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ABSTRACT 
This paper investigates two approaches for Boolean matching 

using NPN equivalence matching.  Luks’ hypergraph method is 
implemented and compared to the Walsh Spectral Decision 
Diagram (SDD) method that we propose here.  Both methods 
determine a canonical representation for each NPN equivalence 
class. The target functions are then transformed into a canonical 
representation and compared to the representative canonical forms 
for the NPN classes. This paper presents the implementation and 
results of the spectral method in detail. It is shown that the spectral 
method compares favorably to Luks’ method and is better in terms 
of computational requirements for large functions. 

1. INTRODUCTION 
The standard-cell ASIC design process requires developing 

templates or cells that define basic logic elements and then using 
those cells to develop larger circuits. Technology mapping, or ‘cell-
library binding’, is the process of selecting and connecting in proper 
sequence the appropriate cells from a “standard cell” library 
developed by an integrated circuit fabrication company. Technology 
mapping can be considered as comprising two tasks; Boolean 
matching and selection. Boolean Matching is determining whether 
or not two Boolean functions are equivalent with respect to some 
basic transformations. The result of Boolean matching is an 
equivalence class from the standard cell library that can implement 
the given function. Since each cell in the same class can implement 
equivalent functions, the “best” cell is selected from this 
equivalence class to maximize some objective function such as total 
area, delay or power consumption minimization. This latter process 
is called selection.  

Equivalence classes can be defined as P (Permutation), NP 
(Negation-Permutation), or NPN (Negation-Permutation-Negation) 
equivalent [14]. Two Functions 

 
f and

 
g , defined over the same 

variable set  X , are P equivalent if there exists a permutation 
operator !!  such that

  !
f ( X ) = g(!X ) where P represents an 

elementary permutation matrix. The naïve approach to this problem 
is to try all possible permutations. The complexity of this approach 
is

  
O(n!) . The following example will help to explain P equivalence. 

Consider two functions 
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f and 

 
g  are P equivalent if we switch the position of  

  
a

1
 and
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2
, 

that is
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Two Boolean functions are said to be NPN equivalent if there 
exists a permutation operator !! , with two complementation 
operators 

 !
!

o
 and

 !
!

i
, such that

  !
f (x) = !

o
g("!

i
x) . The 

complementation operators specify the possible negation of some 
of their arguments. NPN equivalence can be thought of as an 
extension to P equivalence.  For each input permutation, the inputs 

must also be considered in negated form and can require 

  
O(2n ) time. Thus, the complexity of NPN equivalence checking 

is
  
O(n!2n ) . Through the application of DeMorgan’s theorem, it is 

easy to see that the negation of the inputs of an OR-gate results in 
the functionality of a NAND gate. Therefore, two-input OR and 
NAND functions are NPN equivalent.  

In this paper, we first discuss the implementation of a hypergraph 
isomorphism checking method proposed by Luks in [10]. Then we 
propose a method using a Walsh Spectral Decision Diagram (SDD) 
method, to overcome the weakness of Luks’ method. Both of these 
methods find a canonical representation for each NPN equivalence 
class. The target functions are then transformed into a canonical 
representation and compared to the representative canonical forms 
for the NPN classes.  We note that the method of Luks is interesting 
because it transforms the Boolean matching problem to one of 
hypergraph isomorphism and that the use of the Walsh spectrum for 
Boolean matching was first reported in [5].  This work leads to an 
interesting comparison in these two techniques and also yields an 
approach for Boolean matching that handles very large functions in 
a reasonable amount of computation time.  The primary difference 
between the Walsh spectral method described here and that in [5] is 
that the use of efficient data structures known as SDDs are 
employed that reduce the average-case memory requirements to 
linear complexity in terms of dependent function variables as 
opposed to the exponential requirements needed in the method 
reported in [5]. 

2.  PRELIMINARIES AND RELATED WORK 

For effective technology mapping, equivalence classes must be 
selected very quickly and must contain all equivalent functions. In 
general, Boolean matching is intractable. Many algorithms have 
been proposed for Boolean matching including [1–6].  

In [1], Ciric and Sechen propose a solution that constructs a table 
for each Boolean function and then permute a table to the lowest 
cost according to their cost function. Their approach does not 
consider input or output negation. The method only classifies the 
functions in P (permutation) classes. In [2], Correia and Reis present 
a method based on the size of a Reduced Ordered Binary Decision 
Diagram (BDD). The BDD is negated and permuted until the BDD 
reaches a small size. Then the function is classified by the size of 
the BDD. Hinsberger and Kolla [3] consider each possible 
permutation and negation as a block in a tree. They are able to 
reduce the search space because they are only interested in finding 
the maximum leaf in the type of tree structure that they define. The 
maximum leaf is used as the unique representation of the Boolean 
function. They also suggest storing the cells in the cell library 
according to their equivalence class. The approach in [3] is also 
referred to as a cut-based Boolean mapping technique.  

