
Boolean Function Matching using Walsh Spectral Decision Diagrams

Jason Moore, Kenneth Fazel, Mitchell A. Thornton D. Michael Miller
Southern Methodist University University of Victoria

{jmoore,kfazel,mitch}@engr.smu.edu mmiller@cs.uvic.ca

ABSTRACT
This paper investigates two approaches for Boolean matching

using NPN equivalence matching. Luks’ hypergraph method is
implemented and compared to the Walsh Spectral Decision
Diagram (SDD) method that we propose here. Both methods
determine a canonical representation for each NPN equivalence
class. The target functions are then transformed into a canonical
representation and compared to the representative canonical forms
for the NPN classes. This paper presents the implementation and
results of the spectral method in detail. It is shown that the spectral
method compares favorably to Luks’ method and is better in terms
of computational requirements for large functions.

1. INTRODUCTION
The standard-cell ASIC design process requires developing

templates or cells that define basic logic elements and then using
those cells to develop larger circuits. Technology mapping, or ‘cell-
library binding’, is the process of selecting and connecting in proper
sequence the appropriate cells from a “standard cell” library
developed by an integrated circuit fabrication company. Technology
mapping can be considered as comprising two tasks; Boolean
matching and selection. Boolean Matching is determining whether
or not two Boolean functions are equivalent with respect to some
basic transformations. The result of Boolean matching is an
equivalence class from the standard cell library that can implement
the given function. Since each cell in the same class can implement
equivalent functions, the “best” cell is selected from this
equivalence class to maximize some objective function such as total
area, delay or power consumption minimization. This latter process
is called selection.

Equivalence classes can be defined as P (Permutation), NP
(Negation-Permutation), or NPN (Negation-Permutation-Negation)
equivalent [14]. Two Functions

f and

g , defined over the same

variable set X , are P equivalent if there exists a permutation
operator !! such that

 !
f (X) = g(!X) where P represents an

elementary permutation matrix. The naïve approach to this problem
is to try all possible permutations. The complexity of this approach
is

O(n!) . The following example will help to explain P equivalence.

Consider two functions

f = a

1
a

2
+ a

1
a

3
 and

g = a

2
a

1
+ a

2
a

3
.

f and

g are P equivalent if we switch the position of

a

1
 and

a

2
,

that is

f (a

1
, a

2
, a

3
) = g(a

2
, a

1
, a

3
) .

Two Boolean functions are said to be NPN equivalent if there
exists a permutation operator !! , with two complementation
operators

 !
!

o
 and

 !
!

i
, such that

 !
f (x) = !

o
g("!

i
x) . The

complementation operators specify the possible negation of some
of their arguments. NPN equivalence can be thought of as an
extension to P equivalence. For each input permutation, the inputs

must also be considered in negated form and can require

O(2n) time. Thus, the complexity of NPN equivalence checking

is

O(n!2n) . Through the application of DeMorgan’s theorem, it is

easy to see that the negation of the inputs of an OR-gate results in
the functionality of a NAND gate. Therefore, two-input OR and
NAND functions are NPN equivalent.

In this paper, we first discuss the implementation of a hypergraph
isomorphism checking method proposed by Luks in [10]. Then we
propose a method using a Walsh Spectral Decision Diagram (SDD)
method, to overcome the weakness of Luks’ method. Both of these
methods find a canonical representation for each NPN equivalence
class. The target functions are then transformed into a canonical
representation and compared to the representative canonical forms
for the NPN classes. We note that the method of Luks is interesting
because it transforms the Boolean matching problem to one of
hypergraph isomorphism and that the use of the Walsh spectrum for
Boolean matching was first reported in [5]. This work leads to an
interesting comparison in these two techniques and also yields an
approach for Boolean matching that handles very large functions in
a reasonable amount of computation time. The primary difference
between the Walsh spectral method described here and that in [5] is
that the use of efficient data structures known as SDDs are
employed that reduce the average-case memory requirements to
linear complexity in terms of dependent function variables as
opposed to the exponential requirements needed in the method
reported in [5].

2. PRELIMINARIES AND RELATED WORK

For effective technology mapping, equivalence classes must be
selected very quickly and must contain all equivalent functions. In
general, Boolean matching is intractable. Many algorithms have
been proposed for Boolean matching including [1–6].

