
Addition-based exponentiation modulo 2k

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel method for performing exponentiation modulo 2k is

described. The algorithm has a critical path consisting of k dependent

shift-and-add modulo 2k operations. Although 3 is the preferred

exponent base, the algorithm can be extended easily in order to

perform the general binary powering operation.

Introduction and background: The basic integer arithmetic opera-

tions of addition=subtraction, multiplication and division are imple-

mented typically in hardware using k bits of precision with k usually

16, 32, or 64, and up to 1024 in the case of cryptography. Having a

precision limited to k bits makes the arithmetic operations equivalent

to their corresponding residue arithmetic modulo 2k operations along

with appropriate overflow handling. When the hardware support does

not include a large multiplier, there is a particular need for additive

bit-serial algorithms for these and additional residue operations. In

this Letter we present a bit-serial algorithm for the fundamental

residue arithmetic operation of powering (or exponentiation). Follow-

ing [1] we herein employ jnj2k¼ j to denote the congruence relation

n� j (mod 2k) with the residue j satisfying 0� j� 2k
� 1.

When computing the exponentiation operation be (mod 2k) of a basis b
(our preferred case is b¼ 3), usually some variation of the square-and-

multiply algorithm is being employed. In this method the squaring

operation is performed sequentially obtaining j321

j2k, j322

j2k, j323

j2k,

. . . , j32k�1

j2k. From these residues a subset is selected to be part of the

product corresponding to j3e
j2k:

j3ej2k ¼ 3

P
i2Be
ð2iÞ

�
�
�

�
�
�
2k
¼

Q

i2Be

32i

�
�
�
�
�

�
�
�
�
�
2k

¼
Q

i2Be

j32i

j2k

�
�
�
�
�

�
�
�
�
�
2k

ð1Þ

The exponent e is expressed as a sum of powers of 2 reflecting its

binary representation, and Be is the set of weights for the 1 digits in the

binary representation of e. For example B19¼ {0, 1, 4} since

19¼ 20
þ 21
þ 24.

Using a square-and-multiply method, O(k) squaring and O(k=2)

multiplications modulo 2k are to be performed in the worst case [2].

Storing in a k-entries lookup table the results of the squaring operations

j32i

j2k reduces the computations needed to O(k=2) multiplication

modulo 2k. In the following we present a method that virtually replaces

each multiplication with one shift and two concurrent add modulo 2k

operations, thus having the potential to improve a hardware implemen-

tation in both area and time over a square-and-multiply method

implementation.

Relevant algebraic properties: We note the fact that the exponentia-

tion modulo 2k is cyclic with period 2k�2 [3], hence we consider w.l.g.

the exponents e to be in the range 0, 1, . . . , (2k�2
� 1). The algebraic

property that makes possible expressing any exponent e as a sum of

powers of 2 is the fact that B¼ {2i: 0� i < (k� 2)} is a basis for the

additive group of residues e modulo 2k�2. Decomposing e as a sum of

elements of another basis still produces a correct result. In the

following we present such a basis and show that using it has the

advantage of eliminating the need for multiplications when computing

the exponentiation modulo 2k.

We denote the discrete logarithm modulo 2k with logarithmic base 3

of A (in case it exists) by dlg(A). This simply represents the exponent e

such that 3e is congruent with (A mod 2k). That is: jAj2k¼ j3dlg(A)
j2k. For

more details the reader is referred to [3]. Also from [3], we mention the

following result:

Lemma 1: Let r be a residue modulo 2k of the form

r ¼ 1þ 2i þ 2iþ1R; 2 < i < k; 0 � R < 2k�i�1 ð2Þ

Its corresponding discrete logarithm dlg(r) is then of the form

dlgð rÞ ¼ 2i�2 þ dr � 2i�1; for some dr; 0 � dr < 2k�i�1 ð3Þ

We use ti to denote what we call the two-ones residues modulo 2k:

ti¼ j2
i
þ 1j2k. The following observation comes as a direct consequence

of Lemma 1.

Observation 1: The discrete logarithm of two-ones residues ti is of

the form:

dlgðtiÞ ¼ 2i�2 þ 2i�1 � yi; 2 < i < k; for some yi; 0 � yi < 2k�i�1

In Table 1 we show the two-ones residues and their corresponding

discrete logarithms for k¼ 8. As it can be inferred directly from

Observation 1, the set BT ¼ {dlg(ti): i¼ 1, 3, 4, . . . , (k� 1)} repre-

sents a basis for residues e, 0� e < 2k�2, in the sense that, again, any

exponent e can be represented as a sum of elements from BT .

