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Many problems in the field of digital logic may he solved 
more efficiently in the spectral domain than in the Boolean 
domain. However, the primary drawback of spectral tech­
niques is the large complexity associated with the calcula­
tion of the spectrum of a Boolean function. We present a 
new method for the computation of a spectral coefficient 
that has a complexity equal to 0( IE I) where IE I is the 
numher of edges in a binary decision diagram characteriz­
ing the circuit. This result is especially significant for tech­
niques that require the calculation of only a few spectral 
coefficients since it allows the computations to be accom­
plished very efficiently and does not require storage re­
sources for a large number of values. Furthermore, this 
method holds for any general spectral transform and does 
not require the transformation matrix to be recursively de­
fined or sparse. {!> 1994 Acad•mic .,,...._ Inc. 

1. INTRODUCTION -
There have been many applications proposed and 

developed using spectral methods for logic circuits. 
Some of these include logic synthesis (1- 7J, partition­
ing techniques [ 3,8-10 J, testing [ 12-15], function clas­
sification [2,161, and others. The application of spec­
tral based methodologies to digital logic analysis have 
been studied and developed since the mid-1970s in an 
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attempt to use the vast amount of results that have 
been very effective in areas such as signal processing 
and systems analysis. One of the chief reasons that 
these techniques have not found widespread use and 
acceptance is the large complexity associated with the 
computation of the spectrum of a Boolean function. 
Most digital logic analysis techniques in use today 
employ heuristic rules that typically have a much 
smaller complexity than that required for the calcula­
tion of a combinational logic circuit spectrum. How­
ever, these rule based methods generally perform very 
poorly, or not at all, for certain subsets of problems. 
Even when well-known spectral computation tech­
niques such as those proposed in (17] for the "Fast.­
Fourier Transform" and later extended to transforms 
suitable for digital logic circuits (the "Fast-Walsh 
Transform") [ 18J are used, the resulting algorithm 
still suffers from a complexity that is exponential 
with respect to the number of input variables of the 
Boolean function. Furthermore, these methods are 
based upon using recursively defined transformation 
matrices and are not suitable for generalized transfor­
mation matrices. In this paper, we propose an effi­
cient algorithm for the calculation of the spectrum of 
a Boolean function that does not require the transfor­
mation matrix to be recursively defined or sparse, 
and, has a complexity of the order of the number of 
edges in a binary decision diagram (BDD) [19,20J. 

As mentioned before, researchers have developed 
efficient spectral coefficient calculation schemes in 
the past. In particular, a recent method has been pro­
posed that utilizes "integer valued" BDDs [21,22,23J. 
Although this method computes the resulting trans­
form vector in a very compact method by representing 
it as an integer valued BDD, the determination of 
each individual spectral coefficient requires a sepa-
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rate evaluation of the BDD. Furthermore, the size of 
the integer valued BDDs can become exponentially 
large if the transformation matrices used are not 
sparse or recursively defined. Our method compares 
favorably with this approach since we compute a 
spectral coefficient in linearly bounded time but we 
also require an exponential number of these calcula­
tions to form the entire spectral vector. Further, our 
method does not require the transformation matrix to 
be recursively defined or sparse to preserve the effi­
ciency of the computation. 

Another methodology allows for the computation 
of transform coefficients directly from a representa­
tion of a Boolean function as a set of disjoint cubes 
[11,24]. Unfortunately, as the number of inputs to the 
Boolean function grows, the corresponding set of dis­
joint cubes can become extremely large. Our method 
has the advantage that the function to be transformed 
can be represented in very compact manner and does 
not require a large set of product terms. 

In this paper, we show that a single spectral coeffi­
cient may be computed with a complexity of the order 
of the number of edges in a BDD. The formulation of 
this technique requires the use of probability expres­
sions for the output of the circuit to be synthesized. 
Circuit output probability expressions (OPEs) have 
been used in the past in areas such as testing [251, 
analysis [26), and verification (27]. This paper dis­
cusses the use of output probabilities to compute 
spectral coefficients in an efficient manner. To that 
end, we first develop a new algorithm to compute cir­
cuit output probabilities. 

