
AI-Assisted Outcome Engineering for Mapping
Natural Language to Radar Configuration Files

Darrell L. Young, Eric C. Larson, and Mitchell A. Thornton
Darwin Deason Institute of Cybersecurity

Southern Methodist University, Dallas, TX, USA
Emails: {dlyoung, eclarson, mitch}@smu.edu

Abstract—This paper shows how to use Large Language
Models (LLMs) and DSPy prompt engineering to bridge the gap
between expert knowledge and user natural language inputs. This
approach improves radar system usability by leveraging the DSPy
ReAct module and MIPROv2 prompt optimization to facilitate
the dynamic generation of radar technical parameters.

I. INTRODUCTION

Large Language Models (LLMs) can assist the engineer
with the tedious task of creating structured data. For example,
Table I shows the default radar configuration parameters for
the Texas Instruments Radar Estimator tool for a short-range
automotive radar board. This paper describes an experiment
which uses an LLM to convert a natural language input like
”Configure the radar to detect a pigeon.” Once a radar config-
uration table has been obtained from the LLM it can be easily
input into the Radar Estimation Tool [1]. The Radar Estimation
Tool determines the feasibility of the desired parameters
created by the LLM. This relieves a lot of technical burden
from the LLM. The LLM’s main purpose is to translate the
user requirements expressed in natural language into technical
requirement parameters expressed in the Radar Estimation
Tool’s engineering language. Use of the TI Radar Estimation
Tool with the resulting LLM-produced radar configuration
table will reveal if the technical parameters are achievable.
For example, the LLM does not have to determine that the
user’s desire to detect sparrows at a range of a mile is not
possible. The Radar Estimation Tool will show that. However,
the LLM does have the burden of converting natural language
to technical specifications for range, resolution, velocity, mea-
surement rate, and so forth. In this paper we show an approach
on how the LLM can use its function-calling skill to interpolate
a Radar Cross Section (RCS) table based on bird weight to
provide the important entry in the radar configuration table
”Typical Detected Object (RCS m2). A similar LLM tool-
calling approach can be used for other parameters or for more
sophisticated approaches to estimating RCS.

The interpolation of bird RCS values, as shown in Table II,
serves multiple purposes. First, it prevents the misclassification
of our research as applicable to military applications. Sec-
ond, it provides a straightforward method to validate radar
configurations using commercially available Texas Instruments
radar. Third, the interpolation approach is much less difficult
than typical RCS electromagnetic modeling. Lastly, birds

TABLE I
DEFAULT RADAR CONFIGURATION PARAMETERS FOR IWR6843

PLATFORM

Parameter Value
Platform IWR6843
Number of Rx 4
Number of Tx 3
Tx Gain (dB) 9
Rx Gain (dB) 9
Frequency Range (GHz) 60 - 64
Maximum Bandwidth (MHz) 4000
Tx Power (dBm) 12
Ambient Temperature (°C) 20
Maximum Detectable Range (m) 10
Range Resolution (cm) 5
Maximum Velocity (km/h) 26
Velocity Resolution (km/h) 2
Measurement Rate (Hz) 10
Typical Detected Object (RCS m2) 2.0
Detection Loss (dB) 1
System Loss (dB) 1
Implementation Margin (dB) 2
Detection SNR (dB) 12

are an interesting use case in and of themselves for radar
measurement.

We discuss how our experiment applies to the concept of
radar interpretability. In general, the conversion of natural
language requirements to technical parameters has histori-
cally been accomplished using various rubrics where the user
matches their specific use case to a table of similar use cases
which are ordered and assigned a numerical value. Then, an
equation is developed to translate technical parameters to the
numerical rating. This approach suffers from the collapse of
the technical multi-dimensional parameter space into the single
dimensional rating scale. The LLM approach outlined in this
paper does not have this limitation and thus has the potential to
more accurately translate users’ desires expressed in language
to accurate technical parameters. In this study we focus on
a user mainly interested in applying Texas Instruments radar
products to detection and tracking of birds using the published
RCS in Table II shown below.

The decision to focus on interpolating the RCS of birds
stems from the need to develop radar systems capable of
handling real-world environmental challenges in non-military
applications. By choosing avian subjects, which frequently
intersect with commercial radar detection zones, particularly



TABLE II
RCS AND BIOMASS OF VARIOUS BIRD SPECIES.