In [1], Ciric and Sechen propose a solution that constructs a table
for each Boolean function and then permute a table to the lowest
cost according to their cost function. Their approach does not
consider input or output negation. The method only classifies the
functions in P (permutation) classes. In [2], Correia and Reis present
a method based on the size of a Reduced Ordered Binary Decision
Diagram (BDD). The BDD is negated and permuted until the BDD
reaches a small size. Then the function is classified by the size of
the BDD. Hinsberger and Kolla [3] consider each possible
permutation and negation as a block in a tree. They are able to
reduce the search space because they are only interested in finding
the maximum leaf in the type of tree structure that they define. The
maximum leaf is used as the unique representation of the Boolean
function. They also suggest storing the cells in the cell library
according to their equivalence class. The approach in [3] is also
referred to as a cut-based Boolean mapping technique.

Recently, authors in [6] propose a simplified version of the cut-
based Boolean mapping technique. Instead of storing one canonical

representation of a library gate, all functions obtained by permuting
the inputs to library gates are precomputed and stored. In this way,
only N equivalence mapping is necessary instead of NPN
equivalence mapping. Since N equivalence is much easier to
compute than NPN equivalence, Boolean matching is faster than the
original cut-based method. However, as the authors also indicate in
their paper, this method is not scalable. Indeed, this method would
not work if the number of inputs for functions is larger than 10
variables.

In [4], a spectral method is proposed for the Boolean matching
problem. Chang and Falkowski arrange the Reed-Muller expansion
of a Boolean Function in ascending order of their magnitudes in
terms of weights of their literal vectors.

In [5], Miller shows how Boolean matching can be accomplished
using the Walsh spectrum. The Boolean functions are represented
by their Walsh spectra which is arranged such that the largest values
(in magnitude) are as early as possible and negative values are as
late as possible in the spectral vector. Although this method
requires exponentially large memory space, this observation is key
to the results presented here. The use of decision diagram based
methods for the computation of the Walsh spectrum allows this
approach to become practical.

The algorithm proposed in this paper is similar to the algorithm in
[5]; however, in this work we use decision diagrams for spectral
computations as is described in [8,13] and we exploit the special
conditions of symmetry and parity functions that allow for dramatic
improvement in terms of circuit size and cases that were “hard” in
the previous work of [5]. The spectral computation algorithms used
in this work are based on graph algorithms that were first presented
in [13].

The Walsh spectrum is a Fourier representation of a Boolean
function expanded about the orthogonal Walsh basis functions. The
Walsh spectrum can be defined using linear transformations. As is
shown in [7], the Walsh matrix

w

n
can be calculated by applying

the Kronecker product n !1 times starting with the matrix

w

1
. This

can be expressed as

w
n
= !

i=1

n"1

w
i
, where

w
1
!

1 1

1 "1

#

$
%

&

'
(

w
n
!

w
n"1

w
n"1

w
n"1

"w
n"1

#

$
%
%

&

'
(
(

The Boolean function

f (X) can be represented as a column

vector F where the corresponding 0 and 1 range values of

f are

replaced with 1 and -1 respectively.
The Walsh spectrum can be efficiently computed using a “fast”

transform which is extensively documented in [9]. We briefly
review the work in [9] for the completeness of the paper. The
Walsh transform can be computed using less time and less space
through the use of BDDs [7] and the “butterfly diagram technique”
commonly attributed to Cooley and Tukey. The resulting spectrum
is also in a DD form that is referred to as a Spectral Decision
Diagram (SDD). The basic idea of computing an SDD is to change
the terminal nodes “0” and “1” in the BDD to “1” and “-1”
respectively. The graph is traversed until a node whose children are
either a terminal node or a Walsh node. Then, the predecessor node
is transformed by making the appropriate changes to the children
through the “butterfly transform” as is shown in Figure 1 (details are
provided in [8,13].):

Low

High

Low + High

Low - High
Fig. 1: Butterfly flowgraph of the fast transform [8]

The node is then marked as a Walsh node. The procedure stops
when all the nodes are Walsh nodes. Figure 2 illustrates an example
of this algorithm for a two input AND function.

x

y

0 1

x

y

1 -1

Figure 2: Calculating SDD using BDD

 One advantage in using BDDs to compute SDDs is that the
complexity is no longer directly dependent on the number of inputs,
n, but instead dependant on the size of the BDD (the number of
vertices N). N in the best case is linear in terms of n. And SDDs can
share isomorphic subgraphs thus providing even more savings in
space. The runtime to build a SDD from a BDD is O(N2) since each
node in the BDD is visited once and the runtime for adding two
BDDs is O(N2). The size complexity for the SDD is O(N) as well.

