
Submitted to Electronics Letters

A FAST TWO-PHASE MICROPIPELINE CONTROL
WRAPPER FOR STANDARD CELL IMPLEMENTATION

R. B. Reese, Mitchell A. Thornton, and Cherrice Traver

A fast control wrapper for a micropipeline with two-phase control is presented.

The wrapper is implemented in an Artisan 0.13µ commercial standard library that

has not been augmented with any special cells for asynchronous design. The

wrapper is approximately 25% faster than a more traditional approach that uses a

Muller C-element.

Introduction: Micropipelines [1] use control logic wrapped around compute blocks to implement

asynchronous systems. Micropipelines have been used to implement significant designs,

including complex microprocessors [2]. Four-phase control [3] means that the control lines

between micropipeline stages undergo a low-to-high-to-low transition for each data movement

between stages; while two-phase control implies either a single low-to-high or high-low

transition. Typical micropipeline control logic use Muller C-elements which have efficient

transistor level implementations for a small number of inputs (< 4). Large input C-elements can

be implemented as trees of smaller C-elements or can be mapped directly to standard cells as

described in [4]. Most micropipeline approaches use a bundled data signaling approach in which

a single control wire is used for all data wires originating from a micropipeline stage. Delay

elements are added to the control path to produce a matched control/datapath delay so that the

latching signal from the control wrapper arrives at the output latches of the micropipeline stage

at the same time as the data. In designs with thin pipeline stages, the performance of the control

logic becomes an issue, with the control path becoming the performance limiter instead of the

Submitted to Electronics Letters

datapath. Control logic performance is also important if a micropipeline stage has finished a

computation, and is waiting on an acknowledgment from a successor stage in order to latch the

new computation, thus providing the new value to the successor stage. Acknowledgements

propagate backwards through the pipeline, and thus do not have delay elements in their path.

A Fast Two-Phase Wrapper: Figure 1 shows the two-phase micropipeline control wrapper used

in the design of a five-stage pipelined MIPS-compatible processor [5]. Each bundled data input i

consists of a group of data lines data_bundl_i and its associated control line Cin_i. Each

predecessor stage (fanin) provides a data bundle, and each successor stage (fanout) provides an

acknowledgement signal. The control is two-phase, so each Cin input and acknowledgement

will either all transition low-to-high, or high-to-low. After all Cin and acknowledgements have

transitioned, then the C-element output transitions high-to-low or low-to-high. The XOR gate

and Cout loopback signal generates a high-pulse on the GC signal when the C-element output

changes state, latching the new outputs. The delay elements on the Cin inputs are used to match

the delay of the control path to the compute function path. A 0.13µ standard cell library from

Artisan was used to implement the processor presented in [5]. The C-element was mapped to

standard cells using the approach in [4], as the Artisan standard cell library did not have an

integrated C-element. Processor simulations using pre-layout, Verilog gate level simulations

generated by the Synopsys synthesis tool indicated that the control logic path was the limiting

performance factor in several blocks, either because the compute function delay was small, or

because the block was triggered by arrival of an acknowledgement. The C-element and XOR

gate was subsequently replaced by the logic shown in Figure 2. This removed the XOR gate

from the critical path of the control logic, and also reduced the delay of the arrival detection

Deleted: the

Submitted to Electronics Letters

logic. The non-inverting delay in the multiplexer select path is used to increase the high pulse

width of the GC signal. Table 1 contains performance results that compare the original

implementation (Figure 1) against the new wrapper logic (Figure 2). The Control Inputs column

is the total number of Cin and Ack_in inputs, while the Data Inputs column is the total number of

data latches driven by the GC signal. Delays are in nanoseconds as reported by the Synopsys

static timing analyzer. No delay elements were used on the Cin inputs. The new wrapper has a

significant performance advantage for control inputs up to 32, which would be an atypically

large number of control inputs for a micropipeline stage that uses bundled data signaling. This

performance advantage decreases as the number of control inputs becomes >32 (64, 256), which

would only occur if the micropipeline was using a form of delay-insensitive dual-rail signaling

between micropipeline stages. Figure 3 gives the path detail for the original logic in the case of

8 control inputs and 256 data outputs, while Figure 4 gives the path detail for the new wrapper

logic using the same test case. The standard cell naming convention is gtype_k_X_n, where k is

the number of inputs for gate type gtype, and n is the drive strength. From Figures 3 and 4, it is

obvious that the new wrapper logic has a faster critical path, and that the XOR gate in the

original design contributes a substantial portion to the total delay for this particular case.

Conclusion: This paper introduces a fast two-phase control wrapper for a micropipeline block.

The wrapper is intended for efficient mapping to a commercial standard cell library that does not

have specialized support cells such as C-elements for asynchronous design.

