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1.0 Introduction 
Spectral analysis of digital logic switching 

circuits has been applied to areas such as 
synthesis, verification, and testing [HMM:05].  
A challenge is the large complexity of the 
representative switching functions whose 
discrete range set contains an exponential 
number of values with respect to the size of the 
domain variable set.  Methods such as decision 
diagrams and other fast transform techniques 
have been applied to overcome this problem 
[SA:03, TDM:01].  In this paper, we present a 
technique for spectral analysis that transforms 
the circuit directly instead of the underlying 
switching function. 

Traditionally, digital logic circuits are 
modeled using the axioms and postulates of 
binary-valued Boolean algebra and discrete 
scalar-valued switching functions.  In the 
approach discussed here, we reformulate these 
mathematical models in terms of linear 
transforms over vector spaces.  Through the 
representation of switching functions in this 
manner, various spectral transformations are 
easily applied.  Furthermore, the spectral 
transformations may be applied at the single gate 
or larger subcircuit level avoiding the memory 
explosion that can occur when the entire circuit 
model switching function is transformed.  By 
applying spectral transformations in this smaller 
grained fashion, problems associated with 
excessive memory usage can be avoided. 

The remainder of the paper is organized as 
follows.  First, we will review and introduce the 
vector space model of switching functions 
including their spectral transforms.  Next, we 
will illustrate the application of these principles 
using a small example logic circuit.  We will 
show how the problem of circuit implication 
maps to the use of the Moore-Penrose 
pseudoinverse and how spectral transforms are 
obtained. Finally, we conclude with observations 
of the approach and outline future related 
research topics. 

 
2.0 Circuit Model Formulation 

The Nobel Prize winning physicist Paul Dirac 
made many fundamental contributions to the 
field of quantum mechanics and in one of his 

well-known papers, he introduced a notation for 
quantum mechanical calculations that continues 
to be widely used today [Dir:39].  This notation, 
sometimes called ‘bra-ket’ notation is used to 
describe the state of a quantum system.  Because 
the state of a quantum system is mathematically 
represented as a 1st-order tensor, or vector, bra-
ket notation may also be used to denote vectors.  
We shall use bra-ket notation in this paper for 
vectors.   

The column vector a is represented as ‘ket 
|a⟩’.  Likewise, the row vector aT is represented 
as a ‘bra’ ⟨a|.  This notation is particularly 
convenient when the norm of a vector or the 
inner product of two vectors is expressed.  The 
norm of a vector a written as ||a|| can be 
expressed in bra-ket notation as ⟨a|a⟩  and the 
inner product of two vectors a and b can be 
written as ⟨a|b⟩.  The outer product, or tensor 
product of two 1st-order tensors a and b can be 
expressed as |a⟩⟨b|.  Using this notation, many 
naturally arising 2nd-order tensors or matrices 
can be expressed as a sum of outer product 
expressions. 

The binary constants {0,1} are represented as 
the column vectors |0⟩=[1 0]T and |1⟩=[0 1]T.  A 
transfer matrix for a logic gate can be expressed 
in terms of the outer product operation analogous 
to the transfer function of a linear system.  As an 
example, the transfer matrix for a two-input 
AND gate is expressed as: 

TAND = 0 00 + 0 01 + 0 10 + 1 11

= 1 1 1 0
0 0 0 1
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The output response of a logic gate can then 

be determined as the product of the transfer 
matrix and the input logic vector.  As an 
example, the output response of an AND gate 
when two logic 1-values are present at the inputs 
can be computed as: 
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Transfer matrices can be easily computed for 

networks of logic gates by partitioning them into 



serial cascades.  In each stage of the cascade, 
individual gate matrices are combined from top 
to bottom using the tensor or Kronecker product 
operation.  The overall circuit transfer matrix is 
calculated as the direct product of the individual 
cascade stages. The following example illustrates 
the application of this principle and contains a 
fanout point that also must be modeled as a 
transfer matrix. 
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2.1 Logic Circuit Implication 

Logic circuit implication is used in many 
synthesis, verification, and test algorithms.  
Implication can be formulated here by utilizing 
the Moore-Penrose pseudoinverse of the circuit 
transfer matrix.  It is necessary to use the 
pseudoinverse since the transfer matrices are, in 
general, non-square.  Due to the properties of 
logic gate transfer matrices, the following lemma 
holds. 

Lemma: The psuedoinverse of a logic gate 
transfer matrix is equal to its’ transpose.            ☐ 

As an example, consider the case where a 
logic-0 is observed at the output of the AND 
gate.  The implication calculation becomes: 
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= 00 + 01 + 10

 

Thus, the result of the implication is that the 
inputs {|00⟩, |01⟩, |10⟩} result in an output 
response of |0⟩. 

 
2.2 Logic Circuit Spectral Formulation 

The spectral formulation of an AND gate can 
be modeled by using the transform of the transfer 
matrix.  Although any desired linear transform 
can be used, we use the Fourier transform over 
GF(2) as an example here.  In past work this 
transform is sometimes referred to as the Walsh 
or Hadamard transform, H.  In keeping with 
convention, logic-0 is represented as +1 and 
logic-1 is -1.  These values are used because they 
are equivalent to the two maximally-spaced 
square roots of unity along the real axis of the 

unit circle in the complex plane.  The spectral 
transform of the AND gate, WAND, is calculated 
as: 

WAND = HTAND = 1 1
1 −1
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The spectral formulation of the implication 
matrix can be similarly computed as the 
transform of the pseudoinverse (transpose) of the 
transfer matrix. 
 
3.0 Conclusions and Future Work 

The formulation of combinational logic 
networks in the spectral domain leads to the 
notion of transfer matrices that can be used to 
calculate the input-output behavior analogous to 
transfer functions used in classical linear systems 
analysis.  It is shown that the implication 
problem is conveniently accomplished in the 
vector space formulation by using the transpose 
of the logic gate transfer matrices.  It is also 
shown that the spectral formulation of a logic 
netlist can be obtained by transforming the 
individual logic gate transfer matrices. 

Past logic circuit spectral methods have 
mainly focused on the transforms of the 
underlying switching functions.  The approach 
presented here allows the logic networks 
themselves to be directly represented in the 
spectral domain. 

Future work will involve the development of 
logic circuit synthesis, verification, and test 
algorithms in the spectral domain using the 
spectral formulation of circuit netlists directly.  
The goal will be to determine methods in the 
spectral domain that are computationally 
beneficial as compared to currently implemented 
design automation methods that use netlists 
modeled with scalar Boolean algebra systems. 
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