3. MATCHING TECHNIQUES
3.1 LUKS’ METHOD

In [10], Luks presents a method for Boolean matching using
hypergraph isomorphism checking. Let f be an n-input logic
function with variable set

!

1
,!

2
,...,!

n{ } . An associated

hypergraph

H

f
= !, E

f{ } is defined with vertices

{ }1,0 1,1 2,0 2,1 ,0 ,1
, , , ,..., ,

n n
! ! ! ! ! !" = and an edge set

{ } () { } (){ }, 1 1
1

,..., 0,1 , ,..., 1
i

n

f i a n n
i n

E a a f a a!
" "

= # = . The

vertices of

H

f
consist of the original and complemented forms of

!

i
(

!

i,0
,

!

i,1
). The hyperedges are the minterms of

f . To check

for NPN equivalence between two functions f and g, we check for
hypergraph isomorphism between

H

f
and

H

g
 and between

H

f
and

H

!g
 where,

H

f
,

H

g
, and

H

!g
 are hypergraphs for the

functions

f ,

g , and

!g respectively (

!g is negation of

g). If

either check shows isomorphism then f and g are NPN equivalent.
One method for determining hypergraph isomorphism is to derive
canonical forms of the induced bipartite graphs of

H

f
,

H

g
 and

H

!g
and then to compare appropriate bipartite graphs for

equivalence matching.
The previous example of the NAND (

f = NAND(a,b)) and the

OR (

f = OR(a,b)) are processed using Luks’ hypergraph

algorithm as follows. The list of minterms for each function is

x

y y

0 2 -2

x

y y

4 0 2-2

f = { !a !b , a !b , !a b} and

g = {a !b , !a b, ab} . The bipartite graphs

for f and g are then constructed as shown in Figure 3. The two
bipartite graphs are isomorphic which indicates that the 2-input
NAND is NP (and hence NPN) equivalent to the 2-input OR
function. The tools for isomorphic checking of two bipartite graphs
can be found in [15].

a'

a

b'

b

a'b'

ab'

a'b

ab

a'

a

b'

b

a'b'

ab'

a'b

ab

Figure 3: Bipartite graphs for f and g

3.2 WALSH SPECTRUM
Each of the coefficients of the Walsh spectrum for the function

f (X) measures the correlation between

f (X) and the exclusive-

OR of some subset of X . The coefficients of the Walsh spectrum
are denoted as

W
!

, where ! identifies the variables involved in the
corresponding exclusive-OR function. We also classify the
coefficients based on the cardinality of the set! . For example,

W

1
is the first order Walsh coefficient;

W

12
is the second order

coefficient dependent on the 1st and 2nd inputs; and so on. All Walsh
coefficients for a 4-input function can be represented as a vector

),,,,,,,,,,,,,(1234,23413412434242314131243210 WWWWWWWWWWWWWWWW =

If the absolute values of the 0th and nth order coefficients of two
functions to be compared are not equal, then the two functions are
not an NPN equivalence match [5]. Otherwise, it is possible that the
two functions are a match. The following lemmas describe
properties important to identifying NPN equivalence of two Boolean
functions.
Lemma 1: If the zeroth ordered Walsh coefficient,

W

0
, is negated,

then all other coefficients

W
!

 must also be negated.

Lemma 2: If a first order coefficient

W

i
 is negated, all higher order

coefficients

W
!

 where i !" must also be negated.

Lemma 3: If first order coefficients,

W

i
and

W

j
, are interchanged

then all coefficients

W

i,!
 and

W

j,!
 must also be interchanged.

