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Abstract—Data quality is an important factor in quantum
computation, since quantum algorithms need high quality repre-
sentations in order to run with low error rates. In addition,
quantum algorithms benefit from different types of quantum
data encodings that are tailored to specific applications. In
order to improve data quality while maintaining data variety,
this work applies fault tolerance techniques specific to different
types of data encodings. Thus, fault tolerance improvements,
aimed at reducing both noise and bias errors, are applied to
two types of data encodings. The first type, angle encoding,
benefits from an enhanced dynamic range representation. The
second type, distribution encoding, is enhanced through the use
of error correcting states. Our experiments encode classical data
as a quantum state, apply noise simulations, and provide error
analyses on the decoded data. Experimental results are assessed
by comparing the post-processed output statistics to those of
the original encodings and show improved accuracy through the
inclusion of fault tolerance methods.

Index Terms—Fault tolerance, quantum computing, qubits,
data encoding

I. INTRODUCTION

Encoding, error application, and decoding are all steps
included in data processing. Encoding involves converting
data into a specific format for efficient transmission, storage,
or transformation. The channel, either physical or logical,
serves as the medium for data transmission, where errors
caused by noise, interference, or channel imperfections can
alter the data. Shannon’s foundational work [1] introduces the
concept of information transmission using binary bits, while
Peterson’s work [2] establishes error correction techniques and
encoding methods. Data errors in transmission may manifest
as random noise or systematic distortions and can affect
metrics such as transmission rate and error rate. Decoding,
the process of reconstructing original data, incorporates error
correction techniques such as redundancy or parity bits to
detect and correct errors. To account for noise, encoding
schemes are designed with fault tolerance techniques that
detect and correct errors during decoding. These techniques
rely on statistical models to estimate the likelihood of errors
and apply appropriate corrections. For example, classical error
correction codes, such as Hamming codes, use redundancy
to identify and rectify errors introduced during transmission
[3]. These techniques aim to mitigate the effects of noise,

ensuring reliable performance in real-world conditions where
disturbances are unavoidable.

This paper introduces an improvement in accurately rep-
resenting quantum data by leveraging fault tolerance meth-
ods specifically designed for specific forms of quantum data
encoding that enhance the reliability of quantum algorithms
with respect to the presence of noise. Although many previous
works exist in quantum fault tolerance, they are focused upon
the error correction of quantum binary basis states and the
application of quantum error correction circuits [4], [5]. There
are several alternative ways of encoding data using other forms
of representation that can be improved with fault tolerance
approaches. Quantum data encoding quality is crucial for
secure and reliable communication in applications such as
quantum key distribution (QKD) and quantum teleportation.
Multiple simple data encoding methods for quantum chan-
nels are described in [6], offering foundational insights into
quantum data encoding approaches and how they affect the
results of quantum algorithms. By analyzing the robustness of
different and more robust data encoding methods, we extend
the work of [7] that examines the noise-resilience of basis,
angle, and amplitude classes of quantum data encoding. This
work focuses on improving two categories of data encoding
approaches; those of angle-based encoding that represent data
through the phase angle of a qubit, and, distribution-based
encoding that represents data using probability amplitudes of
a qubit. Each data encoding type has unique challenges posed
by quantum noise and requires unique solutions to improve
the representation quality.

We enhance the fault tolerance of angle-based data encod-
ing by applying an improved dynamic range representation.
Dynamic range encoding addresses dynamic range issues that
arise when datasets contain both large and small values, mak-
ing standard angle encoding methods prone to saturation and
underflow. Previous work described the impact of representing
multiple data as angles and the effect of normalization [8]. This
technique represents data as a mantissa and exponent, similar
to classical floating-point values, and encodes them as ampli-
tude and phase angles of a qubit, respectively. By redistributing
noise across these components and using a local scaling factor
instead of a global one, dynamic range encoding minimizes
the impact of individual noise sources, reduces bias errors, and
ensures precise data representation. The adaptive boundaries
used to decode the integer exponent is also introduced and



is optimized using statistical models described in [9], further
enhancing fault tolerance by effectively mitigating bias and
variance introduced by quantum noise.

Distribution-based data encoding does not represent infor-
mation as qubit phase angles but instead leverages the inherent
randomness of the quantum state to generate probability mass
functions (PMFs) [10], [11]. The proposed technique enhances
data representation accuracy using fault tolerance methods that
exploit Hamming error correction to reduce bitflip errors in the
encoded distributions. By introducing zero-probability states
between PMF bins as buffers, the Hamming distance increases
among representable quantum data values and thus helps
to mitigate errors. During the measurement process, nearby
quantum states are combined, allowing for the correction of
noise-induced bitflips.