DATA ADAPTED FROM [2].

Bird Biomass (kg) RCS (cm²)
European Blackbird 0.1 42
Chaffinch 0.024 2.2
House Sparrow 0.025 2.4
Lapwing 0.2 91
European Robin 0.017 1.1
Song Thrush 0.07 22
Starling 0.08 29
European Swift 0.043 8.3
Garden Warbler 0.02 1.7
Chiffchaff 0.008 0.3
Warbler 0.01 0.2
Sparrow 0.025 1.3
Plover 0.2 51
Pigeon 0.5 109
Duck 0.8 88
Swan 1 210
Eider 2.02 174
Brant 1.48 157
Lesser Snow Goose 2.63 190
White-fronted Goose 2.68 191
Long-tailed Duck 0.87 131
Pintail 0.95 135
Whistling Swan 6.8 261
Greater Snow Goose 3.07 200

in urban and suburban environments, we ensure our research
remains applicable to civilian technologies. This choice also
aligns with our goal to refine radar parameterization techniques
that can be safely and publicly shared, avoiding any potential
dual-use concerns that might arise with more sensitive appli-
cations.

Modern mmWave radar systems require careful selection of
parameters such as transmit power, bandwidth, polarization,
and antenna gains in order to detect targets with specific
Radar Cross Sections (RCS). However, end-users often specify
their needs in everyday language (e.g., “I need to detect
a passenger vehicle at 70 m”), leaving system designers to
manually compute or guess relevant radar parameters.

Additionally, the number of parameters to configure can be
extremely large, from center frequency and bandwidth to idle
times, slopes, sampling rates, power levels, and more. In these
scenarios, AI-powered large language models (LLMs) can be
invaluable: they can parse user requests, infer approximate
values or compute precise values using tools, and recommend
consistent sets of configuration parameters that comply with
device and regulatory constraints. This significantly eases the
burden on the radar engineer, who would otherwise be required
to tediously navigate an overwhelming set of interdependent
variables.

II. INTERPRETABILITY AND OUTCOME ENGINEERING IN
RADAR SYSTEMS

Traditionally, interpretability in radar and imaging systems
involves mapping high-level, real-world mission needs into
technical parameters to ensure sensor or system efficacy. Tools
like the National Image Rating Scale (NIIRS) and the General
Image Quality Equation (GIQE) exemplify this approach by

converting technical parameters into human-understandable
ratings, thus linking performance to mission objectives [3],
[4].

For example, in electro-optical imaging, a requirement to
”take a picture of a bird at 50 yards for identification,”
translates through interpretability frameworks into specific
camera settings like pixel density, focal length, exposure time,
and aperture size, ensuring adequate resolution and contrast.
Similarly, in radar systems, user specifications such as “detect
a large truck at 100m” or “track a fast-moving drone at
200m” drive the system configurations to achieve necessary
detection SNR, range and velocity resolution given the target
RCS characteristics.

The Declarative Self-improving Python (DSPy), is a frame-
work that transitions from traditional prompting to program-
ming language models, enabling rapid iteration in building
modular AI systems. It provides algorithms for optimizing
prompts and weights across various applications, from simple
classifiers to complex RAG pipelines and Agent loops. This
approach promotes writing robust, compositional Python code,
thus enhancing the model’s ability to produce high-quality
outputs [5].

Advancing to Outcome Engineering: While interpretabil-
ity frameworks provide a foundation, the advent of Large
Language Models (LLMs) and advanced tools like DSPy offer
a more dynamic and expansive approach. This new paradigm
leverages AI to interpret and translate complex mission needs
into optimized system configurations across various domains
more efficiently than traditional methods.

III. DSPY INTEGRATION AND ADVANCED PARAMETER
OPTIMIZATION

DSPy, through its integration with LLMs, automates the
generation of radar configuration parameters. The DSPy
framework offers the MIPROv2 optimizer, an advanced tool
that enhances parameter tuning based on real-time data inputs
and machine learning predictions.

An example screenshot in Section V of the TI mmWave
Sensing Estimator illustrates the practical application of LLM-
enabled advanced configurations, tailored through DSPy’s AI-
driven interface.

