and J3 Circuits ...31 

3.1.3.  Quaternary J1 and J2 Circuits ...33 

 viii

3.2.  Quaternary Two or More Input Circuits ...35 

3.2.1.  Two-input MAX-inversion Circuit ...35 

3.2.2.  Two-input MIN-inversion Circuit...37 

3.2.3.  Three-input MIN-inversion Circuit...39 

3.2.4.  Quaternary D-Flip Flop Circuit with Binary Clock41 

3.2.5.  Quaternary 4-to-1 Multiplexer Circuit ..43 

4. QUATERNARY ARITHMETIC CIRCUIT ARCHITECTURES45 

4.1.  Quaternary Adder Circuit Architectures ...45 

4.1.1.  Quaternary Half-adder...46 

4.1.2.  Quaternary Pseudo Full-adder...48 

4.1.3.  Quaternary Full-adder ...50 

4.1.4.  Quaternary Ripple-Carry Adder..52 

4.1.5.  Quaternary Carry Look-Ahead Adder...54 

4.1.6.  Quaternary Carry Select Adder ...55 

4.2.  Quaternary Multiplier Circuit Architectures ...56 

4.2.1.  Quaternary Serial Multiplier Circuit ...56 

4.2.2.  Quaternary Single-digit Multiplier Circuit..59 

4.2.3.  Quaternary Incrementer Circuit ..62 

4.2.4.  Quaternary Parallel Multiplier ..63 

5. APPROXIMATE SQUARING CIRCUIT ...67 

5.1.  Squaring Methodology..69 

5.2.  Squaring Circuit Implementation ..74 

 ix

6. QUATERNARY CIRCUITS MODELING AND VALIDATION........................76 

6.1.  Quaternary Circuit Modeling ..76 

6.2.  Testbench Modeling..82 

7. RESULTS ...84 

7.1.  Quaternary Adder benchmarking ..84 

7.1.1.  Adders Circuit Area ..85 

7.1.2.  Adders Circuit Power ..86 

7.1.3.  Adders Circuit Speed ..88 

7.2.  Quaternary Multiplier Benchmarking ...88 

7.2.1.  Multiplier Circuit Area..88 

7.2.2.  Multiplier Circuit Dynamic Power..89 

7.2.3.  Multiplier Circuit Speed..90 

7.3.  Quaternary Serial Multiplier Implementation Analysis90 

7.4.  Quaternary Parallel Multiplier Implementation Analysis91 

7.5.  Results of Squaring Circuit Optimization ...92 

8. CONCLUSIONS AND FUTURE CHALLENGES...96 

8.1.  Conclusions ...96 

8.2.  Future Challenges..97 

8.2.1.  Signal-to-Noise Ratio (SNR) ..97 

8.2.2.  Process (manufacturing) Variations. ...97 

8.2.3.  Threat of Crosstalk Delays..98 

REFERENCES ...99 

 x

LIST OF FIGURES

Figure

1: LSI to MSI to VLSI migration ... 2 

2: a) Two valued b) Three valued and c) Four valued.. 3 

3: No. of 1-Variable Functions of Radix r.. 3 

4: FETs used for SUSLOC structure ... 5 

5: Area Impact of Higher Radix ... 9 

6: Area Impact due to Radix Conversion ... 10 

7: Impact on Signal-to-Noise Ratio .. 11 

8: CMOS Inverter ... 13 

9: Inverter Comparison : Radix-2 vs Radix-4 .. 14 

10: Cost vs Benefit Comparison of Various Radices ... 15 

11: Selection of Radix .. 16 

12: Truth table of Two-input MAX and MIN functions ... 25 

14: Quaternary r-x-1 Inversion Circuit, Truth Table & SPICE Sim Result 30 

15: (a) Quaternary J0 (b) Quaternary J3 Functions & SPICE Sim Results.................. 32 

16: Quaternary J1 Function & SPICE Sim Result .. 33 

17: Quaternary J2 Function & SPICE Sim Result .. 34 

18: Quaternary MAX-Inversion Circuit, Truth Table & SPICE Sim Result................. 36 

 xi

19: Quaternary Two-input MAX Circuit... 37 

20: Quaternary MIN-inversion Circuit, Truth Table, and SPICE Sim Result 38 

21: Quaternary Three-input MIN-Inversion Circuit & SPICE Sim Result................... 40 

22: Quaternary D Flip-Flop Circuit and SPICE Simulation Result 42 

23: Quaternary 4-to-1 Multiplexer Circuit & Spice Simulation Result........................ 44 

24: Quaternary Half-adder Equations... 47 

25: Quaternary Half-adder Based on Multiplexer Implementation.............................. 47 

26: Quaternary Pseudo Full-adder Equations... 50 

27: Multiplexer Based Implementation of Quaternary Full-adder Circuit 52 

28: Four-digit Quaternary Adder Architectures ... 53 

29: Equations for the Generate & Propagate Signals of Radix-4 Adder Digits 55 

30: Quaternary Sequential Multiplier Block Diagram ... 57 

31: Quaternary Serial Multiplier using Carry-Select Adders 58 

32: Quaternary Serial Multiplier using Carry-Look-Ahead (CLA) Adders 59 

33: One-digit Multiplier (a) Equations (b) Multiplexer Based Implementation 61 

34: Quaternary Incrementer Equations.. 62 

35: Diagram of 4*4 Partial Product Generator... 64 

36: Diagram of 4*4 Partial Product Accumulation Array.. 65 

37: 4*4 Parallel Multiplier with Wallace-Tree Addition.. 66 

38: Truncated Radix-2 Squarer Array .. 73 

39: 16-bit Radix-4 Approximate Squarer Array... 73 

40: Block Diagram of Truncated Squaring Circuit .. 75 

41: Quaternary One-variable Function Modeling with System Verilog 77 

 xii

42: SystemVerilog Models for Basic Quaternary Gates and Half-adder 78 

43: Quaternary Full-adder Modeling with System Verilog.. 80 

44: Quaternary 4-to-1 Multiplexer & D Flip-Flop System Verilog Models 81 

45: Quaternary One-digit Multiplier Modeling with System Verilog.......................... 82 

46: Quaternary D Flip-Flop Testbench in System Verilog... 83 

47: Metrics Comparison of Radix-4 & Radix-2 Squaring Circuit 95 

48: Crosstalk Challenge.. 98 

 xiii

LIST OF TABLES

Table

1: Quaternary Voltage Sources.. 17 

2: Quaternary Operator Definitions .. 19 

4: Quaternary Half-adder Truth Table... 46 

5: Quaternary Pseudo Full-adder Truth Table .. 49 

6: Quaternary Full-adder Truth Table .. 51 

7: Quaternary Single-digit Multiplier Truth Table ... 60 

8: Quaternary Incrementer Truth Table.. 62 

9: Quaternary Adders Benchmarking Comparison .. 85 

10: Quaternary Multiplier Benchmarking Comparison.. 89 

11: Quaternary Serial Multiplier Benchmarking .. 91 

12: Quaternary 4*4 Parallel Multiplier Architecture Comparison 92 

13: Synthesis Results using 130nm Cell Library.. 93 

14: Synthesis Results using 90nm Cell library... 94 

 xiv

Dedicated to my family, who has been source of unwavering support, and also to

Swami Vivekananda, whose inspirational messages always motivated me

 1

Chapter 1

INTRODUCTION

Integrated Circuit (IC) design has been evolving from ages of “Small scale

integration” (SSI), which involves tens of transistors, to the present days of “Very Large

Scale Integration” (VLSI), that involves millions of transistors on a single-chip. Several

different circuit technologies have been used in this journey of IC design evolvement.

Metal Oxide Semiconductor (MOS) technology offered several key benefits along with

an easy fabrication of basic transistor switch and allowed the scaling (sizing down the

size of transistor) resulting in IC size reduction periodically. Complementary Metal

Oxide Semiconductor (CMOS) technology brought the low power consumption

advantage which revolutionized semiconductor design applications. While Analog

designs heavily rely on continuous signal response of transistors, digital designs rely on

discrete logic levels of the signals. The introduction microprocessor designs along with

their surrounding applications significantly increased the realization of complex real

world applications using digital ICs for the past couple of decades. Two-level logic

namely “binary logic” is the decoding method used heavily. Binary logic essentially

involves only two logic levels: 0 and 1. Another advance in the logic decoding is the use

of multiple levels namely more than two discrete levels representing the signals.

 2

Multiple-Valued Logic (MVL) circuits offer several potential opportunities for

improvement of present VLSI circuit designs [D99].

Figure 1: LSI to MSI to VLSI migration

Fixed point adder and multiplier circuits are fundamental building blocks of

practically every algorithm ranging from simple arithmetic to graphics and signal

processing applications. Increased data density, reduced dynamic power dissipation, and

increased computational ability are among some of the key benefits of Multiple-Valued

Logic (MVL) [MT08, H84, K90].

1.1. MVL

 As elaborated in [MT08], Multiple-Valued Logic (MVL) is a discipline of

discrete p-valued systems where p>2, or in other words, non-binary valued systems. In

general sense, both binary-valued and discrete-valued variables with an infinite number

of values can be considered as MVL systems. Hence forth in this report MVL shall be

referred to as the system to utilize variables that can take on a discrete set of values with

cardinality of three or more. MVL principles and methods are general and independent

from the actual underlying implementation of the circuits. MVL has several applications

in the modern IC design methods and Electronic Design Automation (EDA) tools. MVL

 3

has long history of use in EDA-CAD tools and Hardware Description Languages (HDL)

for digital circuit simulation and synthesis. While several MVL applications are detailed

in [MT08], specifically, MVL circuit design applications are focused in the context of

this report. Figure 2 illustrates the example logic levels for binary (radix-2), ternary

(radix-3) and quaternary (radix-4) valued circuits.

Figure 2: a) Two valued b) Three valued and c) Four valued

Higher radix allows representing more functions compared to smaller radix. The

generic formula for number of "n" variable functions that can be represented using radix

"r" is . Figure 3 depicts the number of 1-variable (n=1) functions possible for each

radix starting from two. Increased number of functions is what makes the MVL circuits

offer higher logic density compared to binary circuits.

Figure 3: No. of 1-Variable Functions of Radix r

 4

1.2. SUSLOC Technology

Several implementation methods have been proposed in the recent past to realize

the MVL circuits. The MVL circuits can fundamentally be categorized as: Current-mode,

Voltage-mode and Mixed-mode circuits. Current-mode circuits [B91,CC95] have been

popular and offer several benefits. But, their power consumption is high when compared

to Voltage-mode circuits due to their inherent nature of constant current flow during the

functional operation.

Alternatively, Voltage-mode circuits consume a large majority of power only

during the logic level switching plus any additional leakage currents that may be present.

Hence, Voltage-mode circuits do offer lesser power consumption which has been the key

benefit of traditional CMOS binary logic circuits from the perspective of dynamic

switching activity. Lower power consumption has been the key benefit of traditional

CMOS binary logic circuits for several technology nodes. Because of increased

proliferation of portable battery powered personal computation devices, reduced power

dissipation is an important design constraint and motivates us to explore Voltage-mode

multiple-valued circuits. As indicated before, MVL technology primarily refers to circuit

technologies where more than two logic levels are used to represent signal levels design

larger circuits. There were several MVL architectures proposed and circuits designed

using the ternary (three levels), quaternary (four levels) penternary (five levels). Several

approaches for MVL circuit design have been proposed [CC95, B91, C+02, EI88, KK88,

S88, I98]. Recently, a self-sustaining and consistent circuit architecture called the

Supplementary Symmetrical Logic Circuit (referred as SUSLOC) structure is proposed

and patented [O00, OC00]. This proposed circuit architecture also allows the use of

 5

readily available circuit elements to construct logic circuits based on any radix number

system. Previous work has utilized SUSLOC technology for ternary systems [OC00,

AS+03, OC01].

As described in [O00, DT+09], three requirements must be met by the circuit

structure to design and fabricate quaternary MVL circuits using SUSLOC:

1) there must be three different sources of power available, with each source of power

representing one of three different logic levels with the ground plane representing

the fourth level

2) there must be one controllable path, or branch, from a source of power to an output

terminal of the circuit per output logic level and

3) only one controllable path, or branch, conducts from a source of power to an

output terminal per input logic level, contiguous group of input logic levels, or a

unique combination of input logic levels.

Figure 4: FETs used for SUSLOC Structure

 6

Due to their low cost and high reliability, Insulated Gate Field Effect Transistors,

(IGFETs, FETs) were chosen in the implementation of ternary logic as described in

[OC00, AS+03, OC01]. For similar reasons, the same types of transistors are used for the

work described here. Figure 4 depicts the symbols used for the four FETs that are used

for the quaternary gate implementations. This need creates the requirement of the ability

to vary doping levels to obtain the different VT values to create different types of

transistors. These four types of transistors with different threshold voltage selections can

be used in designing SUSLOC circuits based on any radix [O00]

P-channel enhancement mode transistor shown in Figure 4 has a gate threshold

voltage, VGS on of –V. The term VGS on indicates the relative gate threshold voltage at

which the P-channel enhancement mode transistor turns ON. The relative voltages are

the gate input voltage and the source voltage. If the gate input voltage differs from the

source voltage by at least the gate threshold voltage VGSon of –V, the P-channel

enhancement mode transistor is ON and the source voltage will be conducted to the

drain. Similarly, N-channel enhancement mode transistor has VGS on of +V.

Whereas, P-channel depletion mode transistor has a relative gate threshold voltage,

VGS off of +V. If the gate input voltage differs from the source voltage by at least +V, the

P-channel depletion mode transistor is off and no conduction will occur between the

source and the drain. Otherwise, the transistor is on and conducts the voltage from source

to drain. On the other hand, N-channel depletion mode transistor has got the threshold

voltage VGS off of -V.