To evaluate the effectiveness of these advancements, this
work conducts simulations of noisy environments, analyzing
the encoded and decoded outputs under varying levels of noise.
The evaluation employs statistical metrics such as decoding
accuracy and the Kullback-Leibler (KL)-divergence metric, to
demonstrate improvements in noise resiliency [9], [12]. The
results highlight the capability of dynamic range encoding
and the enhanced quantum distribution encoding to handle
variations in data values while maintaining precision.

II. BACKGROUND

Quantum computing relies on the concept of qubits, which
are the fundamental data units of quantum computation. Unlike
classical bits, which take values of 0 or 1, a qubit can
exist in a superposition of two basis states, represented as
|ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex probability
amplitudes satisfying |α|2 + |β|2 = 1. A qubit can also be
parameterized using angles to reflect its state on the Bloch
sphere as |ψ⟩ = cos

(
θ
2

)
|0⟩ + eiφ sin

(
θ
2

)
|1⟩, where θ and φ

are angular parameters representing the position of a quantum
state on the Block sphere [13]. Alternatively, the angle φ is
defined to be the phase of a qubit. This dual representation
emphasizes that data can be represented or encoded as either
angles or probabilities.

Each data encoding will require a different decoding pro-
cess. For example, measurements on a qubit yield counts
n0 and n1 for observing the states |0⟩ and |1⟩, respectively.
From these counts, the angle θ̂ can be reconstructed using
the calculation: θ̂ = 2arcsin

(√
n1

n0+n1

)
and φ̂ can be

extracted through the use of a phase interferometer circuit that
precedes the projective measurement operator. Alternatively,
the decoding process of a quantum distribution can simply
involve the count of multiple measurements of the quantum
state and normalized by the total number of counts. Each
estimated PMF bin value can be obtained using the calculation
P̂ (i) = ni∑

j nj
, where ni represents the measured counts

for each state, and the summation
∑

j nj ensures proper
normalization across all measured states. These formulations
allow for the decoding of different data representations either
in terms of angular parameters or probabilities. The choice of

decoding method—whether via the arcsin-based angle calcula-
tion or probability normalization—depends on the application
and the nature of the encoded quantum information.

Different quality metrics are employed for evaluating vari-
ous data encoding schemes. The robustness of angle encoding
is assessed through statistical analysis of the encoded and
decoded data under noisy conditions. Key metrics include bias,
defined as Bias = E[θ̂] − θ, where θ̂ is the estimated value
and θ is the true value, and variance, defined as Variance =
E[(θ̂ − E[θ̂])2], which quantifies the spread or variability of
the decoded data due to random noise. For both metrics,
the ideal value is 0, indicating no systematic error (bias)
and no variability due to noise (variance). For distribution-
based encodings, metrics specifically designed for probability
distributions are used. Statistical tests provide quantitative
insights into the robustness of these schemes by evaluating
the significance of observed differences. One such metric is
the KL divergence, defined as KL(P∥Q) =

∑
i P (i) ln

P (i)
Q(i) ,

where P (i) represents the observed probabilities and Q(i) the
reference (ideal) probabilities. The KL divergence measures
the difference between the observed distribution and a ref-
erence distribution, with an ideal value of 0, indicating that
the observed and reference distributions are identical. Both
bias and variance, as well as KL divergence, are computed
by comparing the expected outputs to the decoded outputs
obtained after applying noise simulations and conducting
multiple measurements. These metrics collectively provide a
comprehensive evaluation of the encoding schemes’ perfor-
mance under noisy conditions.

A robust encoding and decoding process ensures that the
transmitted information can be accurately reconstructed, even
in the presence of significant noise. Encoding schemes often
incorporate redundancy or structural features to detect and
correct errors during decoding. The goal is to maintain the rep-
resentation of the original data, minimizing the impact of noise
and ensuring reliable performance in practical applications.
Following the framework of [7], Equation 1 formalizes the
process of encoding and decoding data in a manner resilient
to quantum errors. This equation represents how a robust
encoding ensures that the information transferred through
measurements remains unaffected by the application of errors.
The process involves first encoding data into a quantum state,
denoted by ρ̃x. Next, an error channel E is applied, which
can be modeled as a set of Kraus operators acting on the
quantum state. After the error channel, a decoding procedure
ŷ is performed, which may include preprocessing and mea-
surement. The robust nature of the encoding is reflected in
the equality shown in Equation 1. This equation signifies that
applying the error channel E does not impact the information
extracted during measurement when using a robust encoding
scheme. In essence, the robustness of the channel ensures that
noise introduced by the error process does not degrade the
encoded information, preserving its integrity throughout the
transmission and processing stages.

