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Abstract—Optical computing elements offer benefits over 
traditional CMOS-based electronic logic gates such as increased 
performance and reduced power.  Using polarization to encode 
the information to be processed allows for the possibility of non-
binary switching theory to be applied that further offers the 
benefit of reducing the number of required elements in an optical 
computing circuit.  A methodology for synthesizing non-binary 
optical computing circuits is described and experimental results 
are provided that justify the approach. 

Keywords—Optical Computing, Multiple-Valued Logic, 
Synthesis 

I. INTRODUCTION  
Multiple-valued logic, or MVL, has the potential to 

revolutionize modern computing. Rather than switching 
between two states as in binary, a higher resolution of 
outcomes can be achieved with the addition of logic levels. 
MVL expressions are capable of modeling more realistic 
systems that need more state representation than just a “true” 
or “false.” Additionally, higher radix systems have the 
advantage of faster and more efficient computations since 
fewer gates are required and interconnecting busses hold more 
data [1]. Many other advantages of higher-radix computation 
circuitry are given in [3]. 

Currently, metal-oxide-semiconductor field effect 
transistors, MOSFETs, are used in most integrated circuits, 
ICs, to support Boolean logic. These transistors are well 
understood and easy to manufacture, making them the 
preferred choice when computing only requires either an 
asserted or non-asserted state to be present. What happens, 
however, when MVL is introduced? Traditional MOSFETs 
only support two logic states and would need complex 
modifications to support a radix higher than 2. Because of the 
difficulty of implementing MVL with current IC technology, a 
possible solution could be exploring alternative computing 
methods. Of these alternative methods, the use of photonic 
devices for MVL seems to be the best choice. 

Photonic devices such as semiconductor lasers are 
commonly found in data reading sensors and communication 
networks. Lasers have widespread use in digital 
communications because they provide many advantages such 
as small size, low power consumption, and the ability to be 

fabricated on a mass scale [2]. Additionally, data travels much 
faster since photons travel at a quicker rate than electrons. For 
this reason, optical computers have the potential to compute at 
a speed 107 times faster than the fastest conventional electric 
computer [7]. These advantages could also make optical 
computing devices a suitable platform for MVL. Unlike the 
electrons in a transistor, photons have the ability to travel in 
distinct orientations, or polarizations. Since the polarization of 
light can be detected, measured, and manipulated, it is 
possible that multi-state systems could be represented with 
semiconductor photonic devices.  

In this paper, the development of a MVL synthesis tool 
will be discussed. The final product is a program capable of 
reading a logic table with a radix of three or above and 
outputting a netlist with a Verilog-like syntax that represents 
the logic expression of the table data. Eventually, this netlist 
will map to photonic elements capable of producing a gate 
representation that mirrors the original logic table. 

II. BACKGROUND 
Representing MVL in gate form requires logic blocks that 

build on the concepts of traditional Boolean operators. To 
represent a multi-state system, combinations of MIN, MAX, 
and literal selection gates may be used [3]. The visual 
rendering of these MVL gates can be seen in Fig. 1. 

 
Fig. 1. MIN, MAX, and literal selection gate shapes 

 A MIN gate, taking resemblance to an AND gate, finds the 
minimum logic value input to the gate and sets that as output. 
Conversely, a MAX gate, closely resembling an OR gate, 
outputs the maximum logic value that is input into the gate’s 
terminals. Lastly, the literal selection gate, with the 
appearance of a buffer, acts as a value detector. The input to 
this gate will always be a single variable and the output will be 
the highest available logic level for a system’s radix whenever 
the desired state is detected. The truth tables describing the 
three MVL gates utilized in this paper have been included in 
Fig. 2.  



 
 

 
Fig. 2. MIN, MAX, and literal selection truth tables as defined for radix 3  

Creating the gate representation of MVL logic tables was 
done using the concepts of Shannon Expansion. In Boolean 
logic, Shannon Expansion is an identity used to express a 
function, F, as the simplified form F = x’Fx’ + xFx. The terms 
Fx’ and Fx in the expression have the x variable equal to 0 and 
1, respectively, allowing the x argument to be factored out 
completely. This process can continue for the remaining 
variables in the expression so that the original function, F, can 
be reduced to be in terms of a single argument. The result is a 
simplified sum of products binary equation.  