IV. RADAR THEORY AND TI ESTIMATOR

Texas Instruments provides reference documents and a
Radar Estimator tool that leverage the fundamental radar range
equation. The Estimator’s web interface (Section V) allows the
user to input parameters such as:

• Number of Rx and Tx Antennas,
• Frequency Range (e.g., 60–64 GHz),
• Maximum Bandwidth,
• Transmit Power,
• Ambient Temperature,
• Typical Detected Object RCS,
and outputs a device configuration (e.g., chirp start/end

frequencies, sampling rates, number of loops).



A. Radar Range Equation Recap
We denote:
• Pt: Transmit power of the device,
• GTX/GRX: Transmit/Receive antenna gains,
• σ: Radar Cross Section of the target,
• λ: Wavelength,
• d: Range to target.

The received power Pr ultimately determines whether the radar
can detect the target above the noise floor, factoring in system
losses and required SNR margin [6], [7].

V. TI SENSING ESTIMATOR SCREENSHOT

Fig. 1. Screenshot of the TI mmWave Sensing Estimator, showing how a user
can set device parameters (left) and view the resulting chirp design (right).
Full tool available at [1].

As shown in Figure 1, the Estimator interface [1] displays
both a textual parameter list and a graphical chirp diagram.
This interactive approach helps engineers understand the ef-
fects of each setting on range, velocity resolution, and other
radar configuration settings.

VI. DSPY INTEGRATION FOR AUTOMATED PARAMETER
GENERATION

A. Advantages of DSPy Prompt Optimization
DSPy’s prompt optimization provides a principled approach

to prompt engineering for Large Language Models (LLMs).
Distinct from methods requiring extensive model fine-tuning
and large datasets, DSPy efficiently leverages the intrinsic
capabilities of LLMs to comprehend and produce intricate
configurations using only minimal exemplars.

Efficient and Dynamic Parameter Optimization: DSPy’s
optimization engine is specifically designed for prompt en-
gineering, using a few carefully selected examples to guide
LLMs toward generating optimal outputs. This method sub-
stantially enhances operational efficiency by:

• Minimizing Resource Consumption: DSPy reduces the
need for large training sets and computational resources,
facilitating quick deployment and agile modifications
crucial in fast-paced engineering environments.

• Maximizing Adaptability: Allows engineers to swiftly
adjust system specifications or respond to new require-
ments without necessitating a complete model retraining,
thus providing exceptional flexibility.

Capability to Invoke Tools and Extract Parameters: The
DSPy ReAct module further extends the utility of prompt
optimization by:

• Integrating External Tools: ReAct can seamlessly in-
voke external computational tools or software functions
within the LLM framework, enabling complex data pro-
cessing and analysis tasks to be executed directly from
the LLM prompts.

• Extracting and Inferring Parameters: LLMs within
DSPy are adept at analyzing textual descriptions or
structured data to extract and infer necessary technical pa-
rameters, translating abstract requirements into concrete
system configurations.

Reduced Need for Model Fine-Tuning: DSPy’s approach
circumvents the conventional necessity for extensive fine-
tuning:

• Lowering Technical Barriers: Organizations can lever-
age state-of-the-art LLM capabilities without deep exper-
tise in AI, democratizing access to advanced technolo-
gies.

• Ensuring Model Stability: The prompt-based method
maintains effectiveness over time without frequent re-
training, contrasting with finely tuned models that often
require continuous updates.

Practical Impact and Applications: DSPy’s practical ap-
plications demonstrate significant enhancements in operational
settings:

• Accurate Optimization: DSPy fine-tunes radar system
parameters like detection range and resolution more pre-
cisely than traditional methods.

• User-Centric Design: Simplifies interactions for non-
expert users, allowing them to define desired outcomes
instead of intricate technical details.

DSPy’s prompt optimization capabilities provides a new
approach in converting natural language requirements to tech-
nical parameter specification. Future explorations will aim to
broaden these methodologies to wider applications, affirming
DSPy’s pioneering role in AI-driven system configuration.

VII. EXPERIMENTAL METHODOLOGY

This study uses an experimental setup shown below in
Figure 2.

A. Workflow Description

The experimental setup is comprised of the following key
components and data flow:

1) OpenAI GPT-3.5 Turbo: The process begins on a
notebook computer where we utilize OpenAI’s GPT-
3.5 Turbo to generate training examples. This model
provides high-quality, contextually relevant data that
forms the basis for our experiments. OpenAI was used
for convenience. GPT-3.5 Turbo Model is inexpensive
yet able to generate simulated natural language inputs
and matching formatted radar configuration structures



using the initial Texas Instrument’s default configuration
files as examples.