The primary reason for the reduction in computa­
tion complexity is due to the fact that the output prob­
abilities may be computed efficiently using a BDD 
representation of the logic circuit. The formulation of 
the output probability expression requires exponen­
tial resources if the Boolean equations are trans­
formed using algebraic methods. However, when the 
circuit is represented in BOD form, the formulation 
can be accomplished with 0( IE I) complexity where 
IE I represents the number of edges in a BOD. 

The remainder of this paper is organized as follows. 
Section 2 will briefly review the properties of output 
probability expressions for logic circuits and a new 
algorithm for calculating circuit output probabilities 
using BDDs is presented. In Section 3, a method for 
the calculation of spectral coefficients using circuit 
output probabilities is given. Next, in Section 4, we 
present the algorithm for efficient computation of 
spectral coefficients and discuss some optimizations 
to minimize the required complexity. An example 
spectral coefficient computation using this algorithm 
is also given. Finally, conclusions will be presented in 
Section 6. 

m';I 

2. OUTPUT PROBABILITIES OF 
COMBINATIONAL LOGIC CIRCUITS -This section will discuss the computations of cir­
cuit output probabilities by briefly reviewing two 
methods used to compute OPE expressions and then 
by directly computing a circuit output probability us­
ing BOOs. Also, an example of a BOD for a specific 
logic function is presented. In the discussion pre­
sented in the remainder of this paper, the following 
notation is used; 

• Small case variables such as x 0 , x 1, etc. denote 
Boolean variables that have logic values of "1" or "0". 

• Upper case variables such as X 0 , Xi, etc. denote 
the probability that the corresponding lower case 
Boolean variables are equal to a logic" 1" value. These 
quantities are real and exist in the interval [O, 1]. 

• The operator symbol,"+", will refer to the Bool­
ean OR function or the addition of real numbers de­
pending upon the context of the equation in which it 
is used. 

• The operator symbol, "· ", will refer to the Bool­
ean AND operation. The absence of an operator be­
tween two adjacent values in a Boolean equation im­
plies the presence of the • operator. 

• The operator symbol, "x", will refer to the multi­
plication of two real values. The absence of an opera­
tor between two adjacent values in a real-valued 
equation implies the presence of the X operator. 

• The operator symbol, "EB", will refer to the Bool­
ean XOR operation. 

• The operator, '? { l ", denotes the probability 
transform operator whose argument is a Boolean 
function. It will yield the probability that its argu­
ment is a logic "1". Unless otherwise noted, it is as­
sumed that the input variables to the Boolean func­
tion are equally likely to be "1" or "O". 

The OPE of a combinational logic circuit is an alge­
braic expression that expresses the probability that 
the circuit output is a logic "1" given the probabilities 
that the input variables have the value of logic ''1". It 
is possible to compute the OPE for a given circuit by 
transforming its Boolean equation representation or 
by calculating the OPE from a schematic diagram rep­
resentation [25]. 

In [25], an algorithm is given to compute the OPE 
directly from a Boolean expression. This method re­
quires the function to be expressed in a canonical 
sum-of-products (SOP) form and then each product is 
replaced by an expression for the probability that the 
product is at logic "1". The canonical SOP form must 
be used since it is necessary for one and only one prod­
uct term to be at logic value "1" for a given input to 



TABLE 1 

Rules for Transforming Boolean Operations 
to Probability Expressions 

Function 

Inversion 
OR 
XOR 
AND 
Idempotence property 

Boolean 
expression 

:i, 
x, + x, 
.r, 0 %2 

x,. %2 

X1 •X1 

Probability 
expression 

1-Xl 
X1 + X2 - (X, X X2 ) 

X1 + X2 - 2 (X, X X2 ) 

X 1 X X2 

X1 

preserve independence. The rules in Table 1 are used 
to determine the probability expression for each prod­
uct in the canonical SOP form. 

