

A Multiple-Valued Logic Synthesis Tool for Optical
Computing Elements

Kaitlin N. Smith, Mitchell A. Thornton
Darwin Deason Institute for Cyber Security

Department of Electrical Engineering
Southern Methodist University

Dallas, TX, USA
knsmith@smu.edu, mitch@smu.edu

Abstract—Optical computing elements offer benefits over
traditional CMOS-based electronic logic gates such as increased
performance and reduced power. Using polarization to encode
the information to be processed allows for the possibility of non-
binary switching theory to be applied that further offers the
benefit of reducing the number of required elements in an optical
computing circuit. A methodology for synthesizing non-binary
optical computing circuits is described and experimental results
are provided that justify the approach.

Keywords—Optical Computing, Multiple-Valued Logic,
Synthesis

I. INTRODUCTION
Multiple-valued logic, or MVL, has the potential to

revolutionize modern computing. Rather than switching
between two states as in binary, a higher resolution of
outcomes can be achieved with the addition of logic levels.
MVL expressions are capable of modeling more realistic
systems that need more state representation than just a “true”
or “false.” Additionally, higher radix systems have the
advantage of faster and more efficient computations since
fewer gates are required and interconnecting busses hold more
data [1]. Many other advantages of higher-radix computation
circuitry are given in [3].

Currently, metal-oxide-semiconductor field effect
transistors, MOSFETs, are used in most integrated circuits,
ICs, to support Boolean logic. These transistors are well
understood and easy to manufacture, making them the
preferred choice when computing only requires either an
asserted or non-asserted state to be present. What happens,
however, when MVL is introduced? Traditional MOSFETs
only support two logic states and would need complex
modifications to support a radix higher than 2. Because of the
difficulty of implementing MVL with current IC technology, a
possible solution could be exploring alternative computing
methods. Of these alternative methods, the use of photonic
devices for MVL seems to be the best choice.

Photonic devices such as semiconductor lasers are
commonly found in data reading sensors and communication
networks. Lasers have widespread use in digital
communications because they provide many advantages such
as small size, low power consumption, and the ability to be

fabricated on a mass scale [2]. Additionally, data travels much
faster since photons travel at a quicker rate than electrons. For
this reason, optical computers have the potential to compute at
a speed 107 times faster than the fastest conventional electric
computer [7]. These advantages could also make optical
computing devices a suitable platform for MVL. Unlike the
electrons in a transistor, photons have the ability to travel in
distinct orientations, or polarizations. Since the polarization of
light can be detected, measured, and manipulated, it is
possible that multi-state systems could be represented with
semiconductor photonic devices.

In this paper, the development of a MVL synthesis tool
will be discussed. The final product is a program capable of
reading a logic table with a radix of three or above and
outputting a netlist with a Verilog-like syntax that represents
the logic expression of the table data. Eventually, this netlist
will map to photonic elements capable of producing a gate
representation that mirrors the original logic table.

II. BACKGROUND
Representing MVL in gate form requires logic blocks that

build on the concepts of traditional Boolean operators. To
represent a multi-state system, combinations of MIN, MAX,
and literal selection gates may be used [3]. The visual
rendering of these MVL gates can be seen in Fig. 1.

Fig. 1. MIN, MAX, and literal selection gate shapes

 A MIN gate, taking resemblance to an AND gate, finds the
minimum logic value input to the gate and sets that as output.
Conversely, a MAX gate, closely resembling an OR gate,
outputs the maximum logic value that is input into the gate’s
terminals. Lastly, the literal selection gate, with the
appearance of a buffer, acts as a value detector. The input to
this gate will always be a single variable and the output will be
the highest available logic level for a system’s radix whenever
the desired state is detected. The truth tables describing the
three MVL gates utilized in this paper have been included in
Fig. 2.

Fig. 2. MIN, MAX, and literal selection truth tables as defined for radix 3

Creating the gate representation of MVL logic tables was
done using the concepts of Shannon Expansion. In Boolean
logic, Shannon Expansion is an identity used to express a
function, F, as the simplified form F = x’Fx’ + xFx. The terms
Fx’ and Fx in the expression have the x variable equal to 0 and
1, respectively, allowing the x argument to be factored out
completely. This process can continue for the remaining
variables in the expression so that the original function, F, can
be reduced to be in terms of a single argument. The result is a
simplified sum of products binary equation.