2) Data Transfer to University Superpod: The generated
training examples are then transferred to the University
SuperPOD. This high-performance computing environ-
ment is equipped with the Ollama framework, which
houses the Microsoft Phi-4 model.

3) DSPy Optimization: Within the University Superpod,
the DSPy optimization tool refines and optimizes the
radar configuration prompts using the Chain-of-Thought
(CoT) module for the variable parameters and the ReAct
modules with the RCS interpolation tool for the Typical
Detected Object parameter.

4) Testing Phase: The optimized prompt program is used
to give the LLM necessary context data to process the
test prompts.

5) Results Collection: The outcomes of the tests are
collected and sent back to the notebook to be included
in this publication preparation.

Fig. 2. Diagram of the experimental setup showing the workflow from training
example generation to testing the optimized prompts.

The workflow resulted in a radar configuration output com-
patible with the Texas Instruments Radar Estimation Tool input
configuration format. Below in Table III is the sample output
for the Falcon input question, ”Configure the radar to detect
a falcon, which has a biomass of 2.5 kg. The system uses the
IWR6843 platform.”

TABLE III
RADAR CONFIGURATION PARAMETERS FOR DETECTING A FALCON

Parameter Value
platform IWR6843
num rx 4
num tx 3
tx gain 9
rx gain 9
frequency range 60 - 64
maximum bandwidth 4000
tx power 12
measurement rate 10
detection loss 1
system loss 1
implementation margin 2
detection SNR 12
ambient temperature degC 20
maximum detectable range 50
range resolution 2
number of objects 15
nearest object spacing 0.5
maximum velocity kmph 40
velocity resolution kmph 1
typical detected object 0.018659016393442623

The focus of this study is the LLM tool invocation of the
RCS interpolation function. The Table IV shows the estimated
output RCS for the various test cases, one of which includes
the mythical Kraken, which was mentioned as part of the user’s
conversational input. Because the Kraken weight was given
in pounds, the LLM ReAct agent converted the weight to kg
and called the interpolation function. The entries with question
marks were not provided a weight in the input query. For these
cases, the LLM had to use its internal knowledge to estimate
the biomass.

TABLE IV
RCS ESTIMATION TEST RESULTS FOR RADAR CONFIGURATION

Idx Detection
Query

RCS (m²) Comments

1 Robin, 0.065
kg

0.001946 Precision for small
birds.

2 Kraken, 1500
lbs

2.4681 High biomass, mythi-
cal creature.

3 Nightingale, ?
weight

0.00022 Biomass estimated by
system.

4 Eagle, 6.5 kg 0.02561 Accurate for well-
known birds.

5 Sparrow, ?
weight

0.00022 Estimates biomass for
common small birds.

6 Hummingbird,
? weight

0.000055 Effective for very small
birds.

7 Flamingo, 4 kg 0.02152 Handles moderately
sized birds accurately.

8 Peacock, 12 lbs 0.03460 Converts lbs, calculates
RCS for medium bird.

9 Swan, ? weight 0.03460 Biomass estimation for
larger birds.

10 Falcon, 2.5 kg 0.01866 Precise RCS for birds
of prey with known
weights.



B. Implementation Details

The experimental setup leveraged two critical components
of the DSPy framework: the CoT (Chain of Thought) module
and the ReAct module equipped with the Bird RCS interpo-
lation tool. Each module was tasked with specific aspects of
the radar configuration to optimize the system’s performance
without overloading the computational resources.

1) Chain of Thought (CoT) Module: The DSPy CoT mod-
ule was responsible for dynamically setting several critical
radar parameters based on the input requirements and envi-
ronmental conditions. These parameters included:

• Ambient temperature in degrees Celsius
(ambient_temperature_degC): 20,

• Maximum detectable range in meters
(maximum_detectable_range): 10,

• Range resolution in meters (range_resolution): 5,
• Maximum velocity in km/h

(maximum_velocity_kmph): 26,
• Velocity resolution in km/h

(velocity_resolution_kmph): 2.