ŷ [E (ρ̃x)] = ŷ [ρ̃x] , (1)



To test the robustness of quantum data encodings under
various quantum errors, noise simulations are performed using
Kraus operators, which act on the density matrix to model
quantum noise and errors [13]–[15]. A Kraus operator Ei

transforms a density matrix ρ via E(ρ) =
∑

iEiρE
†
i , ensuring

trace preservation and valid quantum state evolution. For
example, the Pauli error channel is defined as EP

p (ρ) =
pIρ + pXXρX + pY Y ρY + pZZρZ, where pI + pX +
pY + pZ = 1 [16], [17]. This channel models errors of bit
flips and phase flips. The bit flip channel is described as
EBF
p (ρ) = (1 − p)ρ + pXρX , and the phase flip channel as

Edephase
p (ρ) = (1 − p)ρ + pZρZ. Advanced errors, such as

amplitude and phase damping, represent decoherence caused
by environmental interactions. Amplitude damping, which
models energy dissipation, is defined by Kraus operators:

K0 =

[
1 0

0
√

1− γ(t)

]
, K1 =

[
0

√
γ(t)

0 0

]
,

where γ(t) = 1−e−λt. When applied to a density matrix ρ, the
resulting state is ρ(t) = K0ρK

†
0+K1ρK

†
1 . These formulations

allow researchers to model quantum noise and decoherence,
providing critical insights into the design of noise-resilient
quantum systems. We will use simulation tools, such as those
in Qiskit, to further simplify the simulation of error channels
[18].

III. DYNAMIC RANGE ENCODING ENHANCEMENT

Challenges arise in accurately representing datasets with a
wide range of values, commonly referred to as a high dynamic
range. This issue arises in scenarios where datasets include
both very small and very large values, making traditional
encoding methods prone to underflow errors during normal-
ization. Since conventional angle encoding is able to represent
two datawords per qubit, we introduce dynamic range encod-
ing, which can separate the mantissa (M ) and exponent (E)
of a floating-point number, normalize the two datawords in
the range (0, 2π), and then represent them as the amplitude
θ and phase φ rotations of the qubit. This encoding method
distributes noise-induced errors across multiple components,
reducing their overall impact. For example, consider a point
X = 0.0001 subjected to a bias ∆ = 0.00005. Without any
noise mitigation, the direct representation results in a 50%
bias. The same error rate applied to the mantissa M = 0.1
introduces only a minor 0.05% relative change.

To generalize the bias reduction effect, we introduce a
calculation shown in Equation 2, which expresses the bias B
for dynamic range encoding. The larger the exponent value E,
the greater the benefits of using dynamic range encoding due to
its ability to scale the representation and minimize the absolute
impact of noise. In this formulation, B(X) represents the bias
introduced to the full representation X , and B(M) represents
the bias associated with the mantissa. Dynamic range encoding
scales the bias by bE , making it more effective in reducing
the absolute error when E is large (more negative). While
the method can generalize to any positive base b > 1, in our

Fig. 1. Adaptive Spacing for Integer Decoding Boundaries

experiments, we focus on representing classical values in base
10 (b = 10).

X =M · bE , E ∈ Z−, b > 1,

B(M) = B(X) · bE . (2)

We will show that the dynamic range encoding confines the
integer exponent E, as an angle in a discrete interval. During
decoding, the postprocessed angle will be obtained using
the method described in Section II. The angle falls within
predefined boundaries, enhancing fault tolerance in dynamic
range encoding by allowing larger intervals to classify an angle
as a specific integer, accommodating greater margins of error.
The decoding process is further enhanced through adaptively
spaced boundaries, as shown in Figure 1. By interpreting the
decoding of angle values as classification through boundaries,
noise and bias errors are mitigated effectively. Statistical mod-
els, such as Gaussian Mixture Models (GMMs), are employed
to analyze noisy measurement data and define robust decoding
intervals. The GMM processes uses multiple measurements of
quantum states, decodes them into angles, and repeats this to
calculate distribution parameters—mean and variance. These
parameters define Gaussian curves, with their intersections
forming the optimized boundaries. The benefit of adaptive
boundaries comes from their ability to address inherent biases
that occur on quantum computers due to decoherence, which
biases the quantum state to the ground state. Decoherence
is modeled through the previously discussed dephasing and
damping errors, as referenced in Section II.