Shannon Expansion has become a fundamental tool in
Boolean algebra, but its application is not limited to a radix of
2. By adding terms to the original identity, Shannon
Expansion can be used to express MVL functions of any
radix. As an example, the logic function, F, would take the
form F = x{0}Fx

0 + x{1}Fx
1 + x{2}Fx

2 if radix 3, logic was used.
The terms Fx

0
, Fx

1, and Fx
2 in the expression have the x

variable equal to 0, 1, and 2, respectively. Just as with
Boolean logic, an MVL table can be reduced to an expression
that can be represented using logic gates. A two variable,
radix 3 system can be seen in Table I.

TABLE I. RADIX 3 SYSTEM
x y F
0 0 0
0 1 1
0 2 2
1 0 0
1 1 1
1 2 2
2 x 2

Application of the Shannon Expansion results in the
following equation that represents the table data:
F = x{0} Fx0 + x{1} Fx1 + x{2} Fx2

F = x{0} (y{0} •0 + y{1} •1 + y{2} •2) + x{1} (y{0} •0 + y{1} •1 + y{2} •2) +
x{2} (y{0} •2 + y{1} •2 + y{2} •2)
F = x{0} (y{1} •1 + y{2} •2) + x{1} (y{1} •1 + y{2} •2) + x{2} (2)

F = x{0,1} (y{1} •1 + y{2} •2) + x{2} (2)
With a MVL expression for a system, a gate depiction can

also be defined. In order to accomplish a circuit from a logic
expression, all multiplication operations become MIN gates
whereas all addition operations become MAX gates. The
above logic expression can be seen as a circuit in Fig. 3.

Fig. 3. Gate representation of Table I

III. THE INTEGRATION OF PHOTONICS IN MVL
The benefits that accompany photonic devices in

computing are only present whenever all of the components

from circuit start to finish are optical. In optical systems, if a
signal constantly converts between electric to photonic, high
levels of energy are lost and complicated interconnects are
necessary [4]. These requirements, unfortunately, increase the
power consumption and spatial requirements of a circuit,
decreasing its overall efficiency.

In order to make photonic devices a reasonable platform
for computing, especially for MVL, it is essential for
functionally complete set to be developed. Here, we use the
functionally complete set {MIN, MAX, and Literal Select}.
Different optical MVL gates can be easily added to our library
should they be desirable. The only constraint is that the library
must contain a functionally complete subset of gates.

Ternary computing allows for one extra logic level as
compared to binary. A possibility for an optically based radix
3 computer was presented in the article “Ternary Optical
Computer Architecture.” In this paper, the possibility of
representing 3 logic states, 0, 1, and 2, is discussed using the
absence of light, vertically polarized light, and horizontally
polarized light, respectively, from a lamp house [5]. If an
angle smaller than 90 degrees was used between polarizations
and the absence of light represented logic level 0, photonic
devices could extend their application to n-valued logics. A
possible equation to calculate the angle of separation between
polarizations representing different logic levels (with the
absence of light included as a logic level) could be θ =
180°/(radix-1).

Any set of MVL operators could be used during gate
synthesis as long as they are functionally complete. The MVL
synthesis tool in this paper maps to the functionally complete
set of MIN, MAX, and literal selection gates that is popular
for MVL computing. Ideally, methods to implement these
three gates optically so that the logic operators are dynamic in
radix will be developed with further research. In theory, a
literal selection gate could be created simply by filtering
incoming light for a particular polarization and then rotating
the detected light to match the polarization angle of the
highest state. Such a task might be accomplished using a filter
and a dove prism combined with a half-wave plate since dove
prisms invert transmitted images and can rotate images at
twice the rotation frequency of the prism [8].

IV. APPROACH
The MVL synthesis tool was written in C++. The purpose

of the program is to produce a simplified MVL gate
representation by inputting radix, number of variables, and the
complete logic table. Shannon Expansion as well as other
factoring techniques were implemented in order to accomplish
the final netlist. The overall flow diagram for gate synthesis
can be seen in Fig. 4.

The netlist synthesis tool begins by reading information
about the MVL system from a text file indicated on the
command line. The radix and number of variables are
indicated by the first two digits of the first line of text,
respectively. The MVL logic table begins on the second line
of text in the input file. The last column of the table indicates
the system output, F, while the proceeding columns hold the

logic levels of the variables. After the logic table has been
read, optimizations for the netlist begin with column sort.