The maximum and minimum power supply voltages (the output voltages) for

SUSLOC circuits are determined by the output requirements of the circuit and/or the

 7

specifications of the switches being employed. The threshold voltages, VGS(TH), of P-

channel FETs selected or fabricated to be a percentage of a logic level above the highest

input logic level to which they are to conduct. The threshold voltages, VGS(TH), of N-

channel FETs are selected or fabricated to be a percentage of a logic level below the

highest input logic level to which they are to conduct. The suggested percentage of each

should be in the range of 50% to 75% of the logic step voltage (LSV) such that an

overlap of on branches is obtained when the circuit is switching from one output logic

level to another. This percentage is called the “overlap percentage” (OP) and should be

the same for all switches used in digital applications. Analog applications may require

that the VGS(TH) and/or OP and/or the LSV be variable.

When developing a logic function or logic synthesizing a circuit, it is necessary to

calculate the appropriate or required threshold voltages for each of the FETs. In order to

calculate the VGS(TH) for a particular FET, the appropriate equation is selected according

equation is selected according to the FETs channel type from the following two

equations:

P-channel: VGS(TH) = Vi – (Vo – (OP*LSV)) and

N-channel: VGS(TH) = Vi – (Vo + (OP*LSV))

Where:

Vi is the input logic level voltage limit (upper or lower as appropriate) to which

the branch responds;

Vo is the output logic level voltage;

LSV is the logic step voltage; and

OP is the selected overlap percentage preferably in the range of 55% to 75%.

 8

The noise immunity of a SUSLOC circuit ranges from approximately 45% of a

logic level to several logic levels due to the logic level domains, tolerances of the

switches and power supplies, the high impedance of FETs, and the overlap percentage.

The output of some functions change one logic level with an input change of two or more

logic levels, hence the noise immunity in SUSLOC can range several logic levels.

1.3. Quaternary Logic

Quaternary logic system is a four valued (radix-4) logic meaning that there are

four possible values for each digit.

1.3.1. Radix Selection

Several factors have influence in deciding the best radix usable. Obviously, in

theory, higher radix would be best to represent as many numbers as possible. But, in

practice, the limits of usability and availability of suitable devices limits the usability of

higher radix based MVL circuits. Following three factors capture the tradeoffs in

choosing appropriate radix.

Area : Increased data density of multiple valued logic circuits does help, in

principle, to reduce the area when compared to equivalent binary circuits [MT08]. Each

of the circuits stores more information per bit. The net result is that the large amount of

data sets can be combined and implemented in lesser area. However, at smaller circuits,

the additional overhead of “supplementary” logic in the proposed SUSLOC circuit

structures does increase the area when compared to their equivalent binary gates. This is

depicted in the Figure 5.

 9

Figure 5: Area Impact of Higher Radix

So, the area advantages can only be seen in larger circuits. The logic duplication

due to binary logic spread is avoided in MVL circuits. Also higher radices would allow

the increased number of functions that can be implemented, making it easier for larger

and more complex functions implementation.

Another important advantage is the reduction of signal connections/wires. The

reduced wires would reduce the size of the chip and also improve the routability of the

design. One of the critical challenges in the Deep Sub-Micron technologies is the routing

congestion and also the printability (fabrication) of close proximity of the wires. The

limitations of the existing fabrication equipment would create several manufacturing

defects like shorting of the wires, open of the wires etc. creating lot of part defects and

yield loss. So, reducing the number of wires would significantly improve the device

manufacturability and area improvement.

 10

One key metric to consider for any MVL circuits though is the interface logic to

the traditional binary circuits. The interface to and from binary logic to the MVL logic

does need to have the level conversion to allow successful integration. Circuits namely

“radix converters” help to address the cross-region interface needs. The radix conversion

is relatively easy for radices which are power of two. (example, radix-2 (binary), radix-4

(quaternary) and radix-8, radix-16 etc.) The radix conversion process gets complex and

requires more careful handling for other radices like radix-3, radix-5, radix-6, radix-7,

radix-9 etc.

Figure 6: Area Impact due to Radix Conversion

So, in terms of area, the higher the radix, the better it is. Higher radix (like 5 and

above) would improve the area. But the radices that are not power of two tend to need

more complicated interface logic than for the radices which are power of two.

Signal-to-noise ratio: Multiple voltage values are used to represent various logic

levels used in MVL circuits. Increased radix would mean increased number of logic

levels. Each logic level shall have a dedicated voltage source. And the most important

issue is how to have a sufficient signal-to-noise ratio that guarantees the circuit operation

 11

in the presence of noise. Noise in the signals can be caused by several factors in the

circuits like power supply noise, cross coupling noise etc.

 Due to advances in the Deep-Sub Micron (DSM) technologies, the nominal

operation voltage of circuits is scaling downwards to 1.0V-1.2V range. If MVL circuits

are to be implemented at these technologies, the voltage step value significantly comes

down to the range of 300mV to 400mV for quaternary logic. The concept is illustrated in

Figure 7 which shows the simulation output of the quaternary inverter. Here the voltage

step value is 1.1V. We can readily see that reducing the step value to 300-400mV would

leave very small SNR margin to clearly distinguish various logic levels in the circuit.

Figure 7: Impact on Signal-to-Noise Ratio

 12

The reduced voltage step eliminates the available signal-to-noise margin. The

signal transitions are to be well constrained to limit the potential voltage swings during

the logic level switching. The inability to handle the noise would restrict the use of MVL

technology. So, this poses serious threat to the higher radix circuits.

Cost due to need for several threshold values: Each logic level adds the

complexity of creating new threshold values for the transistors to be able to switch

effectively between the logic levels. The increased number of threshold voltages would

increase the cost of the fabrication due to additional implementation steps. Also

increased manufacturing variations in the deep submicron technologies would increase

the variations of the threshold voltages. The multiple valued circuits implemented with

FETs are very sensitive to the variations in the threshold voltages. Any changes in Vth

values could directly overlap the close-by logic levels causing catastrophic device

failures. This poses the threat of yield reduction which again increases the cost of

products. So, effectively, higher the radix, the costlier it is to manufacture the devices.

Performance: Performance of multiple valued circuits gets better with the

increased radix. But, again, larger the radix, the more complicated the timing analysis

would get because we need to account for several design margins for various physical

and electrical effects. Some examples of the effects are the increase in crosstalk glitches

at DSM technologies as we had shown in [DS+03] and [D04]. But, primarily, the

increase in radix would achieve better performance with some caveats of increased

complexities in the actual timing closure.

 13

Power consumption : Power primarily consists of three parts : Dynamic power,

Active leakage power and Standby leakage power. The Figure 8 illustrates the three

powers in the context of standard CMOS inverter circuit.

Figure 8: CMOS Inverter

The Dynamic power is also referred to as the Switching power. Typically, this

power is dominant of total power consisting of 70-75% of the total power. The Active

leakage being the next higher component, generally consisting of 15-20% range. The

remaining 5-10% power is the leakage power.

 14

 a) CMOS inverter b) Quaternary Radix-4 inverter

Figure 9: Inverter Comparison : Radix-2 vs Radix-4

The comparison of power can be done using the Quaternary inverter case. As can

be seen from the Figure 9, Radix-4 circuit (SUSLOC) requires additional two transistors

for each logic level. Each additional transistor introduces the additional input

capacitance. However, for correct comparison, each SUSLOC inverter is equivalent of

two CMOS binary inverters.

So, assuming that each transistor’s input capacitance is approximated as C, the

total capacitance for SUSLOC inverter gate is = 6C

Whereas, the total capacitance for two CMOS inverters is = 2*2C=4C

Now, consider the case of logic switch from 0 to 1 in CMOS inverter case. The

voltage supplies are 0V and 3.3V. Assuming the frequency of operation is f and a

switching factor of 0.5, the total switching power of the transition from 0 to 1 is

CV2f = (4C)*(3.3)2*f *0.5 = 21.78*C*f

 15

For the case of quaternary SUSLOC, the equivalent transition is from 0 to 1.1V to

2.2V to 3.3V. The average switching voltage in any given cycle is 1.83V. The average

toggle factor is 0.75 because there are total 12 switching cases in the total 16 possible

transition states of quaternary gates. The switching power for each of the transition is

CV2f = (6C)(1.83)2*f*0.75 = 15.07*C*f

This shows that the Radix-4(SUSLOC) circuits have switching power

consumption savings of over 30% when compared to equivalent CMOS binary circuits.

However, the requirement of larger number of transistors in the quaternary circuits

would tend to increase the leakage power for the radix-4 case due to excessive standby

leakage. But, because switching power is the dominant portion, the radix-4 circuits’ fare

well compared to binary circuits when total power is measured. The previously described

factors estimated for a 16-bit adder circuit reference and are depicted in Figure 10.

Figure 10: Cost vs. Benefit Comparison of Various Radices

 16

For all the factors, radix-2 (binary) is chosen as a reference. As can be seen from

this estimation, radices above 4 would have exponential cost increase due to the cost

factors discussed before. While the benefits of area and performance keep getting better,

exponential cost would prohibit the usage of higher radix MVL circuits with existing

components and existing technology. May be the new and evolving technologies like

Quantum devices would allow higher radix MVL circuits to be implemented with lesser

cost when compared with radix-2 circuits. Also, Brain H. reported in [H01] as shown in

the Figure 11 that overall benefits would start deteriorating for higher radices.

Figure 11: Selection of Radix

Also, radix-4 is a power of two allowing for efficient interfacing with binary

circuits and because the Voltage-mode operation offers reduced power dissipation

characteristics as compared to Current-mode technologies.

Radix-4 (quaternary) is chosen as the radix for this work. The quaternary

arithmetic circuits are implemented by extending the basic SUSLOC structures as

 17

described in [O00] with the addition of four literal-selection one-place logic gates. The

logic gates designed are functionally complete set in the sense that any arbitrary

quaternary switching function can be realized using them. Several different addition

circuits (ripple-carry, carry-look ahead, and carry-select) and multiplier circuits (serial

and parallel) are designed and simulated. The area, power, and estimated performance

are analyzed both among themselves and with equivalent binary versions.

For the quaternary circuit implementation, the voltage step value chosen as 1.1V.

The threshold voltage values for each transistor calculated according to the following

formula obtained from [O00]:

Where Vi is input voltage level, Vo is output voltage level, OP is overlap percentage

and LSV is logic step voltage. Table 1 lists the voltage sources used for various logic

levels in the construction of the quaternary gates.

Table 1: Quaternary Voltage Sources

Logic level/Supply Voltage Value (V)
0/GND 0
1/V1 1.1
2/V2 2.2
3/V3 3.3

1.4. Quaternary (radix-4) Recoding Based Binary Squaring Circuits

Squaring circuits are widely used in several applications such as signal

processing, graphics and other arithmetic intensive operations. In several applications,

existing multiplier circuits are used to perform squaring operation as well. But, a

 18

dedicated squaring circuit would enable optimized area and power when there is

extensive usage of squaring operations. Several squaring circuit approaches were

proposed previously [C71, D85]. Recent proposal in [M09] takes the advantage of

symmetry in squaring operation and applies the dual operand radix-4 recoding to

optimize the power and performance of the squaring circuits.

We have conducted research on squaring methods and implemented the proposed

quaternary (radix-4) dual operand recoding squaring method [DTM09]. The synthesis

experiments were conducted using the 90nm and 130nm technologies. The results

indicate that quaternary recoded squaring circuits do yield lower power and higher

performance when compared to equivalent regular binary multiplier circuits.

1.5. Validation of Quaternary Circuits

The methodology used is to design the quaternary cells at the transistor level and

using SPICE simulations to characterize their behavior. The quaternary cells are then

used to manually construct the addition and multiplier circuit architectures. The

architectures are functionally simulated using the System Verilog language that allows

for efficient modeling capabilities for the description and simulation of large MVL

circuits [AG+07]. Analysis of resulting circuits is performed using commercially

available Synopsys tools. The equivalent two-valued (binary) logic circuits are coded in

Verilog HDL and synthesized using Synopsys design compiler for benchmarking. Area

(number of transistors), Switching power and logic depth (number of stages in timing

critical path) are used as metrics for comparison of quaternary circuits with their binary

counterparts.

 19

1.6. Notations used for Quaternary Algebra

The quaternary logic circuits used in this work are modeled by a four-valued

switching algebra over variables that may take on the values {0,1,2,3}. The notations for

the different operators used in the quaternary equations in this report are defined in Table

2. The notation also includes the explicit specification of state values used.

Table 2: Quaternary Operator Definitions

Operator Definition
 Quaternary MIN
 Quaternary MAX

{}
Indicates logic literal values of
the corresponding quaternary
variable

The decisive literal of a quaternary variable, x, is denoted by x{0}, x{1}, x{2}, or x{3}

[E93] where x{a}=3 when x=a, otherwise x{a}=0. There are many possible algebraic

operators for this logic system: 256 one-place operators and in excess of four billion two-

place operators. The small subset of operators used in this work corresponds to

relatively easily implemented SUSLOC circuits. We use five different one-place

operators; the quaternary inverter denoted as where , and the four decisive

literal functions, x{a}, described previously. In terms of two-place operators, the MIN and

MAX functions are utilized as defined in [P21]. The MIN function is denoted as x·y

where x·y=x if x<y, otherwise x·y=y. When two literals or terms appear next to one

another, the MIN operator, ·, is implied to be present. The MAX function is denoted by

x+y where x+y=x if x>y else x+y=y.

 20

1.7. Comparison to Current Methods

Several approaches to MVL circuit design have been proposed in the past as

indicated in [S88, S93, KK+87, C90]. Recently, there have been several implementation

techniques proposed for Current-mode MVL circuits. Initial Current-mode multiple

valued logic circuits using I2L or CMOS have been proposed [DM+77, KK+88] but

suffer from the current mirror errors and threshold detector errors. Various authors have

worked on the realization of different types of circuits using Pass Transistor Logic. In

[I86] the authors proposed pass transistor networks with threshold voltage. Such circuits

are very much suitable for multiple-valued logic.