Recently, authors in [6] propose a simplified version of the cut-
based Boolean mapping technique. Instead of storing one canonical 



representation of a library gate, all functions obtained by permuting 
the inputs to library gates are precomputed and stored. In this way, 
only N equivalence mapping is necessary instead of NPN 
equivalence mapping. Since N equivalence is much easier to 
compute than NPN equivalence, Boolean matching is faster than the 
original cut-based method.  However, as the authors also indicate in 
their paper, this method is not scalable. Indeed, this method would 
not work if the number of inputs for functions is larger than 10 
variables.  

In [4], a spectral method is proposed for the Boolean matching 
problem. Chang and Falkowski arrange the Reed-Muller expansion 
of a Boolean Function in ascending order of their magnitudes in 
terms of weights of their literal vectors.  

In [5], Miller shows how Boolean matching can be accomplished 
using the Walsh spectrum. The Boolean functions are represented 
by their Walsh spectra which is arranged such that the largest values 
(in magnitude) are as early as possible and negative values are as 
late as possible in the spectral vector.  Although this method 
requires exponentially large memory space, this observation is key 
to the results presented here.  The use of decision diagram based 
methods for the computation of the Walsh spectrum allows this 
approach to become practical. 

The algorithm proposed in this paper is similar to the algorithm in 
[5]; however, in this work we use decision diagrams for spectral 
computations as is described in [8,13] and we exploit the special 
conditions of symmetry and parity functions that allow for dramatic 
improvement in terms of circuit size and cases that were “hard” in 
the previous work of [5].  The spectral computation algorithms used 
in this work are based on graph algorithms that were first presented 
in [13]. 

The Walsh spectrum is a Fourier representation of a Boolean 
function expanded about the orthogonal Walsh basis functions. The 
Walsh spectrum can be defined using linear transformations. As is 
shown in [7], the Walsh matrix 
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The Boolean function 
  
f ( X )  can be represented as a column 

vector  F  where the corresponding 0 and 1 range values of 
 
f  are 

replaced with 1 and -1 respectively.  
The Walsh spectrum can be efficiently computed using a “fast” 

transform which is extensively documented in [9]. We briefly 
review the work in [9] for the completeness of the paper.  The 
Walsh transform can be computed using less time and less space 
through the use of BDDs [7] and the “butterfly diagram technique” 
commonly attributed to Cooley and Tukey. The resulting spectrum 
is also in a DD form that is referred to as a Spectral Decision 
Diagram (SDD). The basic idea of computing an SDD is to change 
the terminal nodes “0” and “1” in the BDD to “1” and “-1” 
respectively. The graph is traversed until a node whose children are 
either a terminal node or a Walsh node. Then, the predecessor node 
is transformed by making the appropriate changes to the children 
through the “butterfly transform” as is shown in Figure 1 (details are 
provided in [8,13].):  

Low

High

Low + High

Low - High 
Fig. 1: Butterfly flowgraph of the fast transform [8] 

The node is then marked as a Walsh node. The procedure stops 
when all the nodes are Walsh nodes. Figure 2 illustrates an example 
of this algorithm for a two input AND function.   
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Figure 2: Calculating SDD using BDD 

 One advantage in using BDDs to compute SDDs is that the 
complexity is no longer directly dependent on the number of inputs, 
n, but instead dependant on the size of the BDD (the number of 
vertices N). N in the best case is linear in terms of n. And SDDs can 
share isomorphic subgraphs thus providing even more savings in 
space. The runtime to build a SDD from a BDD is O(N2) since each 
node in the BDD is visited once and the runtime for adding two 
BDDs is O(N2).  The size complexity for the SDD is O(N) as well. 