Fig. 4. Flow diagram of MVL synthesis tool

Fig. 5. Illustration of MVL table column sorting with x as a don’t-care
The order of the logic table columns is important for the

simplification of the final logic expression. Sorting of the
MVL table begins by reordering the columns so that don’t-
care variables, or variables that have minimum to no impact
on the output, are set as least significant in the table while
variables that are more influential on the output of the system
are set as most significant. This is accomplished by comparing
each column of the logic table to the output and setting a
mismatch score for the variables. The variables that differ
most from the output are moved to a less significant column
on the table while variables that closely match the output are
made more significant. After the columns are reordered, radix
sort allows the new MVL table to be put back into numerical
order. Fig. 5 helps to explain the importance of reordering of
columns during table sorting. As can be seen in Fig. 5, sorting
the MVL table columns helps to group matching output terms.

This grouping of F helps reduce the final logic expression
whenever Shannon Expansion is implemented in the code.

After sorting is complete and a new MVL table is
achieved, the creation of the netlist officially begins. First,
Shannon Expansion applied on the table and MIN and MAX
gates appear with the syntax of min(output, input1, input2….)
and max(output, input1, input2…..), respectively. Either wires
or constants can be inputs to both MIN and MAX gates while
the outputs will always be wires. Next, a MAX gate that
creates the sum of products expression is generated. The input
to the final MAX gate will be wires while the output will be F.
Finally, the literal selection gates needed for the circuit are
printed in the form of lit#(output, input) where the #
represents the detected state. Only variables will be input to
these gates while the output will always be wires.

As each gate for the netlist is created, it prints to the
screen. The result of each run is also saved into a text file
titled netlist_year_month_day_hour_min_sec.txt. The runtime
for the netlist creator program is also located in this test file.

V. EXPERIMENTAL RESULTS
 During testing, it was found that the MVL netlist synthesis
tool was capable of creating gate representations of systems
with any number of variables and with a radix greater than two.
Tests were completed on a portable laptop running Windows
with an i3-4010U CPU at 1.7 GHz and 4 GB of RAM. Run
times listed in this section with the output netlists are specific
for this machine.
 Because it is the lowest radix in MVL, ternary logic was
often used during initial testing. Table II describes a two-
variable, ternary system that was used as a program input.

TABLE II. SAMPLE SYSTEM USED FOR TESTING
Variable 0 Variable 1 F

0 0 0
0 1 0
0 2 0
1 0 1
1 1 1
1 2 1
2 0 0
2 1 0
2 2 2

Whenever the MVL synthesis tool was executed on the data
above, a netlist containing 2 MIN gates, 1 MAX gate, and 3
literal selection gates was generated:

Generated Netlist:
min(w0, v0_set2, v1_set2)

 min(w1, 1, v0_set1)
max(F, w0, w1)

lit1(v0_set1, Variable0)
lit2(v0_set2, Variable0)
lit2(v1_set2, Variable1)

This netlist realized in gate form appears as the MVL circuit
seen in Fig. 6.

Fig. 6. Gate Representation of Table II

 To verify the functionality of the program, binary circuits
with known truth tables were converted into 4-valued logic for
testing. Table III describes a 2-bit by 2-bit binary adder with no
carry input. The radix 2 and radix 4 representation of the
system has been included.

TABLE III. 2-bit by 2-bit binary adder
Radix 2 Radix 4

Input
(v0,v1,v2,v3)

Output
(F1,F2,F3)

Input
(v0,v1)

Output
(F0,F1)

0000 000 00 00
0001 001 01 01
0010 010 02 02
0011 011 03 03
0100 001 10 01
0101 010 11 02
0110 011 12 03
0111 100 13 10
1000 010 20 02
1001 011 21 03
1010 100 22 10
1011 101 23 11
1100 011 30 03
1101 100 31 10
1110 101 32 11
1111 110 33 12

With the radix 4 representation of the 2-bit by 2-bit adder
known, it can be saved into a text file and input to the netlist
synthesis tool. Since the radix 4 output has two digits, the
netlist synthesis needs to be run twice to create a complete
circuit. The first run of the table data when mapped to the F0
column generated a netlist including 3 MIN gates, 3 MAX
gates and 6 literal selection gates. Next, the 2-bit by 2-bit
binary adder data was mapped to F1 to create a second netlist.
This netlist contained 12 MIN gates, 1 MAX gate, and 8 literal
selection gates.
 To see the 2-bit by 2-bit adder system as a whole, the two
netlists corresponding to the outputs F0 and F1 needed to be
combined:

min(w0, 1, v0_set1, v1_set3)
max(w1, v1_set2, v1_set3)
min(w2, 1, v0_set2, w1)
max(w3, v1_set1, v1_set2, v1_set3)
min(w4, 1, v0_set3, w3)