This algorithm has a complexity that is exponential 
with respect to the number of input variables since it 
requires the formulation of the canonical SOP Bool­
ean function. 

As an example of this method, consider the func­
tion defined by the truth table in Fig. 1. 

The canonical SOP form for this function is give.n 
in Eq. (1): 

The resulting OPE using the rules in Table 1 is 
given in Eq. (2): 

A more efficient algorithm for the computation of 
the OPE of a Boolean function is also given in (25). 
This method requires the function to be represented 
as a logic diagram. In this technique, each primary 
input, each internal interconnection, and the output 
is assigned a unique variable name. Using the rules in 
Table l, each internal node is expressed as a function 
of the primary inputs. This step is performed through 
subsequent substitutions until an expression is de­
rived for the output variable in terms of the primary 
input variables thus forming the OPE. As an example, 
consider the logic diagram illustrated in Fig. 2 that is 
a realization of Eq. (1). 

X3 x, x, f 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 

0 0 0 
0 1 0 

0 1 
1 1 

FIG. 1. Truth table of example function. 

G 
--f(x) 

FIG. 2. Example logic diagram. 

Using the variables assigned to each interconnec­
tion and the rules in Table 1, the OPE can be derived 
as follows. 

ma 

First, apply the rule for the AND operator: 

D=AB 

E=BC. 

Next, using the rule for the OR operator: 

G = AB + BC - AB 2C. 

(3) 

(4) 

(5) 

Finally, the idempotence property rule is employed: 

G = AB + BC - ABC. (6) 

Notice that the idempotence property is particu­
larly useful since it allows all exponents to be dropped 
during the formation of the equations. Since we have 
an expression where the output label is a function 
only of the primary input labels, we have obtained the 
OPE. Equation (6) is exactly the same as Eq. (2). This 
technique has a complexity of O(I), where I is the 
number of interconnections in the logic diagram since 
each interconnection is visited once in the formation 
of the OPE. 

Although the OPE algorithm based upon circuit 
diagrams is efficient with respect to the size of the 
circuit, many times it is desired to compute the spec­
tral coefficients of a circuit before it is realized. In 
particular, spectral based synthesis algorithms typi­
cally use some compact representation of the function 
as input. One compact way of describing a Boolean 
function is to utilize its BDD, which provides the mo­
tivation for computing a circuit output probability us­
ing a BDD description as input. For the purposes of 
computing spectral coefficients, it is sufficient to 
compute the output circuit probability for the case 
where the input variables are all equally likely to be 
"1" or "0". Thus it is not necessary to compute the 
OPE and then evaluate it for the case where all Xi = 

0.5 since this probability may be computed directly 
from the BDD. 

A BDD is a graphical representation of a Boolean 
logic circuit that consists of nodes representing input 
variables and function output values. These nodes are 



interconnected by directed edges with the initial node 
and internal nodes representing function input vari­
ables and the terminal nodes representing function 
output values. Each internal node and the initial node 
has two directed edges pointing to another node, one 
of the edges is activated if the input variable is at logic 
value "1" and the other is activated if the logic vari­
able is at logic value "0". A complete discussion of 
BDDs may be found in [19,20,28). In [20], some re­
strictions were placed upon the formation of BDDs 
that allowed several efficient algorithms to be defined 
for their manipulation. We will also use the form of 
BDDs described in [20). 

As an example of a BDD, consider the function de­
fined in Eq. (7): 

f(x) = x1x3x6 + x1i;x 4x6 + x1.r3x4.x5 

+ .x1x2x4.x6 + x1x2x4x5 + X 1X2 X5 • (7) 

This function would require a truth table with 26 

entries to be completely specified. The BDD represen­
tation of this function in Fig. 3 is quite compact how­
ever. 

