Addition-based exponentiation modulo 2*

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel method for performing exponentiation modulo 2° is
described. The algorithm has a critical path consisting of & dependent
shift-and-add modulo 2% operations. Although 3 is the preferred
exponent base, the algorithm can be extended easily in order to
perform the general binary powering operation.

Introduction and background: The basic integer arithmetic opera-
tions of addition/subtraction, multiplication and division are imple-
mented typically in hardware using k bits of precision with k& usually
16, 32, or 64, and up to 1024 in the case of cryptography. Having a
precision limited to k& bits makes the arithmetic operations equivalent
to their corresponding residue arithmetic modulo 2* operations along
with appropriate overflow handling. When the hardware support does
not include a large multiplier, there is a particular need for additive
bit-serial algorithms for these and additional residue operations. In
this Letter we present a bit-serial algorithm for the fundamental
residue arithmetic operation of powering (or exponentiation). Follow-
ing [1] we herein employ |n|,+=j to denote the congruence relation
n=j (mod 2%) with the residue j satisfying 0 <j <2 —1.

When computing the exponentiation operation ¢ (mod 2%) of a basis 8
(our preferred case is § =3), usually some variation of the square-and-
multiply algorithm is being employed. In this method the squaring
operation is performed sequentially obtaining |32'|2k, |322| ok |323|2k,
cee, |32H|2k. From these residues a subset is selected to be part of the
product corresponding to |3«

> (2 i
3ol = 32| = I 131

ieB,

[13*

ieB,

M

2k 2k

The exponent e is expressed as a sum of powers of 2 reflecting its
binary representation, and B, is the set of weights for the 1 digits in the
binary representation of e. For example Bjo={0, 1, 4} since
19=2°+2"+2%

Using a square-and-multiply method, O(k) squaring and O(k/2)
multiplications modulo 2% are to be performed in the worst case [2].
Storing in a k-entries lookup table the results of the squaring operations
13%|5 reduces the computations needed to O(k/2) multiplication
modulo 2%, In the following we present a method that virtually replaces
each multiplication with one shift and two concurrent add modulo 2*
operations, thus having the potential to improve a hardware implemen-
tation in both area and time over a square-and-multiply method
implementation.

Relevant algebraic properties: We note the fact that the exponentia-
tion modulo 2¥ is cyclic with period 272 [3], hence we consider w.l.g.
the exponents e to be in the range 0, 1, ..., (272 —1). The algebraic
property that makes possible expressing any exponent e as a sum of
powers of 2 is the fact that B={2": 0 <i<(k—2)} is a basis for the
additive group of residues e modulo 272, Decomposing e as a sum of
elements of another basis still produces a correct result. In the
following we present such a basis and show that using it has the
advantage of eliminating the need for multiplications when computing
the exponentiation modulo 2.

We denote the discrete logarithm modulo 2* with logarithmic base 3
of A (in case it exists) by dlg(A4). This simply represents the exponent e
such that 3¢ is congruent with (4 mod 2%). That is: |4 | = |37“),.. For
more details the reader is referred to [3]. Also from [3], we mention the
following result:

Lemma 1: Let p be a residue modulo 2 of the form
p=142" 42"y 2<i<k, 0<g<2!)
Its corresponding discrete logarithm dig(p) is then of the form

dig(p) =27+ 9, x 21 forsomed,, 0<9, < 2k==1 - (3)

We use 1, to denote what we call the two-ones residues modulo 2k,
7;=|2' 4 1|5« The following observation comes as a direct consequence
of Lemma 1.

Observation 1: The discrete logarithm of two-ones residues 7; is of
the form:

dig(t) =272 4271 x 0, 2<i<k, forsomed, 0 <0, <2t

In Table 1 we show the two-ones residues and their corresponding
discrete logarithms for k=8. As it can be inferred directly from
Observation 1, the set BT ={dlg(t;): i=1, 3, 4,..., (k—1)} repre-
sents a basis for residues e, 0 <e<2"2 in the sense that, again, any
exponent e can be represented as a sum of elements from B7.
Consequently, |3°|« can be expressed as a product:

13 = ‘321@/}64@(1,) = | [T 139,
2k ief, ok
=TT+ =T)
iep, 2k ief, |k

for a set f3, of indices unique to any e. Once the set f3, is known, |3°|x
can be computed as a product of two-ones residues. Multiplying by
7;=(2' + 1) has the advantage that it can be performed as a modulo 2*
shift-and-add operation: 4 x 7;:= 4+ A4 < (i), thus eliminating the
need for a multiplier. In the following we show an algorithm for
selecting the elements of sets f,, in a serial fashion.