These settings were crucial for ensuring the radar system’s
adaptability to various operational conditions and were derived
based on the scenario descriptions provided by the user.

2) ReAct Module with Bird RCS Interpolation Tool: In
contrast, the ReAct module focused on estimating the Radar
Cross Section (RCS) for the birds under observation. This
estimation was crucial for accurately configuring the radar
to detect different bird species effectively. The RCS values,
dynamically computed by the interpolation tool based on the
biomass data, were integrated into the radar’s configuration
parameters.

3) Fixed Parameter Configuration: To simplify the initial
experimental setup and avoid the complexities of managing
an extensive set of variable parameters, several radar settings
were kept fixed. These included:

• Radar platform: IWR6843,
• Number of receivers (num_rx): 4,
• Number of transmitters (num_tx): 3,
• Transmitter gain (tx_gain): 9,
• Receiver gain (rx_gain): 9,
• Frequency range (GHz) (frequency_range): ”60 -

64”,
• Maximum bandwidth (MHz) (maximum_bandwidth):

4000,
• Transmit power (tx_power): 12,
• Measurement rate (measurement_rate): 10,
• Detection loss (detection_loss): 1,
• System loss (system_loss): 1,
• Implementation margin (implementation_margin):

2,
• Detection Signal-to-Noise Ratio (detection_SNR):

12.

These parameters were selected for their stability and
reliability in typical radar operation scenarios, ensuring a

controlled environment for testing the effectiveness of the
DSPy optimizations.

C. Implementation Resources: phi-4 Model and University
SuperPOD

Our DSPy-based pipeline runs on top of large language
model (LLM) capabilities to parse user queries and generate
radar configuration files. In particular, we used phi-4 [8], a
14-billion parameter language model which incorporates syn-
thetic data throughout training. Despite its partial distillation
from GPT-4, phi-4 excels on reasoning-centric tasks due to
improved data generation and post-training techniques.

All optimization experiments (e.g., parameter tuning with
MIPROv2) were conducted on the Southern Methodist Uni-
versity NVIDIA DGX SuperPOD [9] resource, a high-
performance computing cluster with 20 DGX A100 nodes.
Each node has 8 GPUs, enabling large-scale parallel eval-
uations of different prompt or instruction sets. This setup
allowed us to rapidly converge on an optimal prompt strategy
for interpretability queries, with minimal iteration time for
interpretability queries.

Table IV illustrates how natural language queries
from a user are mapped to structured output,
typical_detected_object. Our prompt optimization
method leverages DSPy’s MIPROv2 module to explore
various instruction and few-shot example combinations,
converging on a prompt strategy that produces consistent,
structured responses. The same approach can be
expanded to include additional radar parameters, such
as range_resolution, velocity_resolution,
or detection_SNR. Rather than outputting a single
typical_detected_object field, the prompt
optimization could guide the LLM to return multiple structured
fields (e.g., JSON objects containing both target_RCS,
max_range, probability_of_detection, etc.). This
scalable method allows domain experts to iteratively refine
prompts and few-shot examples to produce rich, multi-
parameter data suitable for more advanced radar planning and
configuration pipelines.

VIII. CONCLUSION

This paper has introduced Outcome Engineering as a trans-
formative approach to system configuration, leveraging the
capabilities of Large Language Models (LLMs) to enhance
radar system applications and other technology-driven opera-
tions. The LLM-based Outcome Engineering approach helps
customize the radar configuration.

IX. FUTURE WORK

We plan to continue to develop and test AI-ML technology
using the Cyber Autonomy Range (CAR) which is a dedicated
facility designed to assess the resiliency, reliability, and cy-
bersecurity of autonomous systems [10]. The CAR provides a
secure environment to simulate or emulate external conditions
while subjecting the AS to various forms of cyber-attacks. By
instrumenting the decision-making processes of AS (especially



ML/AI subsystems), the CAR can identify vulnerabilities in
sensor data processing pipelines.

Recent work has expanded the CAR’s scope by incorporat-
ing RF situational awareness into robotic simulation systems
[11]. This addition allows the detection and localization of
radio emitters in the environment, enabling algorithms for
collision avoidance that rely on RF sensors. The approach
emphasizes privacy, security, timeliness, and safety, supple-
menting existing sensor suites like RGB cameras, LIDAR,
radar, and IMU devices.