If the initial check for the 0
th and n

th coefficients indicate that
the two functions cannot be an NPN match, then the CPU runtime is

O(N

2
+ n) where n is the number of inputs and N is the size of

the BDD. However, if the initial check does not eliminate the
possibility that the two functions can be an NPN match, we can
transform the function into a canonical form via the
“canonicalize” function where we compare the two SDDs. If
their canonical forms are equivalent, two functions are a match.
In the canonicalize routine we rearrange the Walsh spectral
values such that the coefficients are decreasingly ordered (in
magnitude) as was done in [5]. If a coefficient is negative, we
negate the coefficient and make it positive and move it to the front
based on the Lemmas. Although this definition of a canonical
representation is arbitrary, it provides a technique to compare two
functions. Regarding negation, all first-order coefficients can be
made to be positive. For the second or higher order coefficients, any

negative coefficient can be negated, if and only if, the needed lower
level coefficients are 0. For example,

W

13
can be negated if

W

1
 or

W

3
 is 0. And also if

W

1
 is equal to 0 and

W

3
 is not equal to 0, then

W

12
 must also equal 0. The worst-case time for this algorithm

is

O(n

32n) . The worst case is when most of the first order
coefficients are 0 but not all of them.

We also propose two techniques to speed up the procedure. The
first one utilizes the property of symmetry. The algorithm can
achieve a quadratic runtime improvement compared to past
techniques when the function is completely symmetric and one of
the following conditions holds: either none of the first order
coefficients are 0, or, when they are a parity function. The parity
function is detected in our algorithm by the property that all the
Chow parameters (

W

1
,W

2
,...,W

n
) are 0 and the nth order

coefficient must equal 2n [11]. Figure 4 shows the SDD for a 4 input
parity function.

Another speed up is incorporated by checking the 1
st order

coefficients. If all the 1
st order coefficients of a function are equal

and none of them are 0, the procedure can return since the other

function needs to have the same 1
st order coefficients for

equivalence matching in this situation.
x1

x2

x3

x4

0 +/-16
Figure 4: SDD for a 4 input parity function

Figures 6 through 8 demonstrate this algorithm using the example
of 2-input NAND and OR functions. Since the CUDD package [12]
is used to implement this algorithm, a unique table is employed to
store the BDDs and comparing the two BDDs in Figure 6 takes
constant time.

4. RESULTS

Luks’ method and the Walsh spectrum method are implemented
and run on a benchmark set from MCNC. From the bit vectors in the
benchmark set, other bit vectors are generated. Set one contains five
bit vectors of varying Hamming distance (

h

d
): 20%, 40%, 60%,

80%, and 100%, from the original bit vector. The bit vectors in set

1 were calculated by changing

2
n ! h

d
"
#

$
%

 values. Set 2 contains five

bit vectors that are NPN equivalent to the original bit vector. All of
the results were run on a Linux machine with a 2 GHz Pentium4
processor and 2 Gigabytes of RAM.

Table 1 shows that the Walsh Spectral method for Boolean
matching becomes faster than Luks’ method when the number of
inputs is larger than 10. For benchmarks where the number of inputs
is larger than 16, Luks’ method cannot finish the matching problem
due to running out of memory. Walsh spectral methods can be
applied to the matching problem within seconds when using modern
techniques based upon Walsh spectra and decision diagrams as
discussed in this paper. One of the reasons that the Walsh method
outperforms Luks’ method for larger functions is that the Walsh

algorithm is dependant on the size of the SDD instead of the number
of inputs. Even in a potentially worst-case scenario, the run time can
be small if the SDD is within reasonable size.

5. CONCLUSIONS

 This paper covers the topic of Boolean Matching in technology
mapping. Two algorithms for NPN equivalence Boolean Matching
were investigated in detail. Although in the worst-case these
algorithms are exponential, for many benchmark circuits, the
algorithms are polynomial. The first algorithm was Luks’
hypergraph method in which Boolean functions are represented as
bipartite graphs and then are subsequently transformed as DAGs
where the isomorphism check on the bipartite graph is performed
using traditional heuristics. This method implements the NPN
equivalence checking problem as a hypergraph isomorphism
problem. The second algorithm is the Walsh spectral matching
method using SDDs, in which the Boolean function is represented in
terms of the Walsh spectrum and then compared to a SDD for NPN
equivalent checking.
 Our results indicate that Luks’ method is faster than the Walsh
spectral method for small functions. However, Luks’ method runs
out of memory as the number of input variables increase. This leads
us to conclude that the spectral method is superior for large
functions and has applicability for the matching of large cells and
for function identification problems that arise in logic synthesis and
formal verification.