The realization of multiple-valued flip-flops (MVFF) also has been studied by

different authors [ZW90, AH75]. In [EI74] the authors pointed out different approaches

of realization of MVFFs. In [BZ+04] MVFF using Pass Transistor Logic has been

proposed and reported increase performance when compared with traditional CMOS

circuits. System design methodologies and Circuit design methodologies both were

discussed in [S93]. Both Decoder-Logic-Encoder (DLE) and Theta (θ) based circuit

design methodologies were discussed. As highlighted in [S93], standard CMOS based

Current-mode MVL circuits can be slower compared to their binary counterparts.

The adiabatic design methods for MVL circuits are proposed in [CO+96]. But,

the limiting factor of the proposed low-energy logic schemes is the problem of efficiently

generating and distributing the multiple phase power clocks. The scalability of the same

principles to larger circuits would be the main challenge. Recently, there has been an

increased interest and research of emerging technologies such as quantum circuits and

reversible circuits and application of the quantum principles to the MVL circuit design

 21

[MT08, QC04, CS+89]. While these technologies provide promising advantages, they

are still relatively in early stages of large circuit design and adoption into mainstream

applications. However, quantum ternary logic has the limitation that conventional binary

logic functions cannot be very easily represented using the ternary base and the

developed methods are applicable only for logic functions expressed in ternary base. A

very promising alternative is quaternary logic, using which, besides quaternary logic

functions, binary logic functions can be expressed by grouping 2-bits together into

quaternary values.

Etiemble nicely summarized in [E92] the comparison of development of MVL

circuits to that of binary circuits. While the argument centers around Current-mode

circuits, most of the conclusions can be attributed to Voltage-mode MVL circuits as well.

The main conclusion in this work [E92] suggests that MVL circuits do need to offer

benefits in the front of interconnect optimization and also in performance and power

improvements in order for them to be widely used. Also, one of the main suggestions of

Etiemble is to compare the performance in terms of number of logic levels within the

same technology. Both of these suggestions are adopted for our work.

There has been increased interest in quaternary circuits due to their unique

advantage of ease of interfacing to binary circuits. Mangin et. al [MC86] demonstrated

the fabricated quaternary encoder and decoder circuits on a gate-array integrated circuit.

Shanbhag et. al [SN+90] fabricated additional quaternary circuits such as quaternary

registers using the 2-um CMOS technology. Recently, Shirahama et. al [SH08] proposed

quaternary adders based on output generator sharing for improving performance of both

Current-mode and Voltage-mode circuits, and highlighted the observation that Voltage-

 22

mode circuits do consume low-power when compared to their

Current-mode counterparts. The voltage swings of 0.4V in the proposed approach are

very tiny which pose the threat of signal noise margin and hence are not easily

extendable to larger circuit implementations. Design and verification of quaternary

adders in Field Programmable Gate Arrays (FPGA) are demonstrated in [DW08].

Results presented indicate that the quaternary signed digit (QSD) adders do provide

improved performance compared with ripple carry based adders. But, it is also

concluded that the area complexity of QSD adders grows along with size of the operands

and is more than the other types of adders. Hence, the proposed QSD adders do suffer

from higher power consumption.

Recently, an approach structurally similar to that of a static-CMOS binary circuit,

called the Supplementary Symmetrical Logic Circuit structure (SUSLOC), was proposed

and patented [O00, OC00, OC01]. SUSLOC MVL circuits theoretically offer a stable

circuit implementation structure for any integer radix, and also allow the use of readily

available circuit elements to construct logic circuits. Previous work has utilized SUSLOC

technology for ternary systems [OC01, KA+03]. Insulated gate Field Effect Transistors

(FET) are used as the basic building blocks for SUSLOC circuits.

We tried to address the key concern of modern circuit design: Power. We have

chosen Voltage-mode to effectively address the power challenge. At the same time, we

wanted to implement the circuits using the readily available CMOS technologies for

more immediate applications. We have adopted the proven SUSLOC technology which

was successfully demonstrated the manufacturability of ternary circuits using the

standard CMOS process technology. We, however, adopted the quaternary as our radix

 23

for the ease of interface with the binary logic to allow mixing of the design circuits with

the normal binary circuits. With these, we believe we take the advantage of benefits of

MVL circuits and still come up with readily usable and most importantly, lower power,

arithmetic circuits. We also applied the quaternary principles into squaring circuits and

realized low power and high performance squaring circuits.

1.8. Organization of the Dissertation

This dissertation report is organized into several chapters. Following are the

details about the subsequent chapters.

Quaternary Switching Functions: The background details about topics in

quaternary switching theory and the functionally completeness proof are elaborated in

this chapter.

Quaternary Library Circuits: Details about the implementation of set of

preliminary quaternary circuits is provided in this chapter. Transistor level

implementation details of functionally complete quaternary gates and their SPICE circuit

simulation results are detailed. The preliminary set is extended to other gates like

quaternary sequential cell and 4-to-1 quaternary multiplexer cell as described in this

chapter.

Quaternary Arithmetic Circuit Architectures: This chapter starts with details of

quaternary half adder and full adder circuits. The quaternary arithmetic circuit

implementation is then extended to higher levels of arithmetic circuits. Different adder

architectures are implemented using the preliminary quaternary gate set. Two varieties of

multiplication circuit schemes namely serial and parallel are researched upon whose

details are provided as well in this chapter.

 24

Approximate Squaring Circuit: The details on the work to implement

approximate squaring circuits utilizing the radix-4 (quaternary) dual recoding are

provided in this chapter.

Quaternary Circuits Modeling and Validation: This chapter elaborates on the

proposed validation techniques for quaternary circuits using the System Verilog. Details

of System Verilog offerings with which quaternary circuit modeling is attained are

included in this chapter.

Results: Quaternary circuits are benchmarked against the equivalent binary

circuits. Area, timing and power are analyzed for quaternary circuits and are compared

with the binary circuits. The benchmarking comparisons for approximate squaring

circuits are included as well.

Conclusions and Future Challenges: The final conclusions on the research work

on quaternary circuits, their implementation and validation methods are summarized in

this chapter. The remaining challenges for successful quaternary circuits’ wider adoption

are summarized as well in this chapter.

 25

Chapter 2

QUATERNARY SWITCHING FUNCTIONS

A necessary requirement for the practical use of SUSLOC quaternary logic for

circuit design is the identification of a set of primitive logic gates that allows any

arbitrary switching function to be realized. Furthermore, each logic gate should be easy

to implement and efficient in SUSLOC technology. A representation of a quaternary

switching function that is analogous (but not identical) to the binary sum-of-minterms

representation can be formulated using the MAX function in place of the binary

inclusive-OR function, and product terms may be formed using the MIN function in

place of the binary AND operation. The truth tables for two-variable MAX and MIN

functions are given in Figure 12.

Figure 12: Truth table of Two-input MAX and MIN Functions

 26

To show that the collection of operators over the quaternary-valued logic defined

previously is sufficient to specify all possible switching functions, some definitions are

provided [MW86].

Definition 1: A specific product selection term is denoted by JPi where the integer

index Pi denotes the particular product selection term for which JPi is non-zero. Pi is the

numeric value (in the decimal system) given by the digit string k1k2… kn where ki∈{0, 1,

2, 3} and is in the range [0,4n].

As an example, consider the case for n=4, then J35=x1
{0}x2

{2}x3
{0}x4

{3} since

0×43+2×42+0×41+3×40=35.

 (1)

Definition 2: A minterm of a quaternary switching function is formed by

combining the Pi
th logic value in the truth table with the JPi product selection term using

the MIN operation.

Definition 3: A sum-of-minterms (SOM) form of a quaternary function is a form

consisting of all minterms combined with a MAX operator.

 27

As an example, consider a quaternary switching function of n variables, f, where

each function range value corresponding to the Pi
th product term in the truth table is

denoted as fPi. The function f can be expressed in SOM form, fSOM, as shown in Equation

(2).

 (2)

Lemma 1: The SOM form of a quaternary function is a canonical representation.

Proof: The truth table for a switching function consists of rows with all possible

variable assignments and their corresponding function range values. For a completely

specified quaternary switching function of n variables, the corresponding truth table

representation contains 4n rows. The truth table representation can be expressed as a

column vector of function range values with each vector component in a well-defined

order corresponding to the particular assignment of domain variables, the Pi
th term,

denoted as F. Any permutation of the vector component values or any change in one or

more of the vector component values yields a vector (or corresponding truth table) that

represents a different switching function. Thus, every switching function has a unique

vector representation. Because each product selection term is non-zero for one and only

one product assignment, Equation (2) can be formed as the inner product of a row vector

whose components are all unique selection product terms (denoted as JP) and F as fSOM=

JP ⋅F. Since each F vector is unique for a given switching function and since Equation

(2) can be formed using F, the proof is complete.

 28

Theorem 1: The collection of quaternary logic operators consisting of the two-

place MIN and MAX functions, the four decisive literal functions {x{0}, x{1}, x{2}, x{3}},

and the constants {0, 1, 2, 3} form a functionally complete set over all possible

quaternary-valued switching functions.

Proof: Consider an arbitrary quaternary switching function of n variables of the

form f:{0, 1, 2, 3}n→{0, 1, 2, 3}. For a completely specified function, f, the range values

associated with the Pi
th minterms are constants from the set {0,1,2,3} denoted by fPi.

Clearly, Equation (2) is a general representation of any arbitrary quaternary switching

function since the constants denoted by fPi can represent any assignment from {0, 1, 2,

3}. From Lemma 1, Equation (2) is also proven to be canonic. Therefore, any

completely specified function could be represented in the form of Equation (2), which is

based only on the quaternary MIN, MAX, decisive literal functions,and the set of

constants {0, 1, 2, 3}.

 29

Chapter 3

QUATERNARY LIBRARY CIRCUITS

We are interested in elementary quaternary circuits that have sufficient

representative capability to efficiently implement quaternary arithmetic circuits. We

extended the SUSLOC implementation principles from [O00] to design a basic set of

quaternary circuits to form a library of circuits. This set of gates is designed using

existing CMOS FET components and does not require any special technologies or

materials to fabricate them [O00,O99]. Subsequent sections in this chapter provide

implementation details for these circuit library elements and their corresponding SPICE

simulation results.

3.1. Quaternary One-variable Circuits

In general, for a single variable function in radix r, r possible output values are

available for each of the r possible input values [S88]. Accordingly, there are rr such

one-variable functions. Therefore, there are a total of 44(=256) possible unary functions

possible in quaternary logic, which means that there is considerable room for choice

when selecting a subset of quaternary one-place logic cells for implementation. A total of

four out of 256 functions have constant output values. The remaining 252 functions

produce non-constant output logic value combinations for different logic values at the

input.

 30

For the purpose of this work, five of the 252 functions are selected for circuit

implementation. These are :

• r-x-1 inversion circuit
• J0 literal selection circuit
• J1 literal selection circuit
• J2 literal selection circuit
• J3 literal selection circuit

3.1.1. The r-x-1 Inversion Circuit

A quaternary circuit that performs the r-x-1 inversion operation is shown in

Figure 13. The r-x-1 circuit is also referred to as a “diametrical negation” or “inversion”

function.

Figure 13: Quaternary r-x-1 Inversion Circuit, Truth Table & SPICE Sim Result

 31

The four-valued variable for which the reference input string is (0,1,2,3) causes

the r-x-1 circuit to produce output string (3,2,1,0). This circuit is useful in constructing

the quaternary MAX and MIN functions and several larger quaternary circuits.

The operation of quaternary inversion circuit is described here. The logic state

“0” at the IN input produces the required bias to turn the F5 transistor ON. The output

pin OUT is then driven by supply V3, which forces logic state “3” at the OUT pin. On the

other hand, logic states “1” and “2” trigger the required bias to turn ON the transistor

pairs F3-F4 and F1-F2 respectively. The output pin OUT is driven by the V2 and V1

supplies to respectively force logic states “2” and “1” at the OUT pin. Finally, the

voltage value of state “3” at the IN pin forces the required bias to F0 transistor to turn

ON. This condition forces the OUT pin to be shorted to Ground which means state “0”.

The depicted circuit is simulated using SPICE models for the transistors. The waveforms

shown in the Figure 13 confirm the circuit’s correct functionality.

3.1.2. Quaternary J0 and J3 Circuits

The quaternary one-place literal selection functions J0 and J3, and their circuit

implementations are discussed in this section. The two circuits and their simulated

behavior are depicted in Figure 14.

 32

Figure 14: (a) Quaternary J0 (b) Quaternary J3 Functions & SPICE Sim Results

 33

The quaternary circuit J0 is very similar to a standard binary CMOS inverter

circuit. The threshold voltages of both the P-FET and N-FET are chosen to produce the

quaternary J0 function. The J3 circuit is constructed simply by connecting two back-to-

back J0 circuits. The threshold voltages of the transistors in this circuit are selected to

ensure that the circuit exhibited the required J3 behavior.

3.1.3. Quaternary J1 and J2 Circuits

This section discusses the remaining two quaternary one-place literal selection

functions, J1 and J2, along with their circuit implementations. The circuits and their

simulated behaviors are shown in Figure 16 and Figure 16.

Figure 15: Quaternary J1 Function & SPICE Sim Result

 34

Figure 16: Quaternary J2 Function & SPICE Sim Result

The quaternary circuit implementations for functions J1 and J2 are the same,

except for the fact that different threshold voltage values are used for the individual

transistors. In the case of the J1 circuit, transistor F4 is turned ON only when the logic

state at the IN input is between states “1” and “2”. This forces supply V3 to drive the

OUT pin to logic state “3”. Alternatively, in the case of the J2 circuit, the logic state at

the IN input has to be between states “2” and “3” to enforce the same behavior.