The BDD-based algorithm for the calculation of 
the output circuit probability does not have the expo­
nential complexity of the algebraic method nor does it 
require a circuit diagram description of the Boolean 
function. Only the functionality of the circuit is re­
quired which can be expressed in a very compact. 
manner using BDDs. In the remainder of this paper, 

FIG. 3. Example of a binary decision diagram. 

we will utilize the form ofBDD as defined in [20] and 
we will occasionally refer to some of the BDD algo­
rithms cited there as well. 

The following lemma expresses an important result 
concerning the BDD of a logic function. 

LEMMA 1. For any one particular combination of 
input variables, at most one path will be activated be­
tween the input node and node j where j is any node in 
the BDD other than an input node. 

Proof. If possible, let there be more than one path 
activated between the input node and node j. This 
implies that at least one of the nodes between the 
input node and j has both of its outgoing arcs acti­
vated for the given input condition which is an impos­
sibility in a BDD. Therefore, there is at most one path 
activated for a given input condition. ■ 

It should be noted that a path may not exist be­
tween the input node and j for certain input condi­
tions. 

The algorithm for computing a circuit output proba­
bility using the BDD of the circuit and assuming that 
all inputs are likely to be "l" or "0" is described by the 
following steps: 

Probability Assignment Algorithm 

Step 1. Assign probability = 1 for the input node. 
Step 2. If the probability of node j = Pi, assign a 

probability of½ Pi to each of the outgoing arcs from j. 
Step 3. The probability, Ph, of node k is the sum of 

the probabilities of the incoming arcs. 

LEMMA 2. In the probability a.ssignment algorithm, 
the probability Pk is the probability that there exists a 
path from the input node to the node k. 

Proof. In the probability assignment algorithm 
given in the preceding, Pk is calculated as the sum of 
the probabilities of reaching node k through various 
paths from the input node. From Lemma 1 all these 
paths are disjoint and therefore represent disjoint 
probability events. Thus, P1, is the probability of 
reaching node k from the input node over all possible 
input variable combinations. ■ 

This BDD based algorithm for the computation of 
circuit output probabilities involves the traversal of 
the BDD from the input node to the terminal nodes. 
This enables the output probability of a combina­
tional logic circuit to be computed with a complexity 
equal to 0( IE I), where IE I is the number of edges or 
interconnections in the BDD. During the traversal of 
the BDD, a probability is assigned to each node. This 
is the probability that the node is reached for a given 
set of input variable probabilities of the function. 



Each node probability is a member of a probability 
space containing 2" experiments. The node probabili­
ties have the desirable feature of depending only upon 
their immediate predecessor node probabilities. 

As an example, consider tbe Boolean function, 

(8) 

The truth table for equation 8 is given in Fig. 4 and 
the corresponding BDD is given in Fig. 5. 

It is easily seen from the truth table that the proba­
bility that the output is a "l" is~- Using the algorithm 
above, each node in Fig. 5 is labeled with the probabil­
ity that it is reached, and it is seen that the terminal 
"l" node does indeed have the value~ = 0.625. 

As mentioned before, this algorithm is applicable 
only to BDDs that are formulated with restrictions on 
the variable orderings similar to those first presented 
in [20]. The reason for this constraint is to ensure 
that no infeasible paths are utilized in the node proba­
bility calculations. For example, if a node correspond­
ing to variable X; is the input node and this node is also 
present internally in the graph, the straight forward 
application of the probability calculation would in­
clude the possibility of assuming X; is at logic "1" on 
the input node and it is at logic "O" on the internal 
node. This is clearly an infeasible path. To eliminate 
infeasible paths, it is sufficient to constrain all parent 
nodes to have an index value less than their children 
nodes. 