The standard integer decoding process associates each inter-
val with an evenly spaced angle. For example, negative expo-
nents 0,−1,−2,−3 are mapped to boundary angles between
0◦ and 180◦. The four sectors created by these boundaries
are as follows: [(0, 45), (45, 90), (90, 135), (135, 180)], with
boundaries at 45◦, 90◦, and 135◦. For our simulation, we
extend the range of exponent values E from 0 to −10. We
use Qiskit to introduce a random noise error and a dephasing
error with a probability p = 0.05.

The classification of 1000 decoded angles, each obtained
from applying the arcsin formula for 200 measurements, are
performed using these ideal boundaries during the decoding
process is evaluated and visualized as a confusion matrix in
Figure 2. The confusion matrix orders classes corresponding



to the integer-encoded exponents, and the misclassifications
between nearby states are clearly visible. This misclassification
primarily occurs due to the noise-induced shifts in the bound-
aries, highlighting the limitations of the standard boundary
approach under noisy conditions. Note that misclassification
occurs for the the higher angles and lower angles, resulting
in an accuracy of 0.46. The smaller angles underflow due to
noise and the higher angles get moved close together due to
bias created by decoherence.

Fig. 2. Confusion matrix for classification under noisy conditions using
original boundaries

The previous method, demonstrates the limitations of using
static evenly-spaced boundaries in noisy quantum environ-
ments. The result highlights the need for adaptive classification
techniques to improve the decoding process and mitigate
the errors observed in the confusion matrix. For dynamic
range encoding with adaptive boundaries, the goal is to train
a Gaussian Mixture Model (GMM) to determine optimized
boundaries based on statistical information derived from the
measurement process. As we did in the standard method,
we take 200 measurements of the quantum state, obtain the
decoded angle, and calculate a single sample mean xi. This
process is repeated 100 times for each angle representing
an integer to evaluate the decoding accuracy. This time we
store the multiple samples xi, and a variance estimate σi for
each angle i. These parameters define the distributions, with
their intersections forming adaptive decoding boundaries that
account for noise and bias.

After obtaining the optimized boundaries we can then rerun
the simulation to perform classification on the same dataset
used to test the original method, using the same decoding
and noise simulation settings. Figure 3 visualizes these new
adaptive boundaries on the decoding of angles, illustrating
how they better accommodate decoherence and other noise
effects compared to the static approach especially for the
higher quantum states.

Figure 4 presents the confusion matrix for classification
using these adaptive boundaries. The results demonstrate a

Fig. 3. Improved classification boundaries for noisy angle decoding

near-perfect classification rate with an accuracy of 0.992,
with misclassifications occurring primarily at higher levels,
where decoherence has the most significant impact. This im-
provement indicates the effectiveness of the adaptive boundary
method in mitigating noise-induced errors and enhancing the
robustness of the decoding process.

Fig. 4. Confusion matrix for classification using adaptive boundaries under
noisy conditions

IV. ENHANCED QUANTUM DISTRIBUTION ENCODING

Using the concepts of Hamming codewords from fault-
tolerant computing and probability theory, we propose a
method to create robust quantum distribution encodings that
are resilient to quantum bitflip errors. Previous methods of
generating quantum distributions simply represent each PMF
bin as a binary basis state of |xn⟩ in ascending order with a
corresponding probability amplitude p(xn) [10]. We enhance
the previous method by selecting the specific quantum states



representing PMF bins to be Hamming codewords that allow
for the correction of noisy sampled measurements. We refer
to these quantum states representing Hamming codewords as
Hamming states. The correction process first checks if the
measured quantum state is a valid Hamming codeword, and if
the state is not a valid codeword it would be corrected during
postprocesing by rounding it to the nearest valid Hamming
codeword, in terms of Hamming distance. For testing the
improved quality, we can apply the normalization of multiple
measurements discussed in Section II.

The process can be described mathematically. We begin
by defining the Hamming distance d(x, y), which counts the
number of differing positions between two binary vectors
x and y. A set S(xn) is then constructed, which contains
all states y that lie within a Hamming distance k from the
reference state xn which is the n-th Hamming state. Next, we
can describe how the correction of the measurements results
in the improvement of the sample distribution. Let P̂ (n)
represent the n-th PMF bin of the sample distribution we will
obtain after postprocessing and N(y) be the count of a nearby
PMF bin and M is the total number of counts in the sam-
ple distribution. Over multiple measurements, the correction
process combines the nearby states within the set S(x) and
normalizes by the total of counts, resulting in the aggregated
estimate P̂ (n), defined as: P̂ (n) = 1

M

∑
y∈S(xn)

N(y), This
operation ensures that measurements of the nearby but slightly
differing states are combined, thereby reducing the impact of
noisy bitflip errors on the estimated distribution.

We now analyze the effect of bitflip errors on the probability
mass function (PMF) representation obtained from multiple
measurements of a quantum distribution circuit described in
[10]. The random binomial representation is a PMF with 32
bins which are observed by measuring the quantum distribu-
tion’s 5-qubit output and visualizing the resulting distribution.
When bitflip errors are introduced at a rate of p = 0.05, we
observe a flattening of the PMF curve, as shown in Figure 5.
This flattening occurs because bitflip errors cause probability
mass to ‘leak’ into nearby PMF bins, resulting in an increase
in uncertainty. The figure highlights this effect by overlaying
the noisy PMF distribution on top of the ideal distribution.
In addition, the KL divergence is around 0.166, indicating a
large quantitative difference between the sample distribution
and the ideal distribution.

To mitigate this issue, each quantum state can be associated
with a Hamming codeword, which reduces the impact of
bitflip errors. To implement this, we use 8 qubits instead of 5,
expanding the available state space from 25 = 32 to 28 = 256.
However, instead of utilizing all 256 possible states, we restrict
the representation to only the 32 valid Hamming codewords,
significantly reducing the total percentage of active PMF bins
and producing a much sparser representation. This strategy is
visualized in Figure 6, which shows the resulting PMF when
the same bitflip error rate (p = 0.05) is applied to the enhanced
quantum distribution’s states. Only a subset of 32 possible
valid quantum states are used after the correction process,
making comparisons to the baseline straightforward. As shown

Fig. 5. Quantum distribution PMF with bitflip errors at rate p = 0.05. The
ideal distribution (blue) is overlaid with the noisy distribution (orange) to
highlight the impact of bitflip-induced noise.

Fig. 6. Quantum distribution PMF with bitflip errors applied to Hamming
states of size 8. The sparsity of the PMF is visible, as only valid Hamming
codewords are represented, while most non-codeword states have smaller
probability.

in the visualization, bitflip errors cause some probability mass
to shift into invalid adjacent states. However, these states
still lie within a valid Hamming codeword distance that can
be corrected. This highlights the error-localizing property of
Hamming codes, where errors are confined to neighboring
states rather than distant ones, making them easier to detect
and correct.

Finally, we introduce the correction process by rounding to
the nearest Hamming codewords, effectively “absorbing” the
bitflip errors into the closest codeword. Figure 7 illustrates
the effect of this process. To achieve this, each noisy state
measurement is mapped to the nearest valid Hamming state,
and the corresponding probabilities are aggregated into the
PMF bin associated with that Hamming codeword. This ap-



proach ensures that errors caused by bitflips are corrected as
nearby states are combined into a single bin. The visualization
demonstrates how the correction process restores the PMF to
a shape that closely resembles the ideal distribution. The bins
corresponding to valid Hamming codewords are more distinct,
and the overall distribution has less variance compared to
the noisy distribution seen in Figure 5. When we use the
KL-divergence as a metric, we show that it is reduced to
0.0635. This quantitative metric shows that error correction
using Hamming state encoding is an effective method for
improving fault tolerance in quantum distributions, since the
resulting PMF of the same size is closer to the original ideal
distribution.

Fig. 7. Hamming state correction after aggregation. The noisy state mea-
surements are aggregated into nearby Hamming codeword bins, resulting in
a PMF that closely resembles the ideal distribution.

V. CONCLUSION

This work presents fault tolerance advancements in angle-
based and distribution-based encodings. For angle-based en-
codings, we introduce a dynamic range representation that
separates the mantissa and exponent of floating-point numbers
into amplitude and phase rotations. This method redistributes
noise across components, reduces bias errors, and ensures
precise data representation. Adaptive boundaries optimized
using Gaussian Mixture Models (GMMs) further enhance fault
tolerance by mitigating the effects of quantum noise. For
distribution-based encodings, combining nearby distribution
measurements with those of valid Hamming states improve
resilience to bitflip errors. Simulations demonstrate significant
improvements in fault tolerance highlighting the precision of
dynamic range encoding and the enhanced quantum distribu-
tion encoding in noisy environments.

In the future, we can improve the compilation and gener-
ation of encodings by focusing on optimizing the efficiency
of the state generation process, reducing the overall circuit
depth, and minimizing gate operations to ensure compatibil-
ity with hardware constraints. Additionally, we plan to test
the data encoding methods in specific quantum applications,

such as quantum machine learning and optimization tasks,
to demonstrate improvements in accuracy and computational
performance. These efforts will further validate the practical
utility of the proposed encodings in real-world scenarios.
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