 max(F0, w0, w2, w4)
 min(w0a, 1, v0_set0, v1_set1)

min(w1a, 2, v0_set0, v1_set2)
min(w2a, v0_set0, v1_set3)
min(w3a, 1, v0_set1, v1_set0)
min(w4a, 2, v0_set1, v1_set1)
min(w5a, v0_set1, v1_set2)
min(w6a, 2, v0_set2, v1_set0)
min(w7a, v0_set2, v1_set1)
min(w8a, 1, v0_set2, v1_set3)
min(w9a, v0_set3, v1_set0)
min(w10a, 1, v0_set3, v1_set2)
min(w11a, 2, v0_set3, v1_set3)

 max(F1, w0a, w1a, w2a, w3a, w4a, w5a, w6a, w7a, w8a, w9a, w10a, w11a)

lit0(v0_set0, Variable0)
lit0(v1_set0, Variable1)
lit1(v0_set1, Variable0)
lit1(v1_set1, Variable1)
lit2(v0_set2, Variable0)
lit2(v1_set2, Variable1)
lit3(v0_set3, Variable0)

 lit3(v1_set3, Variable1)
 The gate representation of the system as a whole features
15 MIN gates and 4 MAX gates. Eight literal selection gates
are needed since repetitive literal selection gates are

unnecessary and eliminated. A total of 0.655 sec was needed to
create the complete netlist for the 2-bit by 2-bit adder.
 Table IV includes resulting test data when the MVL netlist
generator was used to recreate benchmark circuits.

TABLE IV. BENCHMARK CIRCUIT DATA
Circuit Name Radix Size

(gates)
Inputs Outputs Time

(sec)
Cost

Table II
system 3 6 2 1 0.189 4.5

2-bit by 2-bit
binary adder 4 27 2 2 0.655 34.5

4 to 1 mux 4 38 3 1 0.796 55
XOR5 4 27 3 1 0.656 33

 To determine total function cost, each literal selection gate
was given the value 0.5 while each MIN and MAX gate was
given the value of 1. Each additional gate input above 2
increases the total value of the block by 0.5. Cost is a unitless
rate and is used as a rough indicator of how much hardware the
optical circuit will require.

VI. CONCLUSION AND FUTURE RESULTS
The MVL synthesis tool described in this paper creates

netlists that represent the information found in MVL logic
tables. The tool’s purpose to be mapped to photonic devices
was explained and its functionality was demonstrated through
example logic tables and corresponding gate representations.
Through the testing process, generated netlists were found to
be accurate, but opportunities for further optimization and
improvement exist. For example, a calculation that
automatically determines the total cost of an MVL circuit could
be added to the program so that the user is more aware of the
energy requirements of a system. Additionally, further checks
could be placed in the program code to insure that the
generated netlist appears in its most simplified state. Finally,
work will continue to develop a set of verified photonic gates
that this tool will map to.

REFERENCES

[1] V.T Gaikwad, P.R. Deshmukh, “Multi-Valued Logic Applications in the

Design of Switching Circuits,” Int. Journal of Advanced Research in
Computer Science and Software Engineering, vol. 2, no. 5, pp. 446-449.
May 2015.

[2] A. Yariz, P.Yeh, “Semiconductor Lasers - Theory and Application,” in
Photonics, 6th ed. New York: The Oxford University Press Inc., 2007,
ch. 15, pp. 673-713.

[3] D. M. Miller, M. A. Thornton, “MVL Concepts and Algebra,” in Multiple
Valued Logic Concepts and Representations. Morgan & Claypool
Publishers, 2007.

[4] P. Singh, D. K. Tripathi, S. Jaiswal, H. K. Dixit, “All-Optical Logic
Gates: Designs, Classification, and Comparison,” Advances in Optical
Technologies, vol. 2014, Article ID 275083, 13 pages, 2014.

[5] J. Yi, H. Huacan, L. Yangtian. “Ternary Optical Computer Architecture,”
Physica Scripta, vol. T118, pp. 98-101. 2005

[6] G. D. Jenkins. “ All- Optical Logic Gates.” 2007
[7] A. Gupta, A. Rai, S. Kumari. “A Review on the Reality and Promises of

Optical Computing.” International Conference on Computer Science
and Information Technology. 2013, pp. 106-110

[8] M. J. Padgett, J. P. Lesso. “Dove prisms and polarized light,” Journal of
Modern Optics, vol. 46, no. 2, pp. 175-179. 1999