3. CALCULATION OF SPECTRAL COEFFICIENTS -
By definition, the spectrum of a Boolean function is 

obtained by multiplying a transformation matrix by 
the function's output vector [2]. Although this is gen­
erally not the way coefficients are calculated in prac­
tice, this definition is convenient for analyzing spec­
tral transforms. The result of the vector-matrix prod­
uct is termed a spectral vector and it is composed of 
elements that are referred to as spectral coefficients. 

The type of information that the spectral coeffi­
cients yield depends upon the form of the transforma-

X3 X2 x, f 
0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 
1 0 1 
1 0 

FIG. 4. Truth table of example function. 
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FIG. 5. Output probability calculation example. 

tion matrix. One way to interpret the meaning of each 
spectral coefficient is to view it as a measure of corre­
lation between two Boolean functions. These two 
Boolean functions are the function being trans­
formed, f(x), and the constituent function, fc(x). With 
this viewpoint, the constituent function is a Boolean 
function whose output vector is identical to the row 
vector in the transformation matrix that is used to 
generate a specific spectral coefficient. Thus, a trans­
formation matrix may be represented as a collection 
of constituent functions each of whose output vectors 
are identical to the different row vectors of the trans­
formation matrix. 

The following example illustrates an example cal­
culation of a spectrum of a Boolean function. In this 
example, all logic "l" values are replaced by the in­
teger value, -1, and all logic "0" values are replaced 
by the integer value, 1. 

EXAMPLE 1. Example of the calculation of the 
spectrum of a Boolean function 

The truth table for this function is given in Fig. 6. 

x, 

1 
-1 
-1 
-1 
-1 

X2 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

X3 f 

1 -1 
-1 1 

1 -1 
-1 -1 

1 1 
-1 -1 

1 -1 
-1 1 

FIG. 6. Truth table of the example function. 



The transformation matrix to be used is: 

0 1 1 1 1 1 1 1 1 
Xi 1 1 1 1 -1 -1 -1 -1 

X2 1 1 -1 -1 1 1 -1 -1 
X3 1 -1 1 -1 1 -1 1 -1 

Xi+ X2 1 1 -1 -1 -1 -1 -1 -1 
Xi+ X3 1 -1 1 -1 -1 -1 -1 -1 
X2 + X3 1 -1 -1 -1 1 -1 -1 -1 

Xi + X2 + X3 1 -1 -1 -1 -1 -1 -1 -1 

Thus the resulting spectral vector is calculated as: 

ST = (-2, -2, 2, -2, 2, -2, 2, 2, -2}. (10) 

These coefficient values may be interpreted as 
correlation measures between the constituent func­
tions shown to the left of the transformation matrix 
and the transformed function. For example, the last 
coefficient in the spectral vector indicates that the 
constituent function, x 1 + x2 + x3 , has a correlation 
measure of -2 with the function that was trans­
formed, i 1.i3 + x 1x2x 3 + x1x 2 + x2x3 . The relationship 
between a spectral coefficient and a coefficient of 
correlation is formally developed in the following sub­
section. 

3.1. Relevant Properties of Spectral Coefficients 

This section will develop some relevant properties 
of spectral coefficients that are used in the derivation 
of the algorithm presented in the following section. 
The following definitions and notations are used in 
the remaining sections of this paper: 

• n is the number of input variables of a Boolean 
function. 

• Nm is a positive integer that has a value equal to 
the number of outputs of f(x) that are identical to 
those of f 0 (x) (number of matches) for all possible 
common input combinations. 

• Nmm is a positive integer that has a value equal to 
the number of outputs of f(x) that differ from those of 
f,(x) (number of mismatches) over all possible com­
mon input combinations. 

• S1[/c(x)] is the spectral coefficient associated with 
the function, f(x), and the constituent function, fc(x). 
A common definition of S1[/c(x)] is Stlfc(x)] = Nm -
N,..,,. [7]. 