Shannon Expansion has become a fundamental tool in 
Boolean algebra, but its application is not limited to a radix of 
2. By adding terms to the original identity, Shannon 
Expansion can be used to express MVL functions of any 
radix. As an example, the logic function, F, would take the 
form F = x{0}Fx

0 + x{1}Fx
1 + x{2}Fx

2 if radix 3, logic was used. 
The terms Fx

0
, Fx

1, and Fx
2 in the expression have the x 

variable equal to 0, 1, and 2, respectively.  Just as with 
Boolean logic, an MVL table can be reduced to an expression 
that can be represented using logic gates.  A two variable, 
radix 3 system can be seen in Table I.  

TABLE I. RADIX 3 SYSTEM  
x y F 
0 0 0 
0 1 1 
0 2 2 
1 0 0 
1 1 1 
1 2 2 
2 x 2 

Application of the Shannon Expansion results in the 
following equation that represents the table data: 
F = x{0} Fx0 + x{1} Fx1 + x{2} Fx2 

F = x{0} (y{0} •0 + y{1} •1 + y{2} •2) + x{1} (y{0} •0 + y{1} •1 + y{2} •2) + 
x{2} (y{0} •2 + y{1} •2 + y{2} •2) 
F = x{0} (y{1} •1 + y{2} •2) + x{1} (y{1} •1 + y{2} •2) + x{2} (2) 
       

F = x{0,1} (y{1} •1 + y{2} •2) + x{2} (2)  
With a MVL expression for a system, a gate depiction can 

also be defined. In order to accomplish a circuit from a logic 
expression, all multiplication operations become MIN gates 
whereas all addition operations become MAX gates. The 
above logic expression can be seen as a circuit in Fig. 3. 

 
Fig. 3. Gate representation of Table I 

III. THE INTEGRATION OF PHOTONICS IN MVL 
The benefits that accompany photonic devices in 

computing are only present whenever all of the components 

from circuit start to finish are optical. In optical systems, if a 
signal constantly converts between electric to photonic, high 
levels of energy are lost and complicated interconnects are 
necessary [4]. These requirements, unfortunately, increase the 
power consumption and spatial requirements of a circuit, 
decreasing its overall efficiency. 

In order to make photonic devices a reasonable platform 
for computing, especially for MVL, it is essential for 
functionally complete set to be developed. Here, we use the 
functionally complete set {MIN, MAX, and Literal Select}. 
Different optical MVL gates can be easily added to our library 
should they be desirable. The only constraint is that the library 
must contain a functionally complete subset of gates. 

Ternary computing allows for one extra logic level as 
compared to binary. A possibility for an optically based radix 
3 computer was presented in the article “Ternary Optical 
Computer Architecture.” In this paper, the possibility of 
representing 3 logic states, 0, 1, and 2, is discussed using the 
absence of light, vertically polarized light, and horizontally 
polarized light, respectively, from a lamp house [5]. If an 
angle smaller than 90 degrees was used between polarizations 
and the absence of light represented logic level 0, photonic 
devices could extend their application to n-valued logics. A 
possible equation to calculate the angle of separation between 
polarizations representing different logic levels (with the 
absence of light included as a logic level) could be θ = 
180°/(radix-1). 

Any set of MVL operators could be used during gate 
synthesis as long as they are functionally complete. The MVL 
synthesis tool in this paper maps to the functionally complete 
set of MIN, MAX, and literal selection gates that is popular 
for MVL computing. Ideally, methods to implement these 
three gates optically so that the logic operators are dynamic in 
radix will be developed with further research. In theory, a 
literal selection gate could be created simply by filtering 
incoming light for a particular polarization and then rotating 
the detected light to match the polarization angle of the 
highest state. Such a task might be accomplished using a filter 
and a dove prism combined with a half-wave plate since dove 
prisms invert transmitted images and can rotate images at 
twice the rotation frequency of the prism [8].  

IV. APPROACH 
The MVL synthesis tool was written in C++. The purpose 

of the program is to produce a simplified MVL gate 
representation by inputting radix, number of variables, and the 
complete logic table. Shannon Expansion as well as other 
factoring techniques were implemented in order to accomplish 
the final netlist.  The overall flow diagram for gate synthesis 
can be seen in Fig. 4.  