Table 1: Two-ones discrete log table for k=8

Ti dig(t;)
0000 0011 | 00 0001
0000 1001 | 00 0010
0001 0001 | 11 0100
0010 0001 | 10 1000
0100 0001 | 01 0000
1000 0001 | 10 0000

Nl B W =]~

Exponentiation modulo 2* algorithm:

Stimulus: An exponent e (modulo 272).
Response: |3¢|5x.
Method: L1: P:= 1; || := e;
L2: if (ep=1) then P:= 11; |¢/| := & — 1;
L3: for i from 1 to (k—3) do
L4: if (¢;=1) then
Ls: e/ = ‘6/ — dlg(‘L'H,z)le—z;
L6: P:= |P+|P <L (i+2)|al2s
L7: Result: P.

The initialisation is performed in lines L1 and L2. The product P is set
to either 1 or 11 (corresponding to e=0 or e=1). The working variable
exponent € is always set in such a way that P corresponds to 3 raised
at exponent (e — €') and the least significant i digits of ¢’ are all Os. The
algorithmic step of lines L3 — L6 is updating ¢’ by subtracting dlg(z; + 2),
the exponent of 7;= (2’ + 1), and the product P to reflect the changes in
exponent, P:= P x (2% + 1). Eventually, after (k — 2) steps, ¢ becomes
0 and the ‘product’ P corresponds to |3~ = |3¢|5.. The values dlg(t;.»)
can be computed beforehand (e.g. using the algorithm described in [3]),
and stored in a lookup table of uncompressed size (k — 2)? bits.

Plk—i-3:0]0..0
k
"k
Plk-1:0]
]
t |
coun 008 k-bit SR %
dig(z)
mem k-2
A
k—2|
€ k-2

Fig. 1 Iterative loop for L3—L6 of algorithm 1

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

The algorithm has a critical path determined by (k—2) dependent
shift-and-add modulo 2* operations. This is because the subtractions of
lines L5 and L6 can be performed concurrently. An extension of the
algorithm for computing exponentiation of a base f3 different than 3 is
suggested in the section entitled ‘Base exchange for discrete logarithm
modulo 2% of [3]. The same formula that works for regular logarithms
can be employed:

ﬁe — 3e><dlg(/i) (5)

Using it comes at the cost of computing an extra dl/g(ff) while keeping
the same tables.

Fig. 1 is a schematic diagram of an implementation of the datapath
portion of the algorithm. It implements the iterative portion of the
algorithm described in lines L3 — L6. This circuit consists of a counter,
a small lookup table that may be in compressed form, and two
add/accumulate units. The value of P is stored in shift-registers that
shift content to the left. These values are replaced by multiples of 22
depending on the value of each ¢} bit.

© IEE 2005
Electronics Letters online no: 20057538
doi: 10.1049/e1:20057538

22 October 2004

A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist
University, PO Box 750122, Dallas, TX 75275, USA)

E-mail: alex@engr.smu.edu

References

1 Szabo, N.S., and Tanaka, R.1.: ‘Residue arithmetic and its applications to
computer technology’ (McGraw-Hill, New York, 1967)

2 Lam, K.-Y., and Hui, L.C.K.: ‘Efficiency of SS(l) square-and-multiply
exponentiation algorithms’, Electron. Lett., 1994, 30, (25), pp. 2115—
2116

3 Fit-Florea, A., and Matula, D.W.: ‘A digit-serial algorithm for the
discrete logarithm modulo 2%, IEEE 15th Int. Conf. on Application-
specific Systems, Architectures and Processors, ASAP, 2004

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