3.  MATCHING TECHNIQUES 
3.1 LUKS’ METHOD 

In [10], Luks presents a method for Boolean matching using 
hypergraph isomorphism checking.  Let f be an n-input logic 
function with variable set
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vertices of 
 
H

f
consist of the original and complemented forms of 

 
!

i
(
  
!

i,0
,
  
!

i,1
). The hyperedges are the minterms of

 
f .  To check 

for NPN equivalence between two functions f and g, we check for 
hypergraph isomorphism between 

 
H

f
and 

 
H

g
 and between 

 
H

f
and

 
H

!g
 where, 

 
H

f
, 
 
H

g
, and 

 
H

!g
 are hypergraphs for the 

functions
 
f , 

 
g , and 

 
!g  respectively (

 
!g is negation of

 
g ).  If 

either check shows isomorphism then f and g are NPN equivalent. 
One method for determining hypergraph isomorphism is to derive 
canonical forms of the induced bipartite graphs of

 
H

f
, 
 
H

g
 and 

 
H

!g
and then to compare appropriate bipartite graphs for 

equivalence matching.  
The previous example of the NAND (

  
f = NAND(a,b) ) and the 

OR (
  
f = OR(a,b) ) are processed using Luks’ hypergraph 

algorithm as follows. The list of minterms for each function is 

x

y y

0 2 -2

x

y y

4 0 2-2



  
f = { !a !b , a !b , !a b}  and

  
g = {a !b , !a b, ab} . The bipartite graphs 

for f and g are then constructed as shown in Figure 3. The two 
bipartite graphs are isomorphic which indicates that the 2-input 
NAND is NP (and hence NPN) equivalent to the 2-input OR 
function. The tools for isomorphic checking of two bipartite graphs 
can be found in [15]. 
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Figure 3: Bipartite graphs for f and g 

3.2 WALSH SPECTRUM 
Each of the coefficients of the Walsh spectrum for the function 

  
f ( X ) measures the correlation between 

  
f ( X )  and the exclusive-

OR of some subset of X . The coefficients of the Walsh spectrum 
are denoted as 

 
W
!

, where ! identifies the variables involved in the 
corresponding exclusive-OR function. We also classify the 
coefficients based on the cardinality of the set! .  For example, 

  
W

1
is the first order Walsh coefficient; 

  
W

12
is the second order 

coefficient dependent on the 1st and 2nd inputs; and so on. All Walsh 
coefficients for a 4-input function can be represented as a vector  

),,,,,,,,,,,,,( 1234,23413412434242314131243210 WWWWWWWWWWWWWWWW =

If the absolute values of the 0th and nth order coefficients of two 
functions to be compared are not equal, then the two functions are 
not an NPN equivalence match [5]. Otherwise, it is possible that the 
two functions are a match.  The following lemmas describe 
properties important to identifying NPN equivalence of two Boolean 
functions. 
Lemma 1: If the zeroth ordered Walsh coefficient, 

  
W

0
, is negated, 

then all other coefficients 
 
W
!

 must also be negated. 

Lemma 2:  If a first order coefficient
 
W

i
 is negated, all higher order 

coefficients 
 
W
!

 where  i !" must also be negated. 

Lemma 3:  If first order coefficients, 
 
W

i
and

 
W

j
, are interchanged 

then all coefficients 
  
W

i,!
 and 

  
W

j,!
 must also be interchanged. 

If the initial check for the   0
th  and  n

th coefficients indicate that 
the two functions cannot be an NPN match, then the CPU runtime is 

  
O(N

2
+ n)  where  n is the number of inputs and  N  is the size of 

the BDD. However, if the initial check does not eliminate the 
possibility that the two functions can be an NPN match, we can 
transform the function into a canonical form via the 
“canonicalize” function where we compare the two SDDs. If 
their canonical forms are equivalent, two functions are a match.  
In the canonicalize routine we rearrange the Walsh spectral 
values such that the coefficients are decreasingly ordered (in 
magnitude) as was done in [5]. If a coefficient is negative, we 
negate the coefficient and make it positive and move it to the front 
based on the Lemmas. Although this definition of a canonical 
representation is arbitrary, it provides a technique to compare two 
functions.  Regarding negation, all first-order coefficients can be 
made to be positive. For the second or higher order coefficients, any 

negative coefficient can be negated, if and only if, the needed lower 
level coefficients are 0. For example, 

  
W

13
can be negated if 

  
W

1
 or 

  
W

3
 is 0. And also if 

  
W

1
 is equal to 0 and 

  
W

3
 is not equal to 0, then 

  
W

12
 must also equal 0. The worst-case time for this algorithm 

is
  
O(n

32n ) . The worst case is when most of the first order 
coefficients are 0 but not all of them.  