The netlist synthesis tool begins by reading information 
about the MVL system from a text file indicated on the 
command line. The radix and number of variables are 
indicated by the first two digits of the first line of text, 
respectively. The MVL logic table begins on the second line 
of text in the input file. The last column of the table indicates 
the system output, F, while the proceeding columns hold the 



 
 

logic levels of the variables. After the logic table has been 
read, optimizations for the netlist begin with column sort.  

 
Fig. 4. Flow diagram of MVL synthesis tool 

 
Fig. 5. Illustration of MVL table column sorting with x as a don’t-care 
The order of the logic table columns is important for the 

simplification of the final logic expression. Sorting of the 
MVL table begins by reordering the columns so that don’t-
care variables, or variables that have minimum to no impact 
on the output, are set as least significant in the table while 
variables that are more influential on the output of the system 
are set as most significant. This is accomplished by comparing 
each column of the logic table to the output and setting a 
mismatch score for the variables. The variables that differ 
most from the output are moved to a less significant column 
on the table while variables that closely match the output are 
made more significant.  After the columns are reordered, radix 
sort allows the new MVL table to be put back into numerical 
order. Fig. 5 helps to explain the importance of reordering of 
columns during table sorting. As can be seen in Fig. 5, sorting 
the MVL table columns helps to group matching output terms. 

This grouping of F helps reduce the final logic expression 
whenever Shannon Expansion is implemented in the code.  

After sorting is complete and a new MVL table is 
achieved, the creation of the netlist officially begins. First, 
Shannon Expansion applied on the table and MIN and MAX 
gates appear with the syntax of min(output, input1, input2….) 
and max(output, input1, input2…..), respectively. Either wires 
or constants can be inputs to both MIN and MAX gates while 
the outputs will always be wires. Next, a MAX gate that 
creates the sum of products expression is generated. The input 
to the final MAX gate will be wires while the output will be F. 
Finally, the literal selection gates needed for the circuit are 
printed in the form of lit#(output, input) where the # 
represents the detected state. Only variables will be input to 
these gates while the output will always be wires. 

As each gate for the netlist is created, it prints to the 
screen. The result of each run is also saved into a text file 
titled netlist_year_month_day_hour_min_sec.txt. The runtime 
for the netlist creator program is also located in this test file. 

V. EXPERIMENTAL RESULTS 
 During testing, it was found that the MVL netlist synthesis 
tool was capable of creating gate representations of systems 
with any number of variables and with a radix greater than two. 
Tests were completed on a portable laptop running Windows 
with an i3-4010U CPU at 1.7 GHz and 4 GB of RAM. Run 
times listed in this section with the output netlists are specific 
for this machine. 
 Because it is the lowest radix in MVL, ternary logic was 
often used during initial testing. Table II describes a two-
variable, ternary system that was used as a program input.  

TABLE II. SAMPLE SYSTEM USED FOR TESTING 
Variable 0 Variable 1 F 

0 0 0 
0 1 0 
0 2 0 
1 0 1 
1 1 1 
1 2 1 
2 0 0 
2 1 0 
2 2 2 

Whenever the MVL synthesis tool was executed on the data 
above, a netlist containing 2 MIN gates, 1 MAX gate, and 3 
literal selection gates was generated: 

Generated Netlist: 
min(w0, v0_set2, v1_set2) 

 min(w1, 1, v0_set1) 
max(F, w0, w1) 

 

lit1(v0_set1, Variable0) 
lit2(v0_set2, Variable0) 
lit2(v1_set2, Variable1)  

This netlist realized in gate form appears as the MVL circuit 
seen in Fig. 6. 

 
Fig. 6. Gate Representation of Table II 



 
 

 To verify the functionality of the program, binary circuits 
with known truth tables were converted into 4-valued logic for 
testing. Table III describes a 2-bit by 2-bit binary adder with no 
carry input. The radix 2 and radix 4 representation of the 
system has been included. 