 35

3.2. Quaternary Two or More Input Circuits

The previous sections discussed the implementation of the one-place quaternary

circuit cells. In order to complete the cell library, additional circuits must be included

that have two or more inputs. There are a significantly large number of possible two-

variable (416) and three-variable (464) functions to consider. We selected a small number

of useful two-variable and three-variable quaternary functions to be part of the

quaternary circuit library. Two other important circuit elements, the quaternary flip-flop

circuit and the 4-to-1 quaternary multiplexer circuit are also implemented. The following

is the list of the multiple-variable quaternary circuits implemented:

• Two-input MAX-inversion and MAX circuits
• Two-input MIN-inversion and MIN circuits
• Three-input MIN-inversion and MIN circuit
• D Flip-flop circuit
• 4-to-1 multiplexer circuit

3.2.1. Two-input MAX-inversion Circuit

Traditionally, very commonly used multiple-valued circuits have been the

maximum (MAX) and minimum (MIN) functions [MT08]. For multiple-valued variables

 is the largest xi

 The two-variable maximum (MAX) function outputs the larger of the two values

presented. The MAX-inversion circuit produces an r-x-1 inverted value of MAX function.

The two-input MAX-inversion circuit structure in Figure 17 is analogous to the two-input

NOR gate circuit in binary logic. A voltage level of logic state “0” on both of the inputs,

A and B, would force the upper-most transistor pair to be turned ON. This enforces the

 36

supply V3 to drive the OUT port and hence produce logic state “3”. Alternatively, when

either one of the inputs, A or B, reaches logic state “3”, the respective transistor in the

bottom-most pair is turned ON. This forces the OUT port to be shorted to Ground (logic

state “0”).

Figure 17: Quaternary MAX-Inversion Circuit, Truth Table & SPICE Sim Result

 37

When either of the inputs reaches logic state “1” and the other input is less than

or equal to logic state “1”, power supply V2 drives the OUT pin. Similarly, when either

of the inputs reaches the logic state “2” and the other input is less than or equal to logic

state “2”, the power supply V1 drives the OUT pin. The Two-input MAX function is

implemented by connecting an r-x-1 inversion circuit at the output of a two-input MAX-

inversion circuit as shown in Figure 18.

Figure 18: Quaternary Two-input MAX Circuit

3.2.2. Two-input MIN-inversion Circuit

Another widely used multiple valued function is the MIN function. For multiple-

valued variables

 is the smallest xi

The two-variable minimum (MIN) function outputs the smaller of the two values

presented at the inputs. The two-input MIN-inversion circuit structure in Figure 19 is

analogous to the binary-valued two-input NAND gate circuit when implemented using

static CMOS technology. The threshold voltages of the transistors are selected

appropriately to derive the required logic states at the OUT pin. The quaternary two-

 38

input MIN function is also implemented by connecting an r-x-1 inversion circuit at the

output of the MIN-inversion circuit.

Figure 19: Quaternary MIN-inversion Circuit, Truth Table, and SPICE Sim Result

 39

3.2.3. Three-input MIN-inversion Circuit

Another useful quaternary function that is implemented as part of the library is

the three-input MIN-inversion circuit. Essentially, the three-input MIN-inversion circuit

is a simple extension of the two-input MIN-inversion circuit with an additional parallel

path from the third input. The circuit, its truth table, and the SPICE simulation results

are shown in Figure 20. The functionality of this circuit is the same as the two-input

circuit, except for the fact that there are three inputs from which the minimum value was

selected. The size of the truth table is significantly larger than that for the two-input

circuit.

 40

Figure 20: Quaternary Three-input MIN-Inversion Circuit & SPICE Sim Result

 41

3.2.4. Quaternary D-Flip Flop Circuit with Binary Clock

The quaternary circuits discussed thus far can be used to design any

combinational function since they form a functionally complete set of operations (with

constants) from a mathematical view. The implementation of synchronous sequential

circuits such as counters, and shift registers require memory elements. Flip-flops can be

used as one-digit memory elements and are essential elements of synchronous sequential

circuits. As part of the quaternary library, a D-type quaternary flip-flop circuit with a

binary clock input is designed. The block diagram and SPICE simulation results for the

quaternary flip-flop are shown in Figure 21.

 42

Figure 21: Quaternary D Flip-Flop Circuit and SPICE Simulation Result

 43

The quaternary flip-flop circuit retains four possible values. A rising edge

(transition from logic state “0” to logic state “3”) on the CLK input pin latches the logic

state at the D input. The stored value is maintained at the output pin Q with the help of

an internal feedback loop. The output signal QBAR is the r-x-1 inverted value of the

output Q. This circuit’s functionality is verified by supplying a series of pulses on the

CLK input. In addition, the voltage state at the D input is altered periodically such that all

four possible voltage values are validated. As illustrated in the simulation waveforms, for

every rising edge transition at the CLK input, the logic state at the D input is correctly

stored and held constant at the Q and QBAR outputs.

3.2.5. Quaternary 4-to-1 Multiplexer Circuit

Another important function that is useful for implementing complex quaternary

functions is the data selector or multiplexer. A multiplexer circuit selects one of many

input signals and forwards the selected input to a single output line. In the case of

quaternary logic, a multiplexer of 4n inputs has n select bits, which are used to select one

of the inputs to be sent to the output. The quaternary 4-to-1 multiplexer circuit shown in

Error! Reference source not found. is another addition to the quaternary library.

The multiplexer is designed using the MIN, MAX, and the other basic one-

variable functions (J0, J1, J2 and J3). The one-variable functions J0, J1, J2 and J3 are used

to detect the voltage value at the select (S) input. The outputs of these single variable

functions are input to the two-input MIN circuits along with their respective inputs. This

configuration forces the selected input logic value along with three logic “0” values.

Three additional two-input MAX circuits then generate the final output at the OUT pin.

This four-to-one multiplexer circuit is verified using the SPICE simulator by supplying a

 44

series of voltage state changes at each primary input along with different voltage values

on the S pin. The waveforms captured by the SPICE simulation are shown below.

Figure 22: Quaternary 4-to-1 Multiplexer Circuit & Spice Simulation Result

 45

Chapter 4

QUATERNARY ARITHMETIC CIRCUIT ARCHITECTURES

The focus of this work is to design the quaternary arithmetic circuits for primitive

addition (+) and multiplication (*) operations using circuits from the cell library

described in Chapter 3. Several architectural options are available for implementing

addition and multiplication arithmetic circuits. Different adder and multiplier

architectures are analyzed by implementing the quaternary circuits whose details are

described in this chapter.

4.1. Quaternary Adder Circuit Architectures

An adder is one of the most common arithmetic circuits and also serves as a

building block for realizing many other arithmetic operations. Single-digit half- and full-

adders are versatile building blocks that are used in larger adders and many other types

of arithmetic circuits. Three different adder circuit architectures are implemented using

half- and full-adder circuits as basic building blocks [DT+09]. These are the Ripple

Carry (RC), Carry look ahead (CLA), and Carry Select (CS) addition circuits.

 46

4.1.1. Quaternary Half-adder

A binary half-adder (HA) receives two input bits, x and y, producing a sum output

bit and a carryout bit . In the case of quaternary logic, the half-adder

circuit receives two input quaternary digits and produces quaternary sum and carryout

digits. A half-adder can be viewed as a single-digit quaternary adder that produces the

two-digit sum of its single-digit inputs, namely, . A truth table for the

quaternary half-adder circuit is shown in Table 3.

Table 3: Quaternary Half-adder Truth Table

Outputs x y cout sout
0 0 0 0
0 1 0 1
0 2 0 2
0 3 0 3
1 0 0 1
1 1 0 2
1 2 0 3
1 3 1 0
2 0 0 2
2 1 0 3
2 2 1 0
2 3 1 1
3 0 0 3
3 1 1 0
3 2 1 1
3 3 1 2

The equations used to represent the sum (sout) and carry (cout) outputs of the half-

adder circuit are shown in Figure 23 in sum-of-minterms (SOM) form.

 47

Figure 23: Quaternary Half-adder Equations

Cells from the quaternary library are used to implement the half-adder circuit

structure. The equations are optimized using algebraic manipulations and one-hot

encoding, including optimizing SOM sets [BK99]. WE also used 4-to-1 quaternary

multiplexers to realize the half-adder function, as shown in Figure 24.

Figure 24: Quaternary Half-adder Based on Multiplexer Implementation

 48

The advantage of multiplexer based implementation is that it is simple and

straightforward. However, a multiplexer based circuit architecture may suffer the

disadvantage of being larger in area (number of transistors) than an implementation

architecture that uses the quaternary library gates. Moreover, the performance and

dynamic power may be also be worse due to non-optimized circuit design. The

quaternary half-adder circuit that is shown here is one of the fundamental building blocks

of complex adder and multiplier circuits.

4.1.2. Quaternary Pseudo Full-adder

The quaternary pseudo full-adder is an extension to the quaternary half-adder

circuit. It includes an additional input called the carry-in, referred to as cin. This circuit

adds two quaternary digits and also the quaternary cin digit to generate quaternary the

sum and carry outputs. The circuit is referred to as “pseudo” because the cin pin is

assumed to only have values of “0” and “1”. This assumption simplifies the circuit’s

implementation and still results in a useful circuit for implementing quaternary adders

and multipliers. Table 4 depicts the truth table of the pseudo full-adder.

 49

Table 4: Quaternary Pseudo Full-adder Truth Table

 cin= 0 cin = 1
x y cout sout cout sout
0 0 0 0 0 1
0 1 0 1 0 2
0 2 0 2 0 3
0 3 0 3 1 0
1 0 0 1 0 2
1 1 0 2 0 3
1 2 0 3 1 0
1 3 1 0 1 1
2 0 0 2 0 3
2 1 0 3 1 0
2 2 1 0 1 1
2 3 1 1 1 2
3 0 0 3 1 0
3 1 1 0 1 1
3 2 1 1 1 2
3 3 1 2 1 3

When pseudo full-adders are configured as multi-digit operand adder circuits, the

output signal values “0” and “1” are the only possible values for the carry output. The

equations for the sum and carry outputs of the quaternary pseudo full-adder circuit are

shown in Figure 25. As expected, the carryout function is optimized due to the limited

range of output values. Further optimization of the circuit implementation could be

possible by extending the quaternary library to include more two- or three-input circuit

cells.

 50

Figure 25: Quaternary Pseudo Full-adder Equations

4.1.3. Quaternary Full-adder

The quaternary full-adder circuit includes the complete full-adder functionality

supporting all possible logic values for cin. The full-adder circuit is often referred to as a

3-to-2 compressor circuit, since the circuit compresses three quaternary inputs into two

quaternary outputs [CIL06, WT89, SH08].

 51

Table 5: Quaternary Full-adder Truth Table

 cin=0 cin=1 cin=2 cin=3
x y cout sout cout sout cout sout cout sout
0 0 0 0 0 1 0 2 0 3
0 1 0 1 0 2 0 3 1 0
0 2 0 2 0 3 1 0 1 1
0 3 0 3 1 0 1 1 1 2
1 0 0 1 0 2 0 3 1 0
1 1 0 2 0 3 1 0 1 1
1 2 0 3 1 0 1 1 1 2
1 3 1 0 1 1 1 2 1 3
2 0 0 2 0 3 1 0 1 1
2 1 0 3 1 0 1 1 1 2
2 2 1 0 1 1 1 2 1 3
2 3 1 1 1 2 1 3 2 0
3 0 0 3 1 0 1 1 1 2
3 1 1 0 1 1 1 2 1 3
3 2 1 1 1 2 1 3 2 0
3 3 1 2 1 3 2 0 2 1

As shown in Table 5, all four possible values of cin are supported. This form of

adder is necessary for addition circuits that support multiple operand words summation.

For two-operand adders, the pseudo full adder is sufficient since the only possible

carryout values that can occur are {0,1}. The circuit in Figure 26 illustrates the

multiplexer based implementation of the quaternary full-adder circuit and it consists of

three logic levels for both outputs.

 52

Figure 26: Multiplexer Based Implementation of Quaternary Full-adder Circuit

The sum and carry output circuits each contain 21 four-to-one quaternary

multiplexers. As is the case with a half-adder circuit, the full-adder circuit can also be

implemented using the quaternary MAX, MIN, and other one-variable functions

4.1.4. Quaternary Ripple-Carry Adder

The quaternary half-, pseudo full-, and full-adder circuits are used to design

arithmetic circuit types such as adders and multipliers with multi-digit operands.

 53

Figure 27: Four-digit Quaternary Adder Architectures

 54

Three different multi-digit adder architectures are implemented: the Ripple Carry

(RC), Carry Look-Ahead (CLA), and Carry Select (CS) versions. Figure 27 shows all

three adder architectures with a four-digit word size example. The ripple-carry adder is

constructed using a serial cascade of one-digit full-adder circuits and is depicted in

Figure 27a.

The quaternary RC adder is simple and relatively easy to implement as compared

to the CLA and CS architectures. It is also the most area efficient when compared to the

other two types. The well known disadvantage of the RC adder is its limited performance

(speed of operation). The decrease in this circuit’s speed of operation is caused by the

serial propagation of the carry digit. As depicted in Figure 27a, the Most Significant

Digit (MSD) result depends on the carryout digit from the previous stages. Essentially,

the summation output for each digit is delayed until the carry out from the previous digit

is available. This results in a speed of operation that is directly proportional to the

operand word size.

4.1.5. Quaternary Carry Look-Ahead Adder

The CLA architecture is a widely used adder architecture that achieves high

performance by utilizing the so-called carry generate and propagate logic functions. A

quaternary carry look-ahead adder is proposed in [TS+01] and is implemented here using

the newly developed SUSLOC cell library. A 32-digit quaternary carry look-ahead

adder was designed using the SUSLOC gates. The overall structure of the addition circuit

is illustrated with a four-digit example in Figure 27b. The “generate” and “propagate”

circuit blocks produce the required g0, g1, p0, and p1 signals. The equations for the

quaternary case are shown in Figure 28. Note that the quaternary carry-out output of the

 55

two-digit adders can only have “0” or “1” as a value, for example, 34 + 34 = 124. Hence,

the pseudo full-adder circuit is employed in the carry-out path to conserve circuit area.