We also propose two techniques to speed up the procedure. The 
first one utilizes the property of symmetry.  The algorithm can 
achieve a quadratic runtime improvement compared to past 
techniques when the function is completely symmetric and one of 
the following conditions holds: either none of the first order 
coefficients are 0, or, when they are a parity function. The parity 
function is detected in our algorithm by the property that all the 
Chow parameters (

  
W

1
,W

2
,...,W

n
) are 0 and the nth order 

coefficient must equal 2n [11]. Figure 4 shows the SDD for a 4 input 
parity function.  

Another speed up is incorporated by checking the   1
st  order 

coefficients. If all the   1
st  order coefficients of a function are equal 

and none of them are 0, the procedure can return since the other 

function needs to have the same   1
st  order coefficients for 

equivalence matching in this situation.   
x1

x2

x3

x4

0 +/-16  
Figure 4: SDD for a 4 input parity function 

Figures 6 through 8 demonstrate this algorithm using the example 
of 2-input NAND and OR functions. Since the CUDD package [12] 
is used to implement this algorithm, a unique table is employed to 
store the BDDs and comparing the two BDDs in Figure 6 takes 
constant time.  

4.  RESULTS 

Luks’ method and the Walsh spectrum method are implemented 
and run on a benchmark set from MCNC. From the bit vectors in the 
benchmark set, other bit vectors are generated. Set one contains five 
bit vectors of varying Hamming distance (

 
h

d
): 20%, 40%, 60%, 

80%, and 100%, from the original bit vector.  The bit vectors in set 

1 were calculated by changing
  

2
n ! h

d
"
#

$
%

 values. Set 2 contains five 

bit vectors that are NPN equivalent to the original bit vector. All of 
the results were run on a Linux machine with a 2 GHz Pentium4 
processor and 2 Gigabytes of RAM.  

Table 1 shows that the Walsh Spectral method for Boolean 
matching becomes faster than Luks’ method when the number of 
inputs is larger than 10. For benchmarks where the number of inputs 
is larger than 16, Luks’ method cannot finish the matching problem 
due to running out of memory. Walsh spectral methods can be 
applied to the matching problem within seconds when using modern 
techniques based upon Walsh spectra and decision diagrams as 
discussed in this paper. One of the reasons that the Walsh method 
outperforms Luks’ method for larger functions is that the Walsh 



algorithm is dependant on the size of the SDD instead of the number 
of inputs. Even in a potentially worst-case scenario, the run time can 
be small if the SDD is within reasonable size. 

5.  CONCLUSIONS 

 This paper covers the topic of Boolean Matching in technology 
mapping. Two algorithms for NPN equivalence Boolean Matching 
were investigated in detail. Although in the worst-case these 
algorithms are exponential, for many benchmark circuits, the 
algorithms are polynomial. The first algorithm was Luks’ 
hypergraph method in which Boolean functions are represented as 
bipartite graphs and then are subsequently transformed as DAGs 
where the isomorphism check on the bipartite graph is performed 
using traditional heuristics. This method implements the NPN 
equivalence checking problem as a hypergraph isomorphism 
problem. The second algorithm is the Walsh spectral matching 
method using SDDs, in which the Boolean function is represented in 
terms of the Walsh spectrum and then compared to a SDD for NPN 
equivalent checking.  
  Our results indicate that Luks’ method is faster than the Walsh 
spectral method for small functions. However, Luks’ method runs 
out of memory as the number of input variables increase.  This leads 
us to conclude that the spectral method is superior for large 
functions and has applicability for the matching of large cells and 
for function identification problems that arise in logic synthesis and 
formal verification. 
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 Figure 7: Negate Y input on the OR gate 
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Table 1: Experimental Results 
set 1 set 2 Benchmarks Inputs 

Walsh  Luks’  Walsh  Luks’  
majority 5 1.67E-03 4.36E-05 5.00E-03 1.13E-04 

xor5 5 <1E-6 7.49E-05 <1E-6 1.51E-04 
con1 6 <1E-6 6.32E-05 1.67E-03 2.01E-04 
5xp1 7 <1E-6 8.31E-05 3.33E-03 3.33E-03 
9sym 9 1.67E-03 2.20E-02 1.47E-01 1.40E-01 

Z9sym 9 3.33E-03 2.19E-02 1.50E-01 1.26E-01 
dk17 10 2.00E-02 3.85E-04 9.17E-02 1.06E-03 

sym10 10 3.33E-03 1.24E-01 6.67E-03 5.90E-01 
xor10 10 1.67E-03 1.96E-01 3.33E-03 1.77E-01 
t481 16 5.50E-01 mem out 1.95E+00 mem out 

xor20 20 3.54E+00 mem out 2.35E+00 mem out 
or50 50 mem out mem out 1.50E-01 mem out 