TABLE III. 2-bit by 2-bit binary adder 
Radix 2 Radix 4

Input 
(v0,v1,v2,v3) 

Output 
(F1,F2,F3) 

Input 
(v0,v1) 

Output 
(F0,F1) 

0000 000 00 00
0001 001 01 01
0010 010 02 02
0011 011 03 03
0100 001 10 01
0101 010 11 02
0110 011 12 03
0111 100 13 10
1000 010 20 02
1001 011 21 03
1010 100 22 10
1011 101 23 11
1100 011 30 03
1101 100 31 10
1110 101 32 11
1111 110 33 12

With the radix 4 representation of the 2-bit by 2-bit adder 
known, it can be saved into a text file and input to the netlist 
synthesis tool. Since the radix 4 output has two digits, the 
netlist synthesis needs to be run twice to create a complete 
circuit. The first run of the table data when mapped to the F0 
column generated a netlist including 3 MIN gates, 3 MAX 
gates and 6 literal selection gates. Next, the 2-bit by 2-bit 
binary adder data was mapped to F1 to create a second netlist. 
This netlist contained 12 MIN gates, 1 MAX gate, and 8 literal 
selection gates.  
 To see the 2-bit by 2-bit adder system as a whole, the two 
netlists corresponding to the outputs F0 and F1 needed to be 
combined: 

min(w0, 1, v0_set1, v1_set3) 
max(w1, v1_set2, v1_set3) 
min(w2, 1, v0_set2, w1) 
max(w3, v1_set1, v1_set2, v1_set3) 
min(w4, 1, v0_set3, w3) 

 max(F0, w0, w2, w4) 
 min(w0a, 1, v0_set0, v1_set1) 

min(w1a, 2, v0_set0, v1_set2) 
min(w2a, v0_set0, v1_set3) 
min(w3a, 1, v0_set1, v1_set0) 
min(w4a, 2, v0_set1, v1_set1) 
min(w5a, v0_set1, v1_set2) 
min(w6a, 2, v0_set2, v1_set0) 
min(w7a, v0_set2, v1_set1) 
min(w8a, 1, v0_set2, v1_set3) 
min(w9a, v0_set3, v1_set0) 
min(w10a, 1, v0_set3, v1_set2) 
min(w11a, 2, v0_set3, v1_set3) 

 max(F1, w0a, w1a, w2a, w3a, w4a, w5a, w6a, w7a, w8a, w9a, w10a, w11a) 
 

lit0(v0_set0, Variable0) 
lit0(v1_set0, Variable1) 
lit1(v0_set1, Variable0) 
lit1(v1_set1, Variable1) 
lit2(v0_set2, Variable0) 
lit2(v1_set2, Variable1) 
lit3(v0_set3, Variable0) 

 lit3(v1_set3, Variable1) 
 The gate representation of the system as a whole features 
15 MIN gates and 4 MAX gates. Eight literal selection gates 
are needed since repetitive literal selection gates are 

unnecessary and eliminated. A total of 0.655 sec was needed to 
create the complete netlist for the 2-bit by 2-bit adder. 
 Table IV includes resulting test data when the MVL netlist 
generator was used to recreate benchmark circuits. 

TABLE IV. BENCHMARK CIRCUIT DATA 
Circuit Name Radix Size 

(gates) 
Inputs Outputs Time 

(sec) 
Cost 

Table II 
system 3 6 2 1 0.189 4.5 

2-bit by 2-bit 
binary adder 4 27 2 2 0.655 34.5 

4 to 1 mux 4 38 3 1 0.796 55 
XOR5 4 27 3 1 0.656 33 

 To determine total function cost, each literal selection gate 
was given the value 0.5 while each MIN and MAX gate was 
given the value of 1. Each additional gate input above 2 
increases the total value of the block by 0.5. Cost is a unitless 
rate and is used as a rough indicator of how much hardware the 
optical circuit will require. 

VI. CONCLUSION AND FUTURE RESULTS 
The MVL synthesis tool described in this paper creates 

netlists that represent the information found in MVL logic 
tables. The tool’s purpose to be mapped to photonic devices 
was explained and its functionality was demonstrated through 
example logic tables and corresponding gate representations. 
Through the testing process, generated netlists were found to 
be accurate, but opportunities for further optimization and 
improvement exist. For example, a calculation that 
automatically determines the total cost of an MVL circuit could 
be added to the program so that the user is more aware of the 
energy requirements of a system. Additionally, further checks 
could be placed in the program code to insure that the 
generated netlist appears in its most simplified state. Finally, 
work will continue to develop a set of verified photonic gates 
that this tool will map to. 
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