• R/x) is a real-valued function that maps the out­
put of a Boolean function, f(x), from logic value "1" to 
-1 and logic value "O" to 1 for a given set of input 
values, x. 
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• C is a coefficient of correlation between two real 
valued functions and is defined as: 

• Pm is the percentage of matching outputs between 
a constituent function and a function to be trans­
formed. 

• Pmo is the percentage of matching outputs be­
tween a constituent function and a function to be 
transformed that are at a logic "O" value. 

• Pmi is the percentage of matching outputs be­
tween a constituent function and a function to be 
transformed that are at a logic "1" value. 

Two useful properties of spectral coefficients are 
provided in the following two lemmas that first ap­
peared in (7]: 

LEMMA 3. For a given function f( x) and a given con­
stituent function fl x) the resulting spectral coefficient 
is given by: 

LEMMA 4. The following property of spectral coeffi­
cients holds: 

(13) 

The proofs of these Lemmas are provided in (29]. 
The following Lemma shows the relationship be­

tween a spectral coefficient and the correlation be­
tween two functions. 

LEMMA 5. The spectral coefficient, S1[//x)] is di­
rectly proportional to the coefficient of correlation be­
tween f( x) and le( x). 

Proof. As given in the definition above, the coeffi­
cient of correlation is given by equation 11 as: 

1 n-1 

C =---;;-L [R/x;) X R
10

(x.)] (14) 
2 i-0 

Where, X;, is the ith unique minterm. Note that 
each product in the summation of the series is either 1 
or -1. Thus we can replace I?.:-01 

[ R1(xi) X R,c(x;)] with 
Nm - Nmm• By the definition given above, S1[/c(x)] = 
Nm - Nmm• Substituting S 1[/c(x)] into 11: 

(15) 



Hence, S1[/e(x)] is directly proportional to C with a 
constant proportionality coefficient of 2". ■ 

Similar results can be proven for other definitions 
of spectral coefficients. For instance, the Reed­
Muller transform [30,31] can be defined as a vector of 
values where each component is the number of 
matching logic "1" outputs (calculated as Pmi X 2") 
between the function to be transformed and a constit­
uent function. 

3.2. Relevance of OP Es to Spectral Coefficients 

Since we can compute the spectral coefficients 
given the value Nm or Nmm, an efficient way to com­
pute these quantities will in effect provide an efficient 
way to calculate the spectral coefficients. Further­
more, if we know the percentage of the matching out­
puts of a constituent function and the function to be 
transformed (denoted by Pm), we can easily compute 
Nm = Pm2". This observation is the basis behind the 
algorithm to compute the spectral coefficients. 

In order to determine Pm, we need to use logic equa­
tions that indicate when the outputs of the constitu­
ent function and the function to be transformed 
match. It is trivial to show that such logic equations 
can always be formed by using the logical AND of 
these two functions for the case when both output a 
"1", and, the logical NANO of these two functions 
when both output a "O". A formal definition of these 
types of functions follows: 

DEFINITION 1. A function that is formed by taking 
the logical AND or NAND of a constituent function 
and a function. to be transformed is called a 'composite 
function' and is denoted by /comp(x). 

Therefore, in order to compute the value p,,. we only 
need to find the probability that both functions simul­
taneously output a logic "1" value (Pmi) and the proba­
bility that both functions simultaneously output a lo­
gic "0" value (p,,.0 ). By forming the BOD of the two 
fcomp(x) functionS,Pm0 andpm 1 are simply the probabili­
ties that the terminal node of logic value "1" is 
reached. 

In Lemma 6 an important result is given relating 
the spectral coefficients and the f comp(x) functions. 
This result is presented by using the concepts of ca­
nonical sum-of-products (SOP) and product-of-sum 
(POS) forms of Boolean expressions. 

LEMMA 6. Nm = N ml + N m0, where N ml = the num­
ber of min.terms terms in a canonical SOP form off· le 
and Nme = the number of maxterms terms in a canoni­
cal POS form of fe + /. 