Figure 28: Equations for the Generate & Propagate Signals of Radix-4 Adder Digits

The 32-digit adder circuit is implemented with the necessary carry look-ahead

logic resulting in increased area as compared to the RC adder due to the carry generation

and propagation logic. Alternatively, the CLA adder has a greater speed of operation as

compared with the RC adder.

4.1.6. Quaternary Carry Select Adder

The carry select adder is another well known adder circuit architecture that deals

with the carry propagation challenge in a different way. The addition operation is

duplicated with the assumption of different input carry possibilities, and the correct adder

output is finally selected based on the actual carry value. A four-digit example of the

pseudo quaternary carry select adder is shown in Figure 27c. In this case, only values of

“0” and “1” are assumed as possibilities at cin. The need for redundant adders in this

adder architecture would result in an area increase. However, the performance of the CS

adder is improved because the addition operation outputs with different possible carry

 56

values are readily available and can be selected when the actual carry value is available.

This feature significantly reduces the carry propagation time. The circuit area could be

further optimized by replacing the full-adders with equivalent custom half-adders due to

the presence of the constant values at the carry input.

4.2. Quaternary Multiplier Circuit Architectures

The multiplier is another important arithmetic circuit that is used in almost every

modern application and algorithm [B51, R55, R75, D65, W64, E90, CC94, CC95,

IO+97]. Two types of quaternary multiplier circuits are designed, a digit serial and

parallel version. In the architecture of the serial multiplier, the multiplication output is

obtained by performing multiplication and addition in an iterative manner. The net result

is obtained after n clock cycles, where n is the width of the multiplicand or multiplier,

whichever is larger. On the other hand, in the case of a parallel multiplier architecture,

the multiplication output is generated in a single clock cycle [D65,W64].

The advantage of a serial multiplier is its smaller area and smaller power

dissipation compared to a parallel multiplier. The advantage of a parallel multiplier is its

speed of operation because the whole multiplication operation is complete in one cycle.

4.2.1. Quaternary Serial Multiplier Circuit

The quaternary serial multiplier circuit architecture is depicted in the block

diagram of Figure 29. The architecture used in this circuit is a sequential “multiply,

accumulate, and add” architecture.

 57

Figure 29: Quaternary Sequential Multiplier Block Diagram

In each clock cycle, one digit of the multiplier operand is used to multiply the

entire multiplicand value by using several single-digit quaternary multiplier cells. The

result is then added to the accumulated partial product. The partial product is stored in a

quaternary register after every clock cycle. This quaternary register also acts as a shift

register to shift the partial product value by two-bits (One-quaternary digit) in every

clock cycle. Therefore, after n clock cycles of “multiply, add, and shift” operations, the

net multiplication result is available. There are only two sets of quaternary quantities

added at a time. Because there are only two quantities to be added each time, half-adder

and incrementer circuits can be used in the adder architecture to reduce the total area of

the multiplier instead of using the more costly full-adder. The two important elements

 58

used in the serial multiplier’s architecture are a single-digit quaternary multiplier circuit

and a quaternary incrementer circuit.

Figure 30: Quaternary Serial Multiplier using Carry-Select Adders

The serial multiplier shown in Figure 29 is using the serial ripple carry type of

adder architecture for adding the intermediate partial products in each clock cycle. The

two other adder architectures, Carry-Select and Carry Look-Ahead adders are also used

in the serial multiplier architecture as shown in Figure 30 and Figure 31. The comparison

metrics of area, performance and power of serial multipliers are all benchmarked for the

multipliers with all three different adder architectures embedded.

 59

Figure 31: Quaternary Serial Multiplier using Carry-Look-Ahead (CLA) Adders

4.2.2. Quaternary Single-digit Multiplier Circuit

The quaternary single-digit multiplier circuit uses two single-digit quaternary

inputs and produces the two-digit product output. The quaternary single-digit multiplier

is implemented using the MIN, MAX, and r-x-1 inverter gates. The truth table for the

quaternary single-digit multiplier circuit is provided in Table 6.

 60

Table 6: Quaternary Single-digit Multiplier Truth Table

Single-digit
quaternary
Multiplier x y

MSD LSD
0 0 0 0
0 1 0 0
0 2 0 0
0 3 0 0
1 0 0 0
1 1 0 1
1 2 0 2
1 3 0 3
2 0 0 0
2 1 0 2
2 2 1 0
2 3 1 2
3 0 0 0
3 1 0 3
3 2 1 2
3 3 2 1

The algebraic equations used to describe the MSD and LSD digits of the

quaternary single-digit multiplier circuit are shown in Figure 32a. A multiplexer based

implementation of the quaternary single-digit multiplier is shown in Figure 32b.

 61

 (a)

Figure 32: One-digit Multiplier (a) Equations (b) Multiplexer Based

Implementation

 62

4.2.3. Quaternary Incrementer Circuit

In the serial multiplier architecture, the outputs of the single-digit quaternary

multipliers are added to the cout outputs of the half-adder circuits. As seen in the

quaternary single-digit multiplier truth table, values of “0”, “1”, and “2” are the only

possible logic values for the MSD output. It is also the case that cout can only have

values of “0” or “1” at the output of the quaternary half-adder circuit. These

observations allow the creation of an area optimized quaternary increment circuit whose

truth table is shown in Table 7. Implementation equations corresponding to Table 7 are

shown in Figure 33. The circuit is implemented using the cells from the quaternary

library. The main difference between the incrementer circuit and the half-adder circuit is

that there is no carryout generated in the case of the increment circuit.

Table 7: Quaternary Incrementer Truth Table

A B INCROUT
0 0 0
0 1 1
1 0 1
1 1 2
2 0 2
2 1 3

Figure 33: Quaternary Incrementer Equations

 63

4.2.4. Quaternary Parallel Multiplier

The entire multiplication operation is performed in a single clock cycle [P00,

EL04, D65, W64, SH08] in the parallel multiplication circuit. Single cycle operation is

achieved since all partial products are generated simultaneously followed by summing

them together with a multi-operand adder. Figure 34 contains details of the partial

product generator designed using an array of single digit quaternary multipliers where

each partial product is generated in carry-save format consisting of a four-digit carry

word and a separate four-digit sum word.

 64

Figure 34: Diagram of 4*4 Partial Product Generator

 65

Figure 35 contains a diagram of the circuit used to accumulate all partial products

to form the final eight-digit product word. Quaternary half-adders and full-adders are

used appropriately to reduce and optimize the area of the multi-operand addition tree

used to sum the partial products. The form of the array of full-adders (FA) and half-

adders (HA) in Figure 35 is described in [P71] and the internal configuration of the FAs

and HAs is described in [DT+09]. Inputs to the addition array are denoted by n[s,c]i

where i represents the ith digit of the nth partial product and [s,c] indicates whether the

digit is from the carry or sum word of each partial product.

Figure 35: Diagram of 4*4 Partial Product Accumulation Array

 66

The parallelism in the circuit increases the area of the multiplier circuit. At the

same time, the benefit of parallelism is that the entire multiplication operation is

completed within one clock cycle. The parallel multiplier does provide higher efficiency

when used in the context of large multiply operations because each multiplication

operation is finished in a single clock cycle. However, its higher area is the main

disadvantage of the parallel multiplier when compared to the serial multiplier.

Figure 36: 4*4 Parallel Multiplier with Wallace-Tree Addition

There are alternate ways to implement the addition operation of the generated

partial products. One of the main disadvantages of the array type of adder architecture is

its long propagation delays. We implemented the Wallace-Tree [W64] adder architecture

for a 4-digit quaternary parallel multiplier as shown in Figure 36 to compare the

differences in area, timing and power of both architectures.

 67

Chapter 5

APPROXIMATE SQUARING CIRCUIT

Approximate squaring circuits have numerous applications as mentioned in

[FW01, KG98, PA96, YK+97, WS+99] such as cryptography, computation of Euclidean

distance among pixels for a graphics processor or in rectangular to polar conversions in

several signal processing circuits where full precision results are not required. As

indicated in [PA96, LF00], customized squaring modules do have important applications

in digital signal processing. Specifically, in [AB+99], a method is described where

resolution can be increased during a graphics blend operation through the incorporation

of a squaring operation implemented by a multiplier followed by a truncation circuit.

Clearly, the approach described in this work allows for improvement in such application.

In [JM95], a method for frame synchronization in a digital radio is described where a

digital squaring circuit is integral to the process. Hardware transcendental function

designs [F81] have also employed approximate squaring circuits. These are just a few

examples where high-performance approximate squaring circuits are desirable.

Often, designers implement a squaring operation using a multiplier circuit.

Approximate multiplication has been investigated using a truncated multiplier [WS+01].

The multiplier may utilize a radix-4 or radix-8 Booth recoding to reduce the size of the

partial product array [P00, K81, EL04]. The squaring operation yields symmetry in the

 68

partial product array when compared to a standard multiplier. This property has been

investigated to provide optimizations in multiplier design at the bit level [L70, C71]. The

design focusing on a squaring circuit employing this symmetry was proposed in [D85],

and numerous studies optimizing binary squaring circuits appear in [FW01, KG98,

PA96, YK+97, WS+99]. These designs primarily optimized by using hardwired bit

product arrangements to reduce array sizes for efficient accumulation, mostly focusing

on low precision. Since squaring is a unary operation, lookup tables have also been

incorporated in proposed designs of squaring circuits [WS+01, WS98]. Extension to the

design of a radix-4 squaring circuit employing Booth recoding and “folding” of the

partial products was introduced in [DS01], with further implementation optimization

studies discussed in [E03, SD03].

Booth recoded multipliers yield partial products whose formation requires the

complexities of both sign extension and two’s complementation. The Booth-folded

recoded squarer in [DS01] reduces two’s complementation to a straightforward one’s

complementation. Avoidance of two’s complementation particularly simplifies the

generation of integer squares modulo the integer word size, as further investigated in

[MM+08]. In this work, we investigate implementations of a new radix-4 operand dual

recoding method [M09] for the squaring operation. The recoding yields non-negative

partial squares avoiding need for sign extensions and furthermore yields a radix-16

reduced array of partial products. This recoding is particularly effective for the design of

an approximate squaring circuit where the partial squares can be generated with shifts

and one’s complements using a few guard bits.

 69

5.1. Squaring Methodology

As introduced in [C71, D85], the squaring operation for an operand in binary can

be realized by a modified partial product array of about one half the size of the full

multiplier array without the need for the traditional Booth multiplier recoding.

Specifically, for binary squaring of the normalized p-bit operand , the p2

bit product terms of the multiplication array may be reduced to p(p+1)/2 terms

employing bi
2 = bi and bibj+bjbi = 2bibj for i<j. This provides an array of just over half

the size with a depth ⎡(p+1)/2⎤. Furthermore, the depth of the array can be reduced to

⎡(p/2)⎤ by incorporating the half adder relation bibi+1 + bi = 2bibi+1 + bi(~bi+1) in the array

formation.

For a state-of-the-art approximate radix-2 squarer we employ this reduced depth

array design from [PBD97] and truncate the lower order half of the array, except for a

couple of columns of guard bits to tightly bound the approximate square. This optimized

approximate radix-2 squarer array is of order about 1/4th the size of a comparable full

multiplier array, or equivalently about ½ the size of the truncated approximate multiplier.

Recently [M09] an operand “dual recoded” radix-4 squaring method has been

introduced which is particularly suited for approximate squaring. We adopt the method

from [M09] and perform various implementation studies. Before proceeding to

performance comparison of this high-radix squarer, we summarize the methodology and

foundation for the new dual recoded radix-4 squarer.

For the squaring operation, the single operand assumes both the role of the

multiplier and multiplicand. The high radix dual recoding recognizes these distinct

 70

asymmetric roles of the single operand. The dual recoding concurrently provides a

“squarer” digit string in the high radix and a corresponding sequence of successively

truncated “squarands” in binary form. The ith squarer digit multiplies the ith squarand in

the ith partial square generator, with the array of partial squares summed to generate the

square. The following summary is taken from [M09].

For the left-to-right leading digit dual recoding, the ith squarand is determined

only from bits of lesser or equal significance to the bits determining the ith high radix

squarer digit. The catalyst for characterizing the left-to-right higher radix dual recoding

is the sequence of two’s complement tails of the operand.

Definition: Given the p-bit normalized operand , the radix-4 two’s

complement tails of x are and for ,

where .

The two’s complement tails are related to the Booth radix-4 representation.

Observation 1:

where is the ith Booth

radix-4 digit of x.

Proof: Note that: so

, and is

recognized as the ith Booth recoded radix-4 digit.

 71

The squares of the two’s complement tails are now shown to provide the

foundation for our operand dual recoding.

Theorem 1: Let for 0 ≤ i ≤ (p+1)/2. Then .

Furthermore, when di and qi are both non zero, they have the same sign , so then:

.

Proof: Note that , and

 It is readily shown that:

, and , so for

.

By performing the two’s complement when dictated by and deleting

the resulting sign, we obtain:

where for , and .

 72

In summary then our dual radix-4 recoding for squaring provides the sequence

 of squarer digits where is the ith

radix-4 Booth recoded digit for . The dual recoding concurrently

provides the sequence of squarands, with the ith

partial square for .

The radix-4 operand dual recoding for left-to-right squaring has a number of

properties of considerable practical value for applications:

• The partial squares are all non-negative, so no sign extensions are

needed.

• The partial squares are each scaled down by another power of 16, so an n-

term sum provides an approximate square of about 4n bits of accuracy.