x

y

2-2

NAND

x

y

-22

OR

-2

 Figure 5: SDDs for 2 input NAND and OR

x

y

-22

NAND

x

y

2-2

OR

2

Figure 6: Negating outputs of NAND and OR

x

y

-22

NAND OR

x

y

-22

 Figure 7: Negate Y input on the OR gate

6. REFERENCE
[1] J. Cric, C. Sechen, “Efficient Canonical Form for Boolean

Matching of Complex Functions in Large Libraries” in IEEE
Trans. on CAD, Vol. 22, May 2003, 535-544.

[2] V.P. Correia, A. Reis, “Classifying n-Input Boolean
Functions”, in Proc. IWS 2001, 2001.

[3] U. Hinsberger, R. Kolla, “Boolean matching for large
libraries”, in Proc. Design Automation Conference 98, Jun.
1998, pp.206-211.

[4] C. Chang, B. Falkowski, “NPN classification using weight
and literal vectors of Reed-Muller expansion”, Electronic
Letters Vol. 35 No. 10, May 1999, pp. 798-799

[5] D. M. Miller, “A spectral method for Boolean function
matching”, in Proc. of Design Automation and Test in
Europe, Mar. 1996, pp 602.

[6] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T.
Kam, “Reducing Structural Bias in Technology Mapping,” Proc.
of IWLS, 2005

[7] M. Thornton, R. Drechsler, and D.M. Miller, Spectral
Techniques in VSLI CAD, Boston: Kluwer Academic
Publishers, July, 2001.

[8] M. Thornton, R. Drechsler, “Spectral decision diagrams
using graph transformations”, in Proc. of Design
Automation and Test in Europe, Mar. 2001, pp. 713-717.

[9] M.A. Thornton, D.M. Miller, and R. Drechsler,
"Transformations Amongst the Haar, Walsh, and Reed-Muller
Spectral Domain." in International Workshop on Applications
of the Reed-Muller Expansion in Circuit Design (RMW), August
10-11, 2001, 215-225

[10] E. M. Luks, "Hypergraph Isomorphism and Structural
Equivalence of Boolean Equations", STOC 1999 Atlanta
GA, 1999, pp. 652 - 658.

[11] M. Thornton and V.S.S Nair, “Parity Function Detection and
Realization Using a Small Set of Spectral Coefficients”,
IEEE/ACM International Workshop on Logic Synthesis (IWLS),
May 1995, pp. 8-39 - 8-47

[12] F. Somenzi, CUDD http://vlsi.colorado.edu/~fabio
[13] D. M. Miller. Graph algorithms for the manipulation of boolean

functions and their spectra. In Congressus Numerantium, pp.
177–199, Winnipeg, Canada, 1987.

[14] M. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965

[15] http://cs.anu.edu.au/~bdm/nauty/

Table 1: Experimental Results
set 1 set 2 Benchmarks Inputs

Walsh Luks’ Walsh Luks’
majority 5 1.67E-03 4.36E-05 5.00E-03 1.13E-04

xor5 5 <1E-6 7.49E-05 <1E-6 1.51E-04
con1 6 <1E-6 6.32E-05 1.67E-03 2.01E-04
5xp1 7 <1E-6 8.31E-05 3.33E-03 3.33E-03
9sym 9 1.67E-03 2.20E-02 1.47E-01 1.40E-01

Z9sym 9 3.33E-03 2.19E-02 1.50E-01 1.26E-01
dk17 10 2.00E-02 3.85E-04 9.17E-02 1.06E-03

sym10 10 3.33E-03 1.24E-01 6.67E-03 5.90E-01
xor10 10 1.67E-03 1.96E-01 3.33E-03 1.77E-01
t481 16 5.50E-01 mem out 1.95E+00 mem out

xor20 20 3.54E+00 mem out 2.35E+00 mem out
or50 50 mem out mem out 1.50E-01 mem out