Consequently, j3e
j2k can be expressed as a product:

j3ej2k ¼ 3

P
i2be dlgðtiÞ

�
�
�
�

�
�
�
�
2k

¼
Q

i2be

j3dlgðtiÞj2k

�
�
�
�
�

�
�
�
�
�
2k

¼
Q

i2be

ð2i þ 1Þ

�
�
�
�
�

�
�
�
�
�
2k

¼
Q

i2be

ti

�
�
�
�
�

�
�
�
�
�
2k

ð4Þ

for a set be of indices unique to any e. Once the set be is known, j3e
j2k

can be computed as a product of two-ones residues. Multiplying by

ti¼ (2i
þ 1) has the advantage that it can be performed as a modulo 2k

shift-and-add operation: A� ti :¼ AþA� (i), thus eliminating the

need for a multiplier. In the following we show an algorithm for

selecting the elements of sets be in a serial fashion.

Table 1: Two-ones discrete log table for k¼ 8

i ti dlg(ti)

1 0000 0011 00 0001

3 0000 1001 00 0010

4 0001 0001 11 0100

5 0010 0001 10 1000

6 0100 0001 01 0000

7 1000 0001 10 0000

Exponentiation modulo 2k algorithm:

Stimulus: An exponent e (modulo 2k�2).

Response: j3e
j2k.

Method: L1: P :¼ 1; je0j :¼ e;

L2: if (e00¼ 1) then P :¼ 11; je0j :¼ e0 � 1;

L3: for i from 1 to (k� 3) do

L4: if (e0i¼ 1) then

L5: e0 :¼ je0 � dlg(tiþ2)j2k�2;

L6: P :¼ jPþ jP� (iþ 2)j2kj2k;

L7: Result: P.

The initialisation is performed in lines L1 and L2. The product P is set

to either 1 or 11 (corresponding to e¼ 0 or e¼ 1). The working variable

exponent e0 is always set in such a way that P corresponds to 3 raised

at exponent (e� e0) and the least significant i digits of e0 are all 0s. The

algorithmic step of lines L3�L6 is updating e0 by subtracting dlg(tiþ 2),

the exponent of ti¼ (2i
þ 1), and the product P to reflect the changes in

exponent, P :¼ P� (2iþ2
þ 1). Eventually, after (k� 2) steps, e0 becomes

0 and the ‘product’ P corresponds to j3e�0
j2k¼ j3e

j2k. The values dlg(tiþ2)

can be computed beforehand (e.g. using the algorithm described in [3]),

and stored in a lookup table of uncompressed size (k� 2)2 bits.

Fig. 1 Iterative loop for L3�L6 of algorithm 1

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

The algorithm has a critical path determined by (k� 2) dependent

shift-and-add modulo 2k operations. This is because the subtractions of

lines L5 and L6 can be performed concurrently. An extension of the

algorithm for computing exponentiation of a base b different than 3 is

suggested in the section entitled ‘Base exchange for discrete logarithm

modulo 2k’ of [3]. The same formula that works for regular logarithms

can be employed:

be
¼ 3e�dlgðbÞ ð5Þ

Using it comes at the cost of computing an extra dlg(b) while keeping

the same tables.

Fig. 1 is a schematic diagram of an implementation of the datapath

portion of the algorithm. It implements the iterative portion of the

algorithm described in lines L3�L6. This circuit consists of a counter,

a small lookup table that may be in compressed form, and two

add=accumulate units. The value of P is stored in shift-registers that

shift content to the left. These values are replaced by multiples of 2iþ2

depending on the value of each e0i bit.

IEE 2005 22 October 2004

Electronics Letters online no: 20057538

doi: 10.1049/el:20057538

A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist

University, PO Box 750122, Dallas, TX 75275, USA)

E-mail: alex@engr.smu.edu

References

1 Szabo, N.S., and Tanaka, R.I.: ‘Residue arithmetic and its applications to
computer technology’ (McGraw-Hill, New York, 1967)

2 Lam, K.-Y., and Hui, L.C.K.: ‘Efficiency of SS(l) square-and-multiply
exponentiation algorithms’, Electron. Lett., 1994, 30, (25), pp. 2115–
2116

3 Fit-Florea, A., and Matula, D.W.: ‘A digit-serial algorithm for the
discrete logarithm modulo 2k’. IEEE 15th Int. Conf. on Application-
specific Systems, Architectures and Processors, ASAP, 2004

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