• The partial square generators are similar in design to Booth radix-4 partial

product generators but simpler in two ways – no sign extensions are needed,

and, on average, they are about half the size for the same precision.

For more details on the operand dual recoding see [M09]. It is illustrative to

consider a sample squaring operation as shown in the tables. Consider the 16-bit

squaring operation with x normalized in the interval [½,1), in particular

x=0.11000101100010112 in Example 1. This example uses the Radix-2 optimizations

 73

that were discussed before [PBD97]. As can be seen, the array contains 8 rows and 95

terms including guard bits. To visualize the optimizations achieved with the proposed

Radix-4 method, the array in Example 2 below can be referred to. This utilizes a radix-4

dual recoding and employs g=3 guard bits yielding a result that has a 1½ ulp lower

bound on x2. In comparison, the array has only 4 rows and 50 terms respectively.

 Guard bits

1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

 0 1 1 1 0 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 0 0 0 0

 0 1 1 0 0 0 0 0

 0 0 1 0 1 0 0

 1 1 0

1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1

Figure 37: Truncated Radix-2 Squarer Array

 Guard bits Squarer digits

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 2

 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 -2

 0 0 1 1 0 0 0 1 0 1 1

 1 0 1 1 1 0 -1

1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0

Figure 38: 16-bit Radix-4 Approximate Squarer Array

 74

5.2. Squaring Circuit Implementation

A block diagram of the squaring circuit is shown in Figure 39. The Verilog™

HDL used to implement the circuits and the Synopsys Design Compiler™ is used to

synthesize the circuit using both 130nm and 90nm cell libraries from Texas Instruments.

Various squaring circuits were synthesized for operand sizes of n=12, 16, and 24 bits. In

each of these cases additional guard bits of g=2, 2, and 3 respectively were included to

ensure that the approximation is bounded by at most 2 ulps accuracy. The resulting

circuits were also analyzed for maximum path delay and power dissipation. For

comparison purposes, an n-bit operand truncated multiplier was also synthesized into the

same cell libraries with an n-bit product and an appropriate number of guard bits as this

type of circuit is commonly used for the generation of an approximate square.

 75

Figure 39: Block Diagram of Truncated Squaring Circuit

 76

Chapter 6

QUATERNARY CIRCUITS MODELING AND VALIDATION

The functionality of the quaternary arithmetic circuit architectures are validated

by simulation. The basic gates and functions are verified using a circuit simulator such as

SPICE for transistor level verification. However, SPICE simulation runtime increases

significantly with circuit size, prohibiting its use for larger circuits. For this reason, the

larger circuits are validated by modeling them with higher level languages and then using

a faster simulator [AG+07, GFD03]. Equivalent circuit models are created for the

quaternary circuits to validate their functionality.

6.1. Quaternary Circuit Modeling

Traditional two-valued (binary) circuits are modeled and verified using a

hardware description language such as Verilog or VHDL. However, MVL circuit

implementations require extended data types and support for variable types that can

handle more than two values. Verilog and VHDL languages both lack such features.

For these reasons, we use System Verilog to model and verify the quaternary functions.

As introduced in [AG+07], System Verilog is a very effective modeling language for

modeling MVL circuits. The functionality of a circuit can be verified by simulating

different possible input conditions to verify that the circuit produces valid outputs. The

modeling of the basic quaternary functions is shown in this section. System Verilog

 77

descriptions of the quaternary one-variable functions are shown in Figure 40. As can be

seen from the System Verilog modeling, a variable type integer was used to model the

four logic values required for quaternary circuits.

Figure 40: Quaternary One-variable Function Modeling with System Verilog

The preliminary quaternary gates and quaternary half-adder circuit are modeled

with System Verilog as shown in Figure 41. System Verilog made it possible to model

the MAX and MIN functions using simple comparison operators. Half-adder functionality

is modeled using the “case” statement of System Verilog. The carry-out and sum-out

outputs of the half-adder are assigned values that depended directly on the conditions of

the “a” and “b” inputs.

 78

Figure 41: System Verilog Models for Basic Quaternary Gates and Half-adder

 79

The quaternary full-adder listing in the System Verilog language is shown in

Figure 42. The full-adder functionality was also implemented using the case statement

but extended it to three inputs. The case statement became larger because of the increase

in the combinations of possible input values. The main advantage of the case statement

is that it makes it easier for a designer to debug.

 80

Figure 42: Quaternary Full-adder Modeling with System Verilog

 81

The next illustration in Figure 43 shows the System Verilog modeling for the

quaternary four-to-one multiplexer and the quaternary rising edge D flip-flop. The

ability to reuse previously modeled functions simplifies the modeling of complex MVL

circuits. The flip-flop circuit contains the feedback loops to retain the clocked input

value. To avoid a potential race condition in the simulation, delay values are inserted

when modeling the feedback loops in the flip-flop circuit.

Figure 43: Quaternary 4-to-1 Multiplexer & D Flip-Flop System Verilog Models

 82

The System Verilog listing of the quaternary single-digit multiplier is shown

below in Figure 44. The most significant digit (MSD) and least significant digit (LSD)

output values of the One-digit multiplier circuit are modeled using the case procedure

that has dependency on the circuit inputs “a” and “b”.

Figure 44: Quaternary One-digit Multiplier Modeling with System Verilog

6.2. Testbench Modeling

A testbench is constructed to simulate all possible input combinations in order to

verify the quaternary circuit models. System Verilog is also very useful for the

development of the testbench modules. For example, Figure 45 illustrates how System

Verilog can be used to construct a testbench to verify the functionality of the quaternary

rising edge D flip-flop. The output response of the design under test is captured in both

textual and waveform formats for functional check and debug. The testbenches for other

complex circuits are also constructed using System Verilog modeling in a similar

fashion.

 83

Figure 45: Quaternary D Flip-Flop Testbench in System Verilog

All of the System Verilog models are validated using the Synopsys© VCS©

environment. The arithmetic circuits are also modeled in a similar fashion using System

Verilog to verify their functionality.

 84

Chapter 7

RESULTS

The logic library gates and multiplier circuits are modeled and verified using the

System Verilog language to validate proper functionality. Additionally, functionality of

the library cells is verified at the transistor level using the HSPICE tool. Characterization

of the power dissipation, area, and performance of the adders and multipliers is

accomplished by benchmarking the circuits with their binary equivalents for operand

word sizes. The corresponding binary circuits are synthesized using the Synopsys design

compiler synthesis tool for different operand word sizes. A 130 nm standard cell library

from Texas Instruments is used for the binary circuits. It is noted that state-of-the-art

synthesis optimization algorithms are used for the binary cases; however, no such

synthesis tools are available for quaternary circuit synthesis hence the multiplier

architectures are designed manually.

7.1. Quaternary Adder benchmarking

The comparison in Table 8 summarizes the observations for the various adder

architectures for both quaternary and binary circuits.

 85

7.1.1. Adders Circuit Area

In terms of area benchmarking, the number of transistors required for each of the

quaternary and binary equivalent circuits are used as the metric. The reason for this

increase is the fact that the SUSLOC structure adds additional transistor components to

guarantee circuit stability and non-overlapping logic state resolution. Moreover, the

binary circuits compared here are area optimized using the latest design synthesis tools.

Table 8: Quaternary Adders Benchmarking Comparison

 QUATERNARY BINARY
 WORDSIZE 32-DIGIT 64-BIT

Area (trans.) 15341 11792
Power(uW) 128.6 218 Ripple-Carry
Levels(trans.) 224 342
Area (trans.) 32062 23936
Power (uW) 261.8 441 Carry-Select
Levels(trans.) 116 118
Area (trans.) 16538 12454
Power (uW) 138 238 CLA
Levels(trans.) 82 94

It should be noted that the transistors used in the quaternary cells are typically

larger than the transistors used for the binary circuit design. However, there is a

reduction in signal routing because the quaternary versions of the circuits require fewer

data signals due to their increased data density. With the current trends in modern device

scaling and routing, the area reduction due to halving the signal conductor traces is very

significant but cannot be measured until a design is actually physically implemented on a

 86

die. Three power distribution networks are required for the quaternary valued circuits

versus the single power distribution network required for the binary circuits. The area

requirements due to these differences in interconnects are also not accounted for in the

comparison.

7.1.2. Adders Circuit Power

Another important comparison is the switching power. As shown in the results,

the quaternary adder circuits exhibit lower switching power consumption when

compared to the equivalent binary circuits. For the binary circuits, dynamic power

analysis was accomplished through the use of the Synopsys PrimeTime-PX tool with the

assumption of a 50% switching activity of all internal signals.

The quaternary circuit dynamic power dissipation is estimated by using Equation

(3) and techniques in [N94, IY96].

 (3)

Ctot represents the total capacitance estimated from the total number of transistors

in the circuit. Total capacitance of the binary circuits is estimated by multiplying the

number of equivalent two-input NAND gates with their input capacitance as shown in

Equation (4). Correspondingly, Equation (4) is also used for the quaternary circuits using

two-input MIN gate equivalents.

 (4)

Vavg is the average voltage swing occurring during a transition. The quaternary

transistor models utilize a 3.3V supply with 1.1V swings between the voltage encoded

logic levels of V0, V1, V2, and V3. Assuming all logic transitions are equally likely for

 87

consistency with the binary case, there are 12 cases when voltage swings occur ranging

from swings of 3.3V to 1.1V. Therefore Vavg=1.83V.

asw represents the switching activity and is the probability that a non-zero voltage

transition occurs within a given clock cycle. Each quaternary signal conveys the

equivalent of two bits of information per conductor, thus the equivalent switching

activity factor is 75%. The 75% switching factor arises from assuming the quaternary

signal is equally likely to transition from its present logic level to any other within a

clock cycle. Because there are a total of 12 non-zero transitions out of 16 possibilities,

asw =75%.

The term f refers to the frequency of operation. The frequency used for the power

calculations is derived using the Equation (5).

 (5)

The Tmax term is obtained from the timing analysis results of the equivalent

binary circuits. The factor two is used to accommodate enough margin for proper

operation of both binary and quaternary circuits. The fundamental reason for this power

saving is the fact that quaternary circuits have more intermediate logic levels and require

less voltage swing on average when compared to traditional binary circuits. It should

also be noted that the amount of switching power can vary per logic-level change in the

quaternary circuits since switching from logic value 0 to logic value 3 requires more

power than a switch from logic value 0 to logic value 1 due to the larger voltage swing.

 88

7.1.3. Adders Circuit Speed

When reporting the performance, the longest gate path from input to output is

used as a metric. Total number of transistors in such long timing path is used as

benchmarking. In all cases, as shown in Table 8, the quaternary adder circuits exhibited

better timing performance than the binary equivalent circuits as measured by the depth

(no. of transistors) of the critical path. The savings in number of levels could be

attributed to the fact that the quaternary circuits do have higher data integrity and hence

reduced number of levels.

7.2. Quaternary Multiplier Benchmarking

Both the serial and the parallel multiplier circuits are implemented for three

different operand word sizes. For benchmarking, traditional binary circuits with the

equivalent operand sizes are also implemented. The three configurations chosen for the

benchmarking and their binary equivalent sizes are:

• 16-digit quaternary(32-bit binary)

• 32-digit quaternary (64-bit binary)

• 64-digit quaternary (128-bit binary)

The benchmarking results are summarized in Table 9 as noted in [DT10, DTJ10].

7.2.1. Multiplier Circuit Area

Area is compared in the third and sixth rows of Table 9 and is measured in units

of transistors. Area due to wiring interconnects is not included since the circuits were not

placed and routed in physical design layout. The number of internal signal conductors is

reduced by one-half in the quaternary circuits as compared to the binary case; however,

 89

there are also two additional supply voltage distribution networks required to supply the

V1 and V2 rail voltages for the quaternary circuits. Based on this observation, it is

anticipated that area due to interconnect networks will be approximately equivalent. In

the case of the serial multiplication circuits, an average of 26% more transistors are

required for the quaternary implementation. However, the quaternary parallel multiplier

circuits exhibited a decrease of 13%, 20%, and 25% in number of transistors respectively

for the same operand word sizes. The reason that the area decreases as word size

increases in the parallel case is due to the exponential growth in the number of transistors

with respect to word size (in units of digits) for the binary case and the corresponding

word size is smaller for the quaternary circuits.

Table 9: Quaternary Multiplier Benchmarking Comparison

 QUATERNARY (DIGITS) BINARY (BITS)
 WORDSIZE 16 32 64 32 64 128

Area (trans.) 10619 20731 40955 8238 16380 32654
Power (uW) 90.27 176.24 348.15 154.34 306.88 611.77 Serial
Levels(trans.) 134 262 518 189 381 765
Area (trans.) 75052 282054 1055993 85596 349744 1404789
Power (mW) 0.44 1.69 4.89 0.91 3.91 12.63 Parallel
Levels(trans.) 240 442 806 332 638 1594

7.2.2. Multiplier Circuit Dynamic Power

Rows four and seven of Table 9 compare the dynamic (switching) power

dissipation among the binary and quaternary multipliers. The serial multipliers indicated

on an average a 43% decrease in power dissipation for the quaternary case versus the

binary circuits. Whereas in the case of parallel multipliers, a very significant decrease in

 90

power dissipation is also observed for quaternary cases, averaging an approximate 60%

decrease.

7.2.3. Multiplier Circuit Speed

Rows five and eight of Table 9 estimate and compare circuit speed of both

quaternary and binary cases. The speed is indicated here as the number of transistor

levels in the performance critical paths. The number of transistors in the maximum depth

path in each circuit is measured. The smaller the number of transistors, the higher the

speed of operation of the corresponding circuit. In all cases, the quaternary

multiplication circuits show reduced path length (and hence increased speed of

operation) when compared to the binary circuits. In the case of serial multipliers, the

quaternary maximum path length was, on average, reduced by an approximate 31%. In

the case of parallel multipliers, path length decreases of approximately 28%, 31%, and

50% respectively achieved for the 16-, 32-, and 64-digit multipliers as compared to the

equivalent binary circuits.