When radar detection is central to an AS, accurate RCS val-
ues are crucial for performance modeling. The CAR’s realtime
3D motion simulations use the aspect angles of the target to
lookup the RCS values pre-computed by Ansys HFSS. HFSS
SBR+ module computes monostatic/bistatic RCS and enables
radar signature imaging (e.g., range profiles, ISAR). In the
CAR context, these RCS models can be dynamically updated
if the target’s shape, orientation, or reflectivity changes—or if
a cyber-attack spoofs sensor data.

The fusion of LLM-driven parameter configuration with
physics-accurate HFSS simulations ensures that mission-level
requirements are precisely translated into practical, workable
radar configurations. This synergy between theoretical con-
cepts and practical applications paves the way for future
innovations in system design and underscores the potential
of Outcome Engineering to revolutionize how we understand
and implement technology in response to complex challenges.
An interesting possibility is the use of machine learning to
interpret and refine radar measurements to update object prop-
erties. For example, in the case of avian targets, collected radar
data could be used to better estimate biomass, Radar Cross
Section (RCS), and other target properties, which could then
be queried by the LLM using natural language to configure
the radar for additional collections.

Future work will focus on expanding the scope and depth
of this research by:

• Advanced NLP Methods: Refining the interpretability
and effectiveness of Outcome Engineering by handling
ambiguous or conflicting user inputs and further enhanc-
ing the metrics for diverse missions.

• Deeper CAR Integration: Conducting large-scale tests
with multiple radar-equipped autonomous systems under
coordinated cyber-attacks to validate and improve the
robustness of the proposed models.

• Robust Experimental Benchmarks: Moving beyond
simulations to conduct real lab and field experiments that
capture complex scenarios involving multipath effects,
clutter, and adversarial interference, aiming to establish
more robust and resilient system configurations.

A more comprehensive discussion of these topics will be
detailed in our forthcoming journal publication, which will
explore the extensive capabilities and broader implications
of AI-assisted Outcome Engineering in the context of next-
generation technological solutions.

REFERENCES

[1] “TI mmWave Sensing Estimator,” https://dev.ti.com/gc/preview/default/
mmWaveSensingEstimator/v2/index.html, accessed: 2025-01-23.

[2] S. A. Gauthreaux Jr, A. M. Shapiro, D. Mayer, B. L. Clark, and E. E.
Herricks, “Detecting bird movements with l-band avian radar and s-band
dual-polarization doppler weather radar,” Remote Sensing in Ecology and
Conservation, vol. 5, no. 3, pp. 237–246, 2019.

[3] D. L. Young and T. Bakir, “Cognitive modeling to predict video
interpretability,” in Proc. SPIE 8053, Geospatial InfoFusion Systems and
Solutions for Defense and Security Applications, 2011, p. 80530M.

[4] W. Schwartzkopf, J. Brown, G. Farquharson, C. Stringham, M. Duersch,
and J. Heemskerk, “Radar generalized image quality equation applied to
capella open dataset,” in 2022 IEEE Radar Conference (RadarConf22).
New York, NY, USA: IEEE, 2022, pp. 1–5.

[5] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller,
M. Zaharia, and C. Potts, “Dspy: Compiling declarative language model
calls into self-improving pipelines,” 2024.

[6] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill,
2001.

[7] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed.
McGraw-Hill, 2014.

[8] M. Research, “Phi-4: A 14-Billion Parameter Language Model,”
https://www.microsoft.com/en-us/research/uploads/prod/2024/12/
P4TechReport.pdf, 2024, accessed: 2025-01-23.

[9] Southern Methodist University, OIT Services.
[10] D. L. Young, M. Bigham, M. Bradbury, E. Larson, and M. Thorn-

ton, “SMU-DDI Cyber Autonomy Range (CAR): Incorporation of
Resiliency, Reliability, and Cyber Security in Autonomous Systems,”
in 2022 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).
IEEE, Oct 2022, pp. 1–5.

[11] S. Gibbs, M. A. Thornton, and D. L. Young, “Adding RF situational
awareness to robotic simulation systems,” in Proc. SPIE 12540, Au-
tonomous Systems: Sensors, Processing, and Security for Ground, Air,
Sea, and Space Vehicles and Infrastructure, June 2023, p. 1254009,
published: 13 June 2023.




