

Abstract
SystemVerilog encapsulates both design description

and verification properties in one language and provides
a unified environment for engineers who have the
formidable challenge of designing and verifying present
day complex systems. However, the gap between the
definition of system specifications and design validation
assertions that formally describe embedded system
properties poses a challenge for HDL design engineers.
We describe a prototype tool that utilizes UML as a
system specification language and generates
SystemVerilog assertions for hardware design
correctness validation with a corresponding Verilog
module describing the hardware. An example is provided
for a controller specified in UML with the resultant
Verilog-RTL description and SystemVerilