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Abstract—The convergence of quantum and classical comput-
ing, particularly in the realm of quantum machine learning, has
gained substantial attention. Hybrid quantum algorithms, merg-
ing the strengths of both computing paradigms, offer a promising
avenue, especially in the era of NISQ (noisy intermediate-scale
quantum) computing. Leveraging these hybrid approaches allows
researchers to employ quantum algorithms on existing quantum
processors while harnessing classical methods to handle complex
computational challenges. A core component of these hybrid
systems is the Parameterized Quantum Circuit Element (PQCE).
These circuits, defined by parameterized unitary operations,
possess exceptional expressiveness, effectively modeling intricate
distributions. This study introduces a novel application of Pa-
rameterized Quantum Circuits in Generative Flow Networks
for object generation tasks. This model demonstrates efficiency
and quality on par with classical deep neural network-based
approaches. Despite longer training times, the quantum model
achieves comparable results with significantly fewer parameters
(151), emphasizing its potential in scenarios prioritizing param-
eter efficiency.

Index Terms—quantum-classical systems, generative flow net-
works, parameterized quantum circuits

I. INTRODUCTION

The convergence of quantum and classical systems has
emerged as a focal point in the realm of quantum computing,
particularly in the context of quantum machine learning.
Hybrid quantum algorithms, adeptly combining the strengths
of quantum and classical computing, have become instrumen-
tal in achieving enhanced computational performance. This
synergy proves especially crucial in the current NISQ (noisy
intermediate-scale quantum) era, where fully error-corrected
large-scale quantum computers remain elusive. Hybrid ap-
proaches empower researchers to deploy quantum algorithms
on existing quantum processors, strategically utilizing classical
methods to address computationally challenging aspects, such
as parameter optimization.

A prominent archetype of hybrid quantum-classical systems
is the Parameterized Quantum Circuit [1], [2]. Throughout
this text we will refer to these circuits as Parameterized
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Quantum Circuit Elements (PQCEs) to avoid confusion with
the popular acronym referring to “Post-Quantum Cryptography
(PQC)”. These circuits feature unitary operations that incorpo-
rate parameters to define rotations, typically constructed from
single-qubit rotation gates. The flexibility of PQCEs to adjust
rotation degrees through parameter control endows them with
remarkable expressiveness [3], enabling effective modeling of
intricate distributions. While these circuits transform quantum
states using parameters, the optimization of these parameters
takes place on classical computers. Analogous to the optimiza-
tion of parameters in deep neural networks using task-specific
loss functions for classification, PQCEs have demonstrated
significant success across a spectrum of machine learning
applications, encompassing supervised learning [1], [4], [5],
generative modeling [1], [2], [6], and reinforcement learning
[7]–[9].

One notable domain where PQCEs have outperformed clas-
sical counterparts is in reinforcement learning. For instance,
[7] introduced a Softmax-PQCE as a policy network, show-
casing comparable performance in various and superior results
in select reinforcement learning environments compared to
classical deep neural network-based models. Additionally, [8]
and [9] expanded the applications of PQCEs to include Q-
learning, noting substantial improvements in agent efficiency
within RL environments.

This paper sets out to adapt the reinforcement learning
applications of parameterized quantum circuits to Genera-
tive Flow Networks (GFlowNets). GFlowNets, inspired by
reinforcement learning methodologies for sequential object
generation [10]–[12], iteratively construct objects by sampling
actions or building blocks, mirroring the interaction of a rein-
forcement agent within an environment. However, unlike RL
agents that sample actions to maximize rewards, GFlowNets
sample actions with probabilities proportional to rewards. This
distinction positions GFlowNets to harness the capability of
PQCEs in modeling complex action environments, extending
the advantages witnessed in the reinforcement learning appli-
cations of PQCEs.

Our key contributions in this paper are as follows:
(i) Introduced a Generative Flow Network implemented

through a Parameterized Quantum Circuit (GFlowNet-
PQCE).



(ii) Implemented the proposed model in a simple object gen-
eration task, with quantum noise included and excluded.

(iii) Analyzed the efficiency and quality of the model’s object
generation capabilities in comparison to a classical deep
neural network-based approach.

II. RELATED WORK

A. Parameterized Quantum Circuit Elements

Parameterized Quantum Circuit Elements (PQCEs) consti-
tute a category of quantum circuits characterized by tunable
unitary operations, providing a flexible framework for imple-
menting quantum algorithms. These circuits serve as a foun-
dational element in hybrid quantum-classical systems, where
classical systems play a pivotal role in optimizing the param-
eters defining the unitary rotation operators. In the context of
machine learning, PQCEs have demonstrated extensive utility,
particularly in applications such as supervised learning [1],
[4], [5], generative modeling [1], [2], [6], and reinforcement
learning [7]–[9]. While successful in these domains, these
circuits have yet to be applied to sequential object creation, a
task that requires generating complex combinatorial structures
through step-by-step construction processes.

B. Generative Flow Networks

Generative Flow Networks (GFlowNets) constitute a cate-
gory of generative models that operate sequentially, generating
objects by iteratively sampling a policy to append new features
to an incomplete object [10] [12]. What sets GFlowNets
apart is their distinctive approach of generating objects with a
probability distribution proportional to a reward function. This
characteristic allows for the network to learn multiple modes
of the object distribution and thus promote diversity of object
characteristics. In contrast, reinforcement learning policies aim
to maximize rewards from a single mode from the distribution,
limiting their exploration of the wider object distribution.

A key principle underlying GFlowNets is the maintenance
of equilibrium in probabilities (flows) entering and leaving a
state. Bengio et al. [12] show that when a policy adheres to
this condition, referred to as the Flow Matching Condition,
the objects it generates exhibit probabilities proportional to
the reward. GFlowNets achieve this condition through training
with Trajectory Balance Loss [11], which ensures a balance
between the incoming and outgoing flows within specific
states. For a deeper discussion of the Flow Matching Condition
and Trajectory Balance Loss, we refer the reader to the original
works [10]–[12].

III. PROPOSED APPROACH

A. Circuit Design

The design of the parameterized circuit in this paper
aligns with established practices in PQCE-based reinforcement
learning, as seen in prior works such as [7]. We define a
parameterized unitary operator U(s, θ) that takes an n-qubit
state and trainable parameters θ. Building on the approach in
[5], [7], [13], we partition the circuit into L layers, where each

layer consists of a variational layer and an encoding layer, as
illustrated in Figure 1.

The variational layer incorporates single-qubit Rz , Rx, and
Ry rotations, as well as Controlled-Z gates. The gates within
the variational layer are parameterized by a learnable matrix Θ,
which governs the rotations. On the other hand, the encoding
layer comprises single-qubit Rx rotations and is responsible
for encoding the classical reinforcement learning state into a
quantum state. While the variational layer is parameterized
by the Θ matrix, the encoding layer uses a learnable scaling
matrix Λ in accordance with [7]. These alternating layers
closely resemble the layers of a deep neural network.

B. Representation of the Policy

1) General Softmax Policy: Given the inherently probabilis-
tic nature of quantum states, projective measurements into
these states serve as our GFlowNet policy. To represent the
various actions our policy can produce, we partition the Hilbert
space into A subspaces, each associated with a corresponding
measurement Pa. This measurement Pa projects the quantum
state into the subspace representing the action a.

Leveraging the projections from the measurement Pa, we
can approximate the expected state ⟨S⟩ by measuring the
state T times. The expected state ⟨S⟩ serves as the action
sampled from the policy. In the context of learning a policy in
reinforcement learning and GFlowNets, the distribution of the
policy is conventionally adjusted during training to transition
from an exploratory strategy to an exploitation strategy.

To facilitate this transition, [7] introduced Softmax-PQCE,
which involves passing the expected state through a softmax
function parameterized by β, as depicted in Equation 1.
By updating the β parameter, the model can shift from an
exploration strategy (large β) to an exploitation strategy (small
β).

πθ,λ(a|s) =
eβ⟨Sa⟩s,θ∑
a′ eβ⟨Sa′ ⟩s,θ

(1)

2) Forward and Backward Policies: GFlowNets employ
two distinct policies for action sampling: a forward policy
Pf and a backward policy Pb. The forward policy reflects
the probability of generating the state St+1 given state St,
denoted as PB(St+1|St). Conversely, the backward policy
represents the probability of sampling a parent state St given
the child state St+1, expressed as PB(St|St+1). In simpler
terms, the forward policy is the constructive policy responsible
for building the object at St+1 by taking action a, while the
backward policy deconstructs the object by removing action a
from the object at St+1.

To model the forward and backward policies, we employ
unnormalized action logits, departing from the normalized
softmax probabilities utilized in [7]. Subsequently, these logits
undergo processing through a linear layer with A × 2 output
neurons, where the first A neurons represent the forward policy
logits and the last A neurons represent the backward policy
logits, as illustrated in Equation 2.



Fig. 1: Parameterized Quantum Circuit with alternating variational and encoding layers and classical computer (top) for loss
and gradient calculations. Variational layers are parameterized by the learnable Θ matrix and encoding layers are parameterized
by the scaling matrix Λ.

Logits = Linear(eβ⟨Sa⟩s,θ )

PF (St+1|St) = Logits[0 : A− 1]

PB(St|St+1) = Logits[A : A× 2]

(2)

C. Reward

GFlowNets adopt a strategy of sampling actions with prob-
abilities proportional to the associated reward. In the context
of a GFlowNet, the reward serves to shape the modes of a
probability distribution over actions. Unlike traditional rein-
forcement learning settings where the objective is to maximize
the overall reward, GFlowNets focus on sampling from the
modes of the distribution.

One distinctive feature of GFlowNets is their ability to
sample non-maximum but high-reward actions, fostering a
diversification in actions. The reward in a GFlowNet is task-
specific, tailored to the objectives of the particular application.
In this paper, our exploration involves employing a GFlowNet
to iteratively construct objects belonging to a specific class.

D. Trajectory Balance Loss

In training the policy as delineated in Section III-B, we
employ the Trajectory Balance Loss function introduced in
[11] for optimizing GFlowNets. This loss function is designed
to incentivize the policy to sample actions with a probability
proportional to the reward. The computation of the Trajectory
Balance Loss is carried out for a completed object at state
S after its construction through the sampling of the policy
πθ,λ(a|s).

We define the sequence of intermediate objects at St as a
trajectory τ . The loss for a state S constructed over a trajectory
of τ samples can be computed using the following equation:

LTB(S) =

(
log

Z
∏τ

t PF (St+1|St)

R(St)
∏τ

t PB(St|St+1)

)2

(3)

, where PF and PB are the forward and backward policies,
Z is a trainable scaling parameter, and R(·) is the reward
function.

E. Training Procedure

We train the forward and backward policies by minimizing
the trajectory balance loss using Algorithm 1. This algorithm
involves a transition function T (a) that produces a new state
St+1 given a sampled action a, the reward R, and the policy
πθ,λ. The training process begins by initializing the state to a
predefined value S0, tailored to the specific application. For
instance, in generating a smiley face, the initial state would be
an empty circle. The initial state is then added to the trajectory
τ , which serves to track the intermediate states St throughout
the process.

Subsequently, the generation of a complete object S takes
place by sampling actions from the policy πθ,λ, executing
these actions using the transition function T , and recording
intermediate states in the trajectory τ until a predetermined
maximum number of actions is reached. The total reward
for each state in the trajectory is then summed and used to
calculate the loss.

IV. EVALUATION

To assess the performance of the GFlowNet-PQCE policy in
object generation, we apply the policy to a simple object gen-
eration task involving the creation of smiley faces, introduced
in the popular GFlowNet tutorial [14]. In our experiments,
we compare the quantum GFlowNet with a classical deep
neural network-based approach for generating these objects.
While the primary focus of this paper is to demonstrate
the feasibility of generating compositional objects with a
quantum GFlowNet, we conduct a comparative analysis with
the classical GFlowNet, evaluating efficiency and the ability
to generate the specified class.



Algorithm 1 GFlowNet-PQCE Policy Training Loop
Input: policy πθ,λ, transition function T , EPOCHS, R(·),
MAX ACTIONS

1: for epoch in EPOCHS do
2: actions taken← 0
3: S0 ▷ Initialize state
4: τ ← ∅+ {S0} ▷ Initialize trajectory
5: repeat
6: a← πθ,λ ▷ Sample action
7: St+1 ← T (a) ▷ Take action
8: τ ← τ + {St+1} ▷ Append St+1 to trajectory
9: actions taken++

10: until actions > MAX ACTIONS
11: θ ← θ − η∇LossTB(R(S), logZ , τ) ▷ Update θ
12: end for

Efficiency is assessed by measuring the total time required
for training over 50,000 epochs and the time required to
generate a single object. The choice of 50,000 epochs aligns
with the classical GFlowNet’s convergence benchmark as
outlined in [14].

The generation quality of a GFlowNet is defined by its ca-
pacity to generate objects of a specific class with a probability
proportional to the target reward distribution. Given the limited
number of possible actions for the smiley face generation
task, we can precisely define the reward distribution T by
setting rewards for smiley faces and frowny faces accordingly.
Because there are only two classes, we can measure the
generation quality by the absolute difference in the target
number of objects of type ‘smiley’ Ts, and the generated
objects of class ‘smiley’ Gs, as illustrated in Equation 4.
Furthermore, we gauge the percentage of valid faces generated,
where a valid face exhibits no conflicting features, such as
simultaneous smiling and frowning.

Quality Disparity =

∣∣∣∣∣Ts −
∑N

i f(Oi) == s

N

∣∣∣∣∣ (4)

where Ts is the target number for the class ‘smiley’, f(·)
defines the class of the object Oi generated by the GFlowNet.

A. Smiley-Face Generation

This experiment aims to assess the capability of the pro-
posed GFlowNet-PQCE in generating simple objects char-
acterized by a limited number of possible actions. In this
context, a complete object refers to a graphical face, which
can be categorized as either ‘smiley’ or ‘frowny’. Each face
is generated with the following action space: {smile, frown,
left eyebrow down, right eyebrow down, left eyebrow up, right
eyebrow up}. Figure 2 provides a visual representation of a
smiley and frowny face as illustrative examples.

B. Experiment Design

The experimental setup outlined in the previous section will
be executed using the TensorFlow (TF) [15] and TensorFlow

Fig. 2: Left: example of a ‘smiley’ face. Right: example of an
‘frowny’ face from [14].

Quantum (TFQ) [16] Python packages. Leveraging Tensor-
Flow enables the encapsulation of Parametrized Quantum
Circuits (PQCE) and GFlowNets within custom Keras models,
facilitating straightforward gradient tracking and updates. For
the classical GFlowNets used as a comparison, PyTorch [17]
will be employed. All experiments are run on an AMD EPYC
7763 processor with 128 CPU cores.

The parameterized quantum circuits, implemented in TFQ,
will undergo simulation using both a noiseless simulator and
a noisy simulator. The first simulator, an ideal simulator em-
bedded within the ControlledPQCE TFQ class, abstains from
modeling noise within the quantum circuits. In contrast, the
second simulator, integrated into the NoisyControlledPQCE
TFQ class, introduces noise to the simulator measurements
via Monte Carlo Sampling. Both classes leverage the Cirq
simulator, integrated into TFQ, which automatically executes
simulations when invoked through the Keras wrapper.

We define the target reward distribution to follow a 2:1
smiley-to-frowny ratio between classes, adhering to the ap-
proach presented in [14]. To strengthen the reward signal,
the rewards were subsequently scaled by a factor of 2 to
amplify the reward signal while preserving the established
ratio, resulting in a reward of 4, 2, and 0 for the smiley, frowny,
and invalid classes respectively.

In tackling the smiley face generation task, the quantum
GFlowNets used 6 qubits, allocating one for each possible
action. The GFlowNet-PQCE architecture used 6 layers, with
a variational layer parameterized by Θ as the initial layer.
Subsequent layers consist of another variational layer and an
encoding layer parameterized by Λ. Each variational layer used
3 θ parameters per qubit, responsible for the Rx, Ry , and Rz

rotations. Meanwhile, each encoding layer required a singular
scaling parameter λ per qubit.

Conversely, the classical GFlowNet adopted a simple two-
layer multilayer perceptron design with 512 hidden neurons.
As outlined in [11], [14], both GFlowNet variants learned a
Z parameter to facilitate trajectory balance loss optimization.
In total, the GFlowNet-PQCE required only 151 parameters,
compared to the 9741 for the classical GFlowNet. A compre-
hensive summary of all parameters is provided in the Table
I.



Fig. 3: In depth circuit diagram for the Parameterized Quantum Circuit used in the smiley face generation task.

TABLE I: Parameter Counts for Quantum and Classical
GFlowNets.

Parameter Quantum Classical

Lambda (Λ) 30 –
Theta (Θ) 108 –
Linear (Input) – 3072
Linear (Hidden 1) – 512
Linear (Hidden 2) – 6144
Linear (Output) 12 12
Log Z 1 1

Total Parameters 151 9741

V. RESULTS

A. Smiley Face Generation Quantitative Results

1) Efficiency: The quantitative outcomes from the smiley
face experiment are shown in Tables II and III. Examining the
efficiency results in Table II, we observe a notable difference
in training durations between the GFlowNet-PQCE and the
classical GFlowNet over 50,000 epochs.

The classical GFlowNet completed training in a mere 4
minutes compared to the significantly longer 6 hours and
52 minutes for the noisy GFlowNet-PQCE and 51 minutes
for the noiseless GFlowNet-PQCE. In summary, the classical
GFlowNet was approximately 12.75 times faster than the
noiseless GFlowNet-PQCE and 103 times faster than the noisy
GFlowNet-PQCE. When observing the average time required
to generate a single object we find that the classical approach
again was the fastest with an average generation time of
0.00268 seconds. In comparison, the noiseless GFlowNet-
PQCE and the noisy GFlowNet-PQCE exhibited longer aver-
age generation times of 0.05748 seconds and 0.08018 seconds,
or 21.5 and 30 times slower than their classical counterpart.

Several optimization strategies could improve the training
efficiency of GFlowNet-PQCEs. First, joint optimization of
circuit architecture and parameters could deliver improvements
with minimal computational overhead. For noisy quantum cir-

cuits, applying error mitigation techniques such as zero-noise
extrapolation would reduce the impact of hardware noise.
Additionally, implementing hardware-aware training that ac-
counts for specific device characteristics could substantially
reduce training times while preserving the quantum models’
advantage in parameter efficiency. We encourage exploration
of these optimization strategies for future work.

TABLE II: Training and Generation Times for Classical and
Quantum GFlowNet-PQCEs for 50k epochs. Times Exclude
Gradient Calculations and Logistical Logging Operations.

Model Training Time
(hh:mm:ss)

Avg. Generation
Time (s)

Quantum Noisy 06:52:59 0.08018
Quantum Noiseless 00:51:58 0.05748

Classical 00:04:09 0.00268

2) Generation Quality: The results measuring object gen-
eration quality are detailed in Table III. Our target reward dis-
tribution dictates a 2:1 smiley-to-frowny face ratio, translating
to a 66 smiley faces within a set of 100 samples.

In terms of quality, both noiseless GFlowNet-PQCE and
the classical GFlowNet show comparable ability in matching
the reward distribution. The classical GFlowNet yielded 72
smiley faces out of 100, deviating by +6 faces from the
desired 66, while the noiseless GFlowNet-PQCE generated
61 smiley faces out of 100, showing a deviation of -5 faces.
Notably, the noisy GFlowNet-PQCE generated only smiley
faces, indicating that it collapsed to maximizing the reward
instead of modeling the desired target distribution. A deeper
investigation into the causes of this distribution collapse is
reserved for future works.

It is important to highlight that all three GFlowNets, both
classical and quantum, successfully generated 100% valid
faces out of the 100 sampled, underscoring the efficacy of
the models in maintaining validity throughout the generation
process. Avenues for future exploration include investigating



the impact of a larger action space and non-binary reward
distributions.

TABLE III: Quality Metrics for Quantum and Classical
GFlowNets in Smiley Face Generation.

Model Quality Disparity ↓ Valid Faces (%) ↑

Quantum Noisy 44 100
Quantum Noiseless 5 100

Classical 6 100

B. Parameter Efficiency of Quantum vs Classical GFlowNets

In preceding sections, we demonstrated the ability of quan-
tum GFlowNet-PQCEs to minimize a trajectory loss function,
enabling the generation of objects with quality comparable
to classical GFlowNets. A notable distinction between the
quantum and classical approaches lies in the number of
trainable parameters required to learn the reward distribution.
Specifically, both the noisy and noiseless versions of quantum
GFlowNet-PQCEs require a mere 151 trainable parameters,
as opposed to the 9741 parameters demanded by the classical
GFlowNet, shown in Table I. This contrast in parameter
count suggests that PQCEs might be preferable in operational
scenarios where a minimal parameter footprint is crucial,
despite the considerably longer training time required.

VI. CONCLUSION

This work demonstrates a proof of concept application of
Parameterized Quantum Circuits (PQCEs) within the domain
of Generative Flow Networks (GFlowNets). The proposed
GFlowNet-PQCE model exhibits promising results in the
generation of simple objects, such as smiley faces, showcasing
its parameter efficiency and quality in comparison to classi-
cal deep neural network-based approaches. We demonstrate
that GFlowNet-PQCEs exhibit comparable performance in
matching a reward distribution in the simple object generation
task while also learning to generate only valid faces. Despite
the longer training times of GFlowNet-PQCEs, they require
fewer trainable parameters than their classical counterparts,
highlighting their advantage in compute-constrained environ-
ments. Overall, this study provides a first step in employing
parameterized quantum circuits to implement GFlowNets for
object generation tasks, paving the way for further research
into quantum-classical hybrid models and their applications in
generative machine learning.
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