Proof. All Boolean expressions may be expressed 
by indicating the output value corresponding to each 

of its 2" minterms (this is in fact a truth table). A 
canonical SOP form for a Boolean expression is the 
inclusive-OR of all minterms that produce a logic "1" 
output [32]. Hence, the number of minterms present 
in a canonical SOP expression represents the number 
of times the function output is at logic value "1 ". 

Likewise, N m0 is equal to the number of maxterms 
in a canonical POS form of/+ fe since this expression 
will be at logic "0" if and only if both/ and fe output 
"0" for a common set of inputs. 

Since Nm is the number of times a constituent func­
tion, /,(x), and a function to be transformed,/(x), have 
identical outputs for a common set of inputs. 

(16) 

• 
The relationship between the output probability of 

a composition function and Nm is established in 
Lemma 7: 

LEMMA 7. 

Proof. /Z {/ + /e} yields the probability that the 
function/+ le produces a logical "1". Therefore, 1 -

/Z {/ + le} is the probability that / + fe produces a logic 
"0". Since / + le will output a "0" if and only if both / 
and /e are at "0": 

Likewise, /Z {/ • /,} yields the percentage of min­
terms of/· le that produce a logic "1" for the function, 
f · le• Since/· /e will output a "1" if and only if both f 
and fc are at "l": 

(19) 

Substituting (18) and (19) into (17) and observing 
that Pm = Pml + Pmo= 

Thus, the definition of Nm is satisfied and the proof 
is complete. ■ 

Based on the results of the previous Lemmas, we 
can now prove that a spectral coefficient may be cal­
culated based upon circuit output probabilities. 



THEOREM 1. 

Proof. From Lemma 12: 

(22) 

From Lemma 17: 

Substituting (23) into (22) and simplifying: 

S1Uc(x)] = 2n[l + 2(/Z l/·/c} - /ZU + le})). (24) 

■ 

COROLLARY 1. A compact expression for S1[/J x)] is: 

(25) 

Proof. From Theorem 1, 

Substituting Eqs. (18) and (19) into Eq. (26): 

(27) 

From the definition p,,,: 

(28) 

■ 

These results show that the calculation of spectral 
coefficients is translated to the problem of output 
probability calculations of the BDDs of composition 
functions. It should be noted that in most methods 
that utilize spectral techniques for digital logic cir­
cuits, fc(x) is much less complex than than the func­
tion to be transformed, /(x). For example, in the syn­
thesis algorithm proposed by us in [7], we present a 
method for synthesizing a function by decomposing it 
into a collection of much simpler constituent func­
tions. The decomposition was accomplished by using 
the information contained in the corresponding spec­
tral coefficients. 

3.3. Complexity of the Spectral Computation 
Algorithm 

In order to implement these results to formulate an 
algorithm for the computation of a spectral coeffi­
cient, the following observations are made. The value 
p,,, is obtained by using the BDD based output proba­
bility calculation algorithm presented in Section 2.pm 

is computed as the sum of Pmo and Pmi which are ob­
tained by applying the output probability calculation 
algorithm to the BDDs formed by two composition 
functions denoted by /lcmnp(xl and f2comp(x). These 
composition functions are given by flcump(x) = 
f)x) • f(x) andf2comp(x) = fc(x) • f(x). Therefore, the val­
ues p,,,1 and Pm.o are obtained with a complexity of 
0( I £comp I) where £comp is the number of edges present 
in the BDDs of the two composition functions. 

If the algorithm APPLY proposed in [20) is used to 
form the composition function BDDs, the resulting 
complexity is 0( I E1c I I £ 11 ). Where I E1c I is the num-
ber of edges in the BDD of the constituent function, 
f/x), and I £ 1 1 is the number of edges in the BOD of 
the function to be transformed, /(x). This bound is 
very good since for most transforms the constituent 
functions are very small as compared to the function 
to be transformed. In the general case however, con­
stituent functions may he as complex as the function 
to be transformed, or, even more complex. 