7.3. Quaternary Serial Multiplier Implementation Analysis

As discussed previously in the multiplier section, the adders in the serial

multiplier circuit can be implemented using the different possible adder architectures.

Three different adder architectures are used to implement the quaternary serial multiplier,

Ripple-Carry, Carry-Select (CS) and Carry-look-ahead (CLA) for different operand

sizes. Table 10 provides the estimated benchmarking of all three different quaternary

serial multiplier implementations.

 91

Table 10: Quaternary Serial Multiplier Benchmarking Comparison

 QUATERNARY SERIAL
MULTIPLIER

 METRIC 16-DIGIT 32-DIGIT 64-DIGIT

Area (trans.) 10619 20731 40955
Power (uW) 90.27 176.24 348.15 Ripple-Carry

Adder Based
Levels 134 262 518
Area (trans.) 22088 43120 85186
Power (uW) 187.76 366.57 724.15 Carry-Select

Adder Based
Levels 68 134 266
Area (trans.) 11522 22908 46361
Power (uW) 96.59 192.62 390.28 CLA

Adder Based
Levels 52 92 146

7.4. Quaternary Parallel Multiplier Implementation Analysis

As discussed previously, addition operation of the partial products in the

quaternary parallel multiplier circuits can be implemented in different ways. We

implemented the addition operation using traditional array type adders and also using the

Wallace tree architecture. Table 11 captures the results of the both implementations for

the 4X4 quaternary multiplier case.

 92

Table 11: Quaternary 4*4 Parallel Multiplier Architecture Comparison

 METRIC 4-DIGIT

Area (trans.) 22262

Power (uW) 122.36 Array tree

Levels 63

Area (trans.) 20370

Power (uW) 92.08 Wallace tree

Levels 24

7.5. Results of Squaring Circuit Optimization

Table 12 and Table 13 contain the synthesis results in terms of path delay, power

dissipation and area. We note that these results do not include delay due to routing

however, since the multiplier adder array is more complicated than the reduced squaring

adder arrays, the comparison of the truncated multiplier array to the squaring circuits is

likely very conservative after including actual wire delays.

The results show that both the radix-2 and the radix-4 circuits yield a dramatic

improvement in performance, power and area compared to the truncated multiplier

circuit. The reductions range from a factor of two-to-three for delay, three-to-four for

area and five-to-six for power.

 93

Table 12: Synthesis Results using 130nm Cell Library

Dynamic Leakage Area

Circuit Delay(ps) Freq(Hz)

Power

(mW)

Power

(nW)

(Gate

count)

12-bit Truncated Multiplier 2160 4.63E+08 15.54 48.01 4001

16-bit Truncated Multiplier 2950 3.39E+08 41.18 105.65 8669

24-bit Truncated Multiplier 4690 2.13E+08 133.06 258.91 22140

12-bit Radix-2 Squarer 1030 9.71E+08 4.43 18.54 1659

16-bit Radix-2 Squarer 1180 8.47E+08 8.69 34.1 3480

24-bit Radix-2 Squarer 1740 5.75E+08 23.72 76.53 7140

12-bit Radix-4 Squarer 860 1.16E+09 3.33 14.57 1310

16-bit Radix-4 Squarer 1030 9.71E+08 7.71 30.65 2826

24-bit Radix-4 Squarer 1620 6.17E+08 21.23 61.67 5790

The radix-4 squarer performs better than the radix-2 squarer by about 10-to-20%

in all metrics with the greatest reduction being in area. Figure 46 illustrates the

comparisons of the radix-2 and radix-4 squarers in more details showing greater

improvements as the size of the operand increases.

 94

Table 13: Synthesis Results using 90nm Cell library

Dynamic Leakage Area

Circuit Delay(ps) Freq(Hz)

Power

(mW)

Power

(nW)

(Gate

count)

12-bit Truncated Multiplier 1700 5.88E+08 7.09 98.89 4119

16-bit Truncated Multiplier 2390 4.18E+08 17 188.54 7680

24-bit Truncated Multiplier 3380 2.96E+08 58.81 523.62 21112

12-bit Radix-2 Squarer 770 1.30E+09 2.16 46.3 1802

16-bit Radix-2 Squarer 930 1.08E+09 4 73.3 3262

24-bit Radix-2 Squarer 1390 7.19E+08 10.8 160.67 6783

12-bit Radix-4 Squarer 650 1.54E+09 1.82 38.40 1522

16-bit Radix-4 Squarer 800 1.25E+09 3.03 59.61 2470

24-bit Radix-4 Squarer 1250 8.00E+08 9.97 145.47 5253

To summarize, the savings obtained with the approximate squaring circuit when

compared with the equivalent sized radix-2 multiplier, Figure 46 contains comparison

charts that illustrate the delay, power and area results of the 12-, 16-, and 24-bit operand

approximate squaring circuits. It is clearly seen that the proposed circuit has significant

savings and the efficiency of the proposed circuit gets better with increasing operand

size.

 95

Figure 46: Metrics Comparison of Radix-4 & Radix-2 Squaring Circuit

 96

Chapter 8

CONCLUSIONS AND FUTURE CHALLENGES

8.1. Conclusions

The feasibility of Voltage-mode quaternary circuits based on SUSLOC

technology is demonstrated. A library of preliminary quaternary gates is designed using

transistors based on the SUSLOC structure. The preliminary quaternary gates are

simulated using the SPICE models. The larger quaternary arithmetic circuits are then

implemented using the preliminary gates. Modeling techniques using System Verilog are

successfully adopted for the modeling of the quaternary circuits. To verify the

functionality, the quaternary circuits are also simulated using the System Verilog

simulator using the test benches along with required input stimulus.

The quaternary circuits are benchmarked with equivalent two-valued (binary)

circuits. The results show that the proposed adder and multiplier quaternary circuits are

better than the equivalent binary circuits in the aspects of switching power and logic

depth. The area optimization of the quaternary circuits will be possible with the

availability of more application specific quaternary cells. In addition, the availability of

any design optimization and synthesis CAD tools would further optimize the quaternary

circuits. The advantages of lower power, higher performance, and reduced interconnect

congestion motivate the use of quaternary circuits in a wide variety of applications.

 97

8.2. Future Challenges

The reduced scaling of semiconductor process technologies periodically allow the

increased logic integration and reduced power consumption. There are significant circuit

implementation challenges, even for binary circuits, at advanced deep submicron

technologies when the supply voltages are below 1.0V range(which is true for 65nm,

45nm and beyond). Some of the potential challenges in implementing quaternary (for

that matter, any MVL) circuits at DSM technologies are discussed here.

8.2.1. Signal-to-Noise Ratio (SNR)

As discussed before in this report, SNR plays very important role in the design of

reliable circuits. The quaternary circuits implemented as part of this work use the step

voltage value of 1.1V. Larger voltage fluctuations in the signal values would leave very

small SNR margin to clearly distinguish various logic levels in the circuit. So, the main

challenge of adoption of quaternary circuits is to choose reliable circuit techniques and

sufficiently large voltage step values to give sufficient SNR margins.

8.2.2. Process (manufacturing) Variations.

 Extremely small transistor and wire dimensions are making the circuits (even

normal CMOS binary circuits) to be very sensitive to the manufacturing (fabrication)

variations. The printability (fabrication) of the transistors with the available laser

technology is heavily impacted at ultra-DSM technologies. The MVL circuits would be

more sensitive to these variations. The reason is, threshold voltage of transistors can have

large local variation in DSM technologies. MVL circuits are very sensitive to any

 98

variation in the threshold voltages as it simply makes the circuits non-functional and

have logic level overlaps.

8.2.3. Threat of Crosstalk Delays.

As it is reported in [DS+03] and [D04], shrinking geometries at the deep

submicron technologies are making the circuits to be susceptible to crosstalk noise.

Figure 47: Crosstalk Challenge

As shown in the Figure 47, the signal transitions in the neighboring wires would

essentially create signal surges and dips depending on the direction of the original

transition. This is affecting even the traditional binary CMOS circuits in DSM

technologies. These crosstalk effects would pose serious challenges to the MVL circuits

at DSM technologies. The increase and decrease in the signal levels would make the

receiving circuits incorrectly responding or latching onto unwanted noise.

The ongoing research and potential future research in the field of MVL logic is

expected to address the highlighted challenges and other applicable challenges for wider

adoption of MVL circuits.

 99

REFERENCES

[AB+99] S.L. Augustine, D.C. Buhler, and B.G. Prouty, “Computer Graphics System

with Improved Blending”, United States Patent, No. 5,896,136, April 20,
1999.

[AG+07] M. Amoui, D. Groβe, M.A. Thornton, and R. Drechsler, “Evaluation of Toggle

Coverage for MVL Circuits Specified in the System Verilog HDL”, Proc. of
IEEE Int. Symp. On Multiple-Valued Logic, Session 8B, Paper 2, 2007.

[AH75] J.I Accha, J.L Huertas, “General Excitation table for a JK multistable”,

Electronics Letters, Vol.11, P. 624, 1975.

[AS+03] M. Aline, T. Saidi, E. Kinvi-Boh, O. Sentieys, E.D. Olson, “Design and

Characterization of a Low Power Ternary DSP”, Proc. of International
Signal Processing Conference, 2003.

[B51] Booth, A.D., “A Signed Binary Multiplication Technique”, Quaterly J.

Mechanics and Applied Mathematics, Vol. 4, P.2, pp.236-240, June 1951.

[B91] Butler, J.T. (editor), Multiple-Valued Logic in VLSI Design, IEEE Computer

Society Press, 1991.

[BK99] R.K. Brayton and S.P. Khatri, “Multiple-valued logic synthesis,” in Proc., 12th

Int. Conf. on VLSI Design, Jan. 1999.

[C60] M. Cohn, “Switching Function Canonical Forms over Integer Fields,” Ph.D.

Thesis, Harvard University, 1960.

[C71] T.C. Chen, "A Binary Multiplication Based on Squaring." IEEE Trans.

Computers, C-20:678-80, 1971.

[C90] K. W. Current, "A CMOS Quaternary Threshold Logic Full Adder Circuit

with Transparent Latch," Proc. 20th Int. Symp. On Multiple Valued Logic, pp.
168-173, 1990.

[C+02] Castro, H.A. et al., “A 125 MHz Burst Mode 0.18µm 128 Mbit 2 Bits per Cell

Flash Memory”, Proceedings of the VLSI Symp. On Technology Circuits,
2002.

 100

[CBC06] R.G. Cunha, H. Boudinov, and L. Carro, “A Novel Voltage-Mode CMOS

Quaternary Logic Design”, IEEE Trans. On Electronic Devices, vol. 53, no. 6,
pp. 1480-1483, 2006.

[CC94] Wei-Shang Chu, Current, W., “Quaternary multiplier circuit”, Proc. of IEEE

Int. Symp. On Multiple-Valued Logic, pp.15-18, 1994.

[CC95] Chu, W.-S., Current, W., “Current-mode CMOS quaternary multiplier circuit”,

Electronic letters, Volume 31, Issue 4, pp. 267 – 268, 16 Feb 1995.

[CIL06] G.R. Cunha, B.H. Ivanov, and C. Luigi, “A low power high performance

CMOS voltage-mode quaternary full adder”, IFIP International conference on
Very Large Scale Integration, pp. 187-191, 2006,.

[CO+96] Current, K.W., Oklobdzija, V.G., Maksimovic, D., “Low-energy logic circuit

techniques for multiple valued logic”, Proc. of 26th International Symposium
on Multiple-Valued Logic, Page(s):86 – 90, 1996.

[CS+89] Capasso, F., Sen, S., Beltram, F., Lunardi, L.M., Vengurlekar, A.S., Smith,

P.R., Shah, N.J., Malik, R.J., Cho, A.Y., “Quantum functional devices:
resonant-tunneling transistors, circuits with reduced complexity, and multiple
valued logic”, IEEE Transactions on Electron Devices, Volume 36, Issue 10,
pp:2065 – 2082, Oct. 1989.

[D65] Dadda, L., “Some Schemes for Parallel Multipliers”, Alta Frequenza, Vol. 34,

pp. 349-356, 1965.

[D85] L. Dadda, “Squarers for binary numbers in serial form”, Proc. IEEE 7th Symp.

Computer Arithmetic, 1985.

[D99] E. Dubrova, Multiple-Valued Logic in VLSI: Challenges and Opportunities,

Proceedings of NORCHIP’99, pp. 340-350, 1999.

[D04] Satyendra R. Datla, “Crosstalk Delay Analysis in Very Deep Submicron VLSI

circuits”, Masters Thesis, 2004.

[DM+77] T.T.Dao, E.J.MaCluskey and L.K.Russek "Multivalued Integrated Injection

Logic," IEEE Trans. Computers, v01.C-29, no.12, pp.1233-1241, 1977.

[DS01] D. De Caro and A. G. M. Strollo, “Parallel squarer using Booth-folding

technique,” Electronic Letters, vol. 37, no. 6, pp. 346–347, Mar. 2001.

[DS+03] Satyendra R. Datla, James SW Song, Barry Warren, Yuanqiao Zheng,

“Crosstalk Delay Threat: Are you ready?!”, SNUG Boston, 2003.

 101

[DT10] Satyendra R. Datla, M.A. Thornton, “Quaternary Voltage-Mode Logic Cells
and Fixed-Point Multiplication Circuits”, Submitted for IEEE International
Symposium On Multiple-Valued Logic, 2010.

[DTJ10] Satyendra R. Datla, M.A. Thornton, “Design and Validation of Voltage-Mode

Quaternary Fixed-Point Arithmetic Circuits”, Submitted for IEEE Trans. On
Computers, 2010.