Submitted to Electronics Letters

References

1. SUTHERLAND, I.. “Micropipelines”, Communications of the ACM, Vol 32, No. 6, June
1989, pp. 720-738.

2. GARSIDE, J.D., FURBER, S.B., and CHUNG S.B.. “AMULET3 Revealed”, In Proceedings
of the Fifth International Symposium on Advanced Research in Asynchronous Circuits and
Systems, Barcelona, Spain, April 1999, pp. 51-59.

3. FURBER, F.B., and DAY, P.. “Four-phase micropipeline latch control circuits”, IEEE
Transactions on VLSI, Vol. 4, No. 2, June 1996, pp. 11-16.

4. TOY-YUNG, W. and VRUDHULA, S. B.. “A Design of a Fast and Area Efficient Multi-
Input Muller C-element”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol 1, No. 2, June 1993.

5. REESE, R.B., THORNTON, M.A., and TRAVER, C.. “A Coarse-grained Phased Logic
CPU”, In Proceedings of the Ninth International Symposium on Advanced Research in
Asynchronous Circuits and Systems, Vancouver, BC, Canada, May 2003, pp 2-13.

Author’s affiliations

Robert B. Reese (Department of Electrical and Computer Engineering, Mississippi State
University, Box 9571, Mississippi State, MS 39762 USA) reese@ece.msstate.edu

Mitchell A. Thornton (Department of Computer Science and Engineering, Southern Methodist
University, P.O. Box 750122, Dallas, TX 75275 USA) mitch@engr.smu.edu

Cherrice Traver (Electrical and Computer Engineering Department, Union College, Schenectady,
NY 12308 USA) traverc@union.edu

Submitted to Electronics Letters

List of Captions

Figure 1. Micropipeline Wrapper for Two-Phase Control

Figure 2. New arrival detection logic

Figure 3. Path Detail (Original logic, 8 control, 256 data)

Figure 4. Path Detail (New logic, 8 control, 256 data)

Table 1. Performance Comparison

Submitted to Electronics Letters

Figure 1: Micropipeline Wrapper for Two-Phase Control

Figure 2: New arrival detection logic

Cin_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
C

Reset

Dly1

? ?

Ack_in

Clr

Pre

Reset (if needed)

Preset (if
needed)

Block
Phasek

DlyN

Data_bndl_N
?

GC

Cout_nCin_1
Reset

Cin_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
C

Reset

Dly1

? ?

Ack_in

Clr

Pre

Reset (if needed)

Preset (if
needed)

Block
Phasek

DlyN

Data_bndl_N
?

GC

Cout_nCin_1
Reset

Cout

I[N]

I[1]
I[N]

NOR Tree

AND Tree

Reset (high true)

0

I[1]
1 GC

2/1 Mux
delay

Cout

I[N]

I[1]
I[N]

NOR Tree

AND Tree

Reset (high true)

0

I[1]
1 GC

2/1 Mux
delay

Submitted to Electronics Letters

Figure 3: Path Detail (Original logic, 8 control, 256 data)

Figure4: Path Detail (New logic, 8 control, 256 data)

nor2X2 nand2X2 nor2X2 nand2bX2

aoi21X2 invX3 xor2X8 bufX20 invX20

0.2 +0.6 +0.3 +0.5 +0.7

+0.4 +0.4 +0.12 +0.8 +0.6 = 0.57

nor2X2 nand2X2 nor2X2 nand2bX2

aoi21X2 invX3 xor2X8 bufX20 invX20

0.2 +0.6 +0.3 +0.5 +0.7

+0.4 +0.4 +0.12 +0.8 +0.6 = 0.57

nand4X2
nor3X2

mx2X4
invX4

bufX8
invX20

+0.7 +0.40.2 +0.9 +0.5 +0.9 +0.7 = 0.43

nand4X2
nor3X2

mx2X4
invX4

bufX8
invX20

+0.7 +0.40.2 +0.9 +0.5 +0.9 +0.7 = 0.43

Submitted to Electronics Letters

Table 1: Performance Comparison

Delay (ns) Control
Inputs

Data
Outputs original new

%diff

16 0.47 0.31 -34.0%
64 0.49 0.35 -28.6%

4

 256 0.54 0.42 -22.2%

16 0.49 0.33 -32.7%
64 0.53 0.37 -30.2%

8

 256 0.57 0.43 -24.6%

16 0.51 0.41 -19.6%
64 0.54 0.45 -16.7%

16

 256 0.59 0.51 -13.6%

16 0.59 0.43 -27.1%
64 0.60 0.47 -21.7%

32

 256 0.67 0.54 -19.4%

16 0.60 0.58 -3.3%
64 0.63 0.62 -1.6%

64

 256 0.68 0.69 1.5%

16 0.69 0.62 -10.1%
64 0.72 0.65 -9.7%

256

 256 0.77 0.72 -6.5%

Average -17.8%