Thus, to form a spectral coefficient it is only neces­
sary to apply the output probability algorithm to the 
BDDs of the composition functions and then compute 
the following; 

Pmi = /' 1/(x) • /,(:r:) J 

Pmo = /' i/(x) • fc(x)) 

(29) 

(:30) 

(:31 l 

The algorithm for the efficient computation of 
spectral coefficients is stated as: 

Efficient Spectral Coefficient Computation 
Algorithm 

Step 1. Formulate the BDDs for the two compo,-i• 
tion functions using the APPLY algorithm. 

Step 2. Use the output probability calculation algo­
rithm with the composition function BDDs as input. 

Step 3. Compute Pmi = /Z {/(x) • /c(x}) and p,,.0 = 
/Z {/(x) • /,(x}]. 

Step 4. Compute S1{/c(x)] = 2n{2(pm 1 + Pmo) - 1]. 

Since the bounding operation in this algorithm is 
the utilization of the APPLY algorithm to form the 
composition function BDDs, computational com­
plexity of this algorithm is 0( I £ 11 X I E1,. I}. 

Next, an example of the application of this algo­
rithm to a :3-input logic function is given. 

EXAMPLE 2. Example of the efficient calculation 
of a spectral coefficient using output probabilities and 
BDDs. 



The function to be transformed, /(x), is given by Eq. 
(32): 

(32) 

The constituent function for this example, /,{x), is 
given as: 

(33) 

The BDD for Eq. (32) is given in Fig. 5. The BDD 
for the composition function, /(x) • / 0 (x) is given in Fig. 
7, and the BDD for the composition function, 
f(x) • /,(x) is given in Fig. 8: 

In order to compute the spectral coefficient deter­
mined by the constituent function given in equation 
33, the values Pmi and Pmo are computed using the 
output probability algorithm. The node probabilities 
are shown on the composition BDDs. These values 
are: 

Pml = 0.5 

Pmo = 0.125. 

Next, the spectral coefficient is computed as: 

(34) 

(35) 

S1[/,(x)] = 23(2(0.5 + 0.125) - l] = 2. (36) 

Applying the definition of a transform to this prob­
lem would have resulted in computing the dot-prod­
uct of two vectors with 23 elements each. The use of 
"fast" algorithms proposed by (17] and [18] are pro­
hibited since the inclusive-OR based transform does 
not yield a sparse or recursively defined transforma­
tion matrix (an example of this transformation ma­
trix for 3-input variables is given in Example 1). Fur­
ther, the application of the spectral calculation algo­
rithm presented in [21,22,23] may result in the 
formation of a very large integer-valued BDD since 
the matrix is not sparse and cannot be recursively 
defined. 

0 
P:0.5 

I 
P=0.5 

FIG. 7. BDD of the composition function, /(x) • f.(x). 

0 
P=0.875 

I 
P=0.125 

FIG. 8. BDD of the composition function, '1fil • lJij. 

4. CONCLUSION 

The theoretical relationships between circuit out­
put probabilities and the spectrum of a Boolean func­
tion were developed. These relationships were uti­
lized to form an efficient algorithm for the computa­
tion of a spectral coefficient of a Boolean function. 
The circuit output probabilities were computed using 
a BDD representation of the logic circuits resulting in 
an efficient computation method that does not re­
quire the circuit to be realized in schematic form. The 
resulting algorithm is efficient in terms of required 
computation time and storage. These results are espe­
cially significant for spectral based methodologies 
that require the calculation of a limited subset of coef­
ficients rather than the entire spectral vector (which 
contains 2" components). 

The algorithm was applied to an example where the 
transformation matrix was neither sparse nor recur­
sively defined. The results of the example illustrated 
how this method can yield a spectral coefficient very 
efficiently for a case where other known methods 
would require exponential resources. 
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