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A fast control wrapper for a micropipeline with two-phase control is presented.  

The wrapper is implemented in an Artisan 0.13µ commercial standard library that 

has not been augmented with any special cells for asynchronous design. The 

wrapper is approximately 25% faster than a more traditional approach that uses a 

Muller C-element. 

 

Introduction: Micropipelines [1] use control logic wrapped around compute blocks to implement 

asynchronous systems.  Micropipelines have been used to implement significant designs, 

including complex microprocessors [2]. Four-phase control [3] means that the control lines 

between micropipeline stages undergo a low-to-high-to-low transition for each data movement 

between stages; while two-phase control implies either a single low-to-high or high-low 

transition.  Typical micropipeline control logic use Muller C-elements which have efficient 

transistor level implementations for a small number of inputs ( < 4).  Large input C-elements can 

be implemented as trees of smaller C-elements or can be mapped directly to standard cells as 

described in [4].  Most micropipeline approaches use a bundled data signaling approach in which 

a single control wire is used for all data wires originating from a micropipeline stage. Delay 

elements are added to the control path to produce a matched control/datapath delay so that the 

latching signal from the control wrapper arrives at the output latches of the micropipeline stage 

at the same time as the data.  In designs with thin pipeline stages, the performance of the control 

logic becomes an issue, with the control path becoming the performance limiter instead of the 
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datapath.  Control logic performance is also important if a micropipeline stage has finished a 

computation, and is waiting on an acknowledgment from a successor stage in order to latch the 

new computation, thus providing the new value to the successor stage.  Acknowledgements 

propagate backwards through the pipeline, and thus do not have delay elements in their path. 

 

A Fast Two-Phase Wrapper:  Figure 1 shows the two-phase micropipeline control wrapper used 

in the design of a five-stage pipelined MIPS-compatible processor [5].  Each bundled data input i 

consists of a group of data lines data_bundl_i and its associated control line Cin_i.  Each 

predecessor stage (fanin) provides a data bundle, and each successor stage (fanout) provides an 

acknowledgement signal.  The control is two-phase, so each Cin input and acknowledgement 

will either all transition low-to-high, or high-to-low.  After all Cin and acknowledgements have 

transitioned, then the C-element output transitions high-to-low or low-to-high.  The XOR gate 

and Cout loopback signal generates a high-pulse on the GC signal when the C-element output 

changes state, latching the new outputs.  The delay elements on the Cin inputs are used to match 

the delay of the control path to the compute function path.  A 0.13µ standard cell library from 

Artisan was used to implement the processor presented in [5].  The C-element was mapped to 

standard cells using the approach in [4], as the Artisan standard cell library did not have an 

integrated C-element.  Processor simulations using pre-layout, Verilog gate level simulations 

generated by the Synopsys synthesis tool indicated that the control logic path was the limiting 

performance factor in several blocks, either because the compute function delay was small, or 

because the block was triggered by arrival of an acknowledgement.  The C-element and XOR 

gate was subsequently replaced by the logic shown in Figure 2.  This removed the XOR gate 

from the critical path of the control logic, and also reduced the delay of the arrival detection 

Deleted: the 
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logic.  The non-inverting delay in the multiplexer select path is used to increase the high pulse 

width of the GC signal. Table 1 contains performance results that compare the original 

implementation (Figure 1) against the new wrapper logic (Figure 2).  The Control Inputs column 

is the total number of Cin and Ack_in inputs, while the Data Inputs column is the total number of 

data latches driven by the GC signal. Delays are in nanoseconds as reported by the Synopsys 

static timing analyzer.  No delay elements were used on the Cin inputs.  The new wrapper has a 

significant performance advantage for control inputs up to 32, which would be an atypically 

large number of control inputs for a micropipeline stage that uses bundled data signaling.  This 

performance advantage decreases as the number of control inputs becomes >32 (64, 256), which 

would only occur if the micropipeline was using a form of delay-insensitive dual-rail signaling 

between micropipeline stages.  Figure 3 gives the path detail for the original logic in the case of 

8 control inputs and 256 data outputs, while Figure 4 gives the path detail for the new wrapper 

logic using the same test case.  The standard cell naming convention is gtype_k_X_n, where k is 

the number of inputs for gate type gtype, and n is the drive strength.  From Figures 3 and 4, it is 

obvious that the new wrapper logic has a faster critical path, and that the XOR gate in the 

original design contributes a substantial portion to the total delay for this particular case. 

 

Conclusion: This paper introduces a fast two-phase control wrapper for a micropipeline block.  

The wrapper is intended for efficient mapping to a commercial standard cell library that does not 

have specialized support cells such as C-elements for asynchronous design.   
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Figure 1: Micropipeline Wrapper for Two-Phase Control 

 

 

 

 

 

 

Figure 2: New arrival detection logic 
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Figure 3: Path Detail (Original logic, 8 control, 256 data) 

 

 

 

 

 

Figure4: Path Detail (New logic, 8 control, 256 data) 
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Table 1: Performance Comparison 

 

Delay (ns) Control 
Inputs 

Data 
Outputs original new 

 
%diff 

16 0.47 0.31 -34.0% 
64 0.49 0.35 -28.6% 

4 
 
 256 0.54 0.42 -22.2% 

16 0.49 0.33 -32.7% 
64 0.53 0.37 -30.2% 

8 
 
 256 0.57 0.43 -24.6% 

16 0.51 0.41 -19.6% 
64 0.54 0.45 -16.7% 

16 
 
 256 0.59 0.51 -13.6% 

16 0.59 0.43 -27.1% 
64 0.60 0.47 -21.7% 

32 
 
 256 0.67 0.54 -19.4% 

16 0.60 0.58 -3.3% 
64 0.63 0.62 -1.6% 

64 
 
 256 0.68 0.69 1.5% 

16 0.69 0.62 -10.1% 
64 0.72 0.65 -9.7% 

256 
 
 256 0.77 0.72 -6.5% 

Average    -17.8% 
 

 

 

 

 

 

 

 

 