[DT+09] Satyendra R. Datla, M.A. Thornton, Luther Hendrix, Dave Henderson,

“Quaternary Addition Circuits Based on SUSLOC Voltage-Mode Cells and
Modeling with SystemVerilog”, IEEE International Symposium On Multiple-
Valued Logic, May 2009.

[DTM09] Satyendra R. Datla, M.A. Thornton, David W. Matula, “A Low Power High

Performance Radix-4 Approximate Squaring Circuit”, 20th IEEE International
Conference On Application-specific Systems, Architectures and Processors,
July 2009.

[DW08] Dakhole, P.K.; Wakde, D.G., “Multi-digit quaternary adder on programmable

device : Design & verification”, Proc. of International Conference on
Electronic Design, pp. 1-4, 2008.

[E03] M. Ercegovac, “Left-to-Right Squarer with Overlapped LS and MS parts”,

Conference Record of the 37th Asilomar Conference on Signals, Systems and
Computers, Volume 2, pp.1451-1455. November 2003.

[E90] Ercegovac, M.D. and T. Lang, “Fast Multiplication Without Carry-Propagate

Addition”, IEEE Trans. Computers, Vol. 39, No. 11, pp. 1385-1390, 1990.

[E92] D. Etiemble, “On the Performance of Multivalued Integrated Circuits: Past,

Present and Future”, Proc. of Twenty-Second International Symposium on
Multiple-Valued Logic, pp. 156 – 164, May 1992.

[E93] G. Epstein, Multiple-Valued Logic Design: An Introduction, IOP

Publishing Ltd, 1993.

[EI74] Etiemble, D., and Israel, M., ”on the realization of multiple-valued flipflops”

Proc. 4th Int. Symp. Multiple-Valued Logic, pp. 437-548, May 1974.

[EI88] Entieble, D. and Israel, M., “Comparison of Binary and Multivalued ICs

According to VLSI Criteria”, IEEE Computer Magazine, pp. 28-42, 1988.

[EL04] M. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann

Publishers, 2004.

 102

[F81] P. M. Farmwald, “High Bandwidth Evaluation of Elementary Functions,”
Proc. IEEE 5th Symp. Computer Arithmetic, pp. 139-142. 1981.

[FW01] Y.Yu Fengqi and A. N.Willson,“Multirate digital squarer architectures,” in

Proc. 8th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS 2001),
Malta, Sept. 2–5, pp. 177–180, 2001.

[GFD03] D. Große, G. Fey, and R. Drechsler, “Modeling Multi-Valued Circuits in

SystemC”, International Symposium on Multiple Valued Logic, pp. 281–286,
2003.

[H84] S. Hurst, “Multiple-valued logic its status and its future”, IEEE trans. On

Computers. C-33(12), pp.1160-1179, 1984.

[H01] Brian Hayes, “Third base”, American Scientist, Volume 89, number 6, pp.

490, November-December 2001.

[HC98] M.K. Habib and A.K. Cherri, “Parallel Quaternary Signed-Digit Arithmetic

Operations: Addition, Subtraction, Multiplication, and Division”, Optics and
Laser Technology, vol. 30, pp. 515-525, 1998.

[I86] Okihiko Ishuzuka, “Synthesis of a Pass Transistor Network Applied to Multi-

Valued Logic”, Proc. of the 16th IEEE ISMVL, pp. 51-57, 1986.

[I98] The Intel Corporation, Intel® StrataFlash™ Memory Technology, Application

Note AP-677, 1998.

[IO+97] Ishizuka, O., Ohta, A., Tannno, K., Tang, Z., Handoko, D, “VLSI design of a

quaternary multiplier with direct generation of partial products”, Proc. of IEEE
Int. Symp. On Multiple-Valued Logic, pp.169-174, 1997.

[IY96] T. Ishihara, H. Yasuura, “Experimental Analysis of Power Estimation Models

of CMOS VLSI Circuits,” IEICE Trans. Fundamentals, vol. E00-A, No. 6,
June 1996.

[JM95] J. Junell and K. Mikko, “Frame Synchronization in a Device Receiving Digital

Radio Transmissions, European Patent Application”, 95108198.3, May 30,
1995.

[K38] S.C. Kleene, “On a notation for ordinal numbers,” The Journal of Symbolic

Logic, vol. 3, pp. 150-155, 1938.

[K81] D. Knuth, The Art of Computer Programming: Seminumerical

Algorithms, Addison Wesley, Vol. 2, 2nd Edition, pp: 441-466, 1981.

 103

[K90] M. Kameyama, “Toward the Age of Beyond-Binary Electronics and Systems”,
Proc. of IEEE Int. Symp. On Multiple-Valued Logic, pp.162-166, 1990.

[KA+03] E. Kinvi-Boh, M. Aline, O. Sentieys, and E.D. Olson, “MVL Circuit Design

and Characterization at the Transistor Level Using SUS-LOC”, International
Symposium on Multiple Valued Logic, 2003.

[KB+08] Khan, M.M.M., Biswas, A.K., Chowdhury, S., Tanzid, M., Mohsin, K.M.,

Hasan, M., Khan, A.I., “Quantum realization of some quaternary circuits”,
IEEE Region 10 Conference (TENCON), pp. 1 – 5, Nov. 2008.

[KG98] R. K. Kolagotla and W. R. Griescbach, “VLSI implementation of a 350 MHz

0.35 m 8 bit merged squarer,” Electronic Letters, vol. 34, no. 1, pp. 47–48,
Jan. 1998.

[KK+87] S . Kawahito, M. Kameyama, T. Higuchi, and H. Yamada, "A high speed

compact multiplier based on multiple-valued bi-directional current-mode
circuits," Proc. 17th Int. Symp. On Multiple Valued Logic, pp. 172-180, 1987.

[KK+88] Kameyama, M., Kawahito, S., and Higuchi, T., “A Multiplier Chip with

Multiple-Valued Bidirectional Current-Mode Logic Circuits”, IEEE Computer
Magazine, pp. 43-56, 1988.

[L20] J. Lukasiewicz, tr. on three valued logic, Ruch Filozoficzny, vol 5, pp. 169-

171, 1920.

[L70] H. Ling,“High-speed computer multi-plication using a multiple-bit decoding

algorithm,” IEEE Trans. Computers, C-19, pp. 706-709, Aug. 1970.

[LF00] A. Liddicoat and M. J. Flynn, “Parallel Square and Cube Computations”,

Conference Record of the 34th Asilomar Conference on Signals, Systems &
Computers, 2000.

[M09] D. W. Matula, “Higher Radix Squaring Operations Employing Operand Dual

Recoding”, Proc. IEEE 19th Symp. Computer Arithmetic, June 2009.

[MC86] J. L. Mangin and K. W. Current, “Characteristics of prototype CMOS

quaternary logic encoder-decoder circuits,” IEEE Trans. Comput., vol. C-35,
pp. 157-161, Feb. 1986.

[MM79] J.C. Muzio and D.M.Miller, “On the minimization of many valued functions,”

Proc. 9th Int. Symp. Multiple-Valued Logic, June 1979.

[MM+08] J. Moore, D.W. Matula, M.L. Thornton, “A Low Power Radix-4 Dual

Recoded Integer Squaring Implementation For Use in Design of Application

 104

Specific Arithmetic Circuits”, Conference Record of the 42nd Asilomar
Conference on Signals, Systems and Computers, October 2008.

[MT08] D.M. Miller and M.A. Thornton, Mutiple-Valued Logic: Concepts and

Representations. Morgan & Claypool Publishers, San Rafael, CA, ISBN 10-
1598291904, 2008.

[MW86] Muzio, J.C. and Wesselkamper, T.C., Multiple-Valued Switching Theory,

Adam Hilger, Bristol and Boston, 1986.

[N94] F. N. Najm, “A survey of power estimation techniques in VLSI circuits,” IEEE

Transactions on VLSI Systems, 2(4):446–455, 1994.

[O99] E.D. Olson, “Supplementary Symmetrical Logic Circuit Structure”,

International Symposium on Multiple Valued Logic, pp. 42-47, 1999.
[O00] U.S.Patent, 6,133,754, Edgar Danny Olson, inventor, Multiple-Valued Logic

Circuit Architecture, Supplementary Symmetrical Logic Circuit Structure
(SUS-LOC), 2000.

[OC00] Olson, D. and Current, K.W., “Hardware Implementation of Supplementary

Symmetrical Logic Circuit Structure Concepts”, Proc. of IEEE Int. Symp. On
Multiple-Valued Logic, pp. 371-376, 2000.

[OC01] Olson, D. and Current, K.W., “Demonstration of Supplementary Symmetrical

Logic Circuit Structure Concepts using a MOS Test Chip”, International
Journal of Multiple-Valued Logic, vol. 7, pp. 1-23, 2001.

[P21] E.L.Post, “Introduction to a general theory of elementary propositions,” in

American Journal of Mathematics, June 1921.

[P71] S.D. Pezaris, “A 40-ns 17-bit array multiplier,” IEEE Trans. On Computers,

vol. C-20, pp. 442-447, 1971.

[P74] D.K. Pradhan, “A multivalued switching algebra based on finite fields,” Proc.

Int. Symposium on Multiple valued Logic, pp. 95-111, 1974.

[P00] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs,

Oxford University Press, pp. 143-145, 2000.

[PA96] J. Pihl and E. J. Aas, “A multiplier and squarer generator for high performance

DSP applications,” in Proc. IEEE 39th Midwest Symp. on Circuits and
Systems, pp. 109–112, 1996.

[PBD97] A. Pirson, J.-M. Bard, and M. Daoudi, “Squaring Circuit for Binary

Numbers”, United States Patent, No. 5,629,885, May 13, 1997.

 105

[Q55] W. Quine, “A way to simplify truth functions,” Amer. Math. monthly, vol 62,
pp. 627-631, 1955.

[QC04] “Quantum computing roadmap overview”, version 2.0, quantum information

science and technology roadmapping project, April 2004, available at
http://qist.lanl.gov/qcomp_map.shtml.

[R55] Robertson, J.E., “Two’s complement multiplication in Binary Parallel

Computers”, IRE Trans. Electronic Computers, Vol. 4, No.3, pp118-119,
September 1955.

[R75] Rubinfield, L.P., “A Proof of the Modified Booth’s Algorithm for

Multiplication”, IEEE Trans. Computers, Vol. 25, No. 10, pp. 1014-1015,
1975.

[S88] Smith, K.C., “Multiple-Valued Logic: A Tutorial and Appreciation”, IEEE

Computer Magazine, pp. 17-27, 1988.

[S93] Summerfield, S.¸”Design methodology of VLSI with multiple valued logic”,

ISCAS '93, 1993 Prof. of IEEE International Symposium on Circuits and
Systems, Page(s):1702 - 1705 vol.3, 1993.

[SD03] A.G.H. Strollo and D. De Caro, "Booth Folding Encoding for High

Performance Squarer Circuits" IEEE Trans. Circuits and Systems-I1 Analog
and Digital Signal Processing, 50(5):250-254, 2003.

[SH08] H. Shirahama and T. Hanyu, “Design of High-Performance Quaternary Adders

Based on Output-Generator Sharing”, International Symposium on Multiple
Valued Logic, 2008.

[SN+90] Shanbhag, N.R.; Nagchoudhuri, D.; Siferd, R.E.; Visweswaran, G.S.,

“Quaternary logic circuits in 2-µm CMOS technology”, IEEE Journal of
Solid-State Circuits, Volume 25, Issue 3, pp. 790-799, June 1990.

[TS+01] I.M. Thoidis, D. Soudris, J.M. Fernandez, and A. Thanailakis, The circuit

design of Multiple-Valued Logic Voltage-Mode Adders. Proc. of IEEE
International Symposium on Circuits and Systems, pp.162-165, 2001.

[W64] Wallace, C.S., “A suggestion for a Fast Multiplier”, IEEE Trans. Electronic

Computers, Vol. 13, pp. 14-17, 1964.

[WS01] K. E. Wires, M. J. Schulte, and J. E. Stine, “Combined IEEE Compliant and

Truncated Floating Point Multipliers for Reduced Power Dissipation,” in
Proceedings of the IEEE International Conference on Computer Design,
Austin, TX, pp. 497-500, September, 2001.

 106

[WS98] C.L. Wey and M.D. Shieh. “Design of a High-Speed Square Generator”, IEEE
Trans. Computers, vol. 47, no. 9, pp. 1021-1026, 1998.

[WS+99] K.E. Wires, M.J. Schulte, L.P. Marquette: and P.I. Balzola. "Combined

Unsigned and Two's Complement Squarers", Conference Record of the 31st
Asilomar Conference on Signals, Systems and Computers, Volume 2, pp.
1215-1219, 1999.

[WS01] E.G. Walters III, J.S. Schlessman, and M.J. Schulte, “Combined Unsigned and

Two’s Complement Hybrid Squarers”, Conference Record of the 35th
Asilomar Conference on Signals, Systems & Computers, pp. 861-866,
November 2001.

[WT89] F. Wakui and M. Tanaka, “Comparison of Binary Full Adder and Quaternary

Signed-Digit Full Adder using High-Speed ECL”, International Symposium on
Multiple Valued Logic, pp. 346-355, 1989.

[YK+97] J.-T. Jae-tack Yoo, K. F. Kent F. Smith, and G. Ganesh Gopalakrishnan, “A

fast parallel squarer based on divide-and-conquer,” IEEE J. Solid-State
Circuits, vol. 32, pp. 909–912, June 1997.

[YT+86] Y. Yasuda, Y. Tokuda, S. Zhaima, K. Pak, T. Nakamura, and A. Yoshida,

“Realization of quaternary logic circuits by N-Channel MOS Devices”, IEEE
Journal of Solid State Circuits, vol. SC-21, no. 1, pp. 162-168, 1986.

[ZW90] N. Zhuang, H.Wu, “Novel ternary JKL flipflop“, Electronics

Letters,Vol.26,No.15, pp.1145-1146, 1990.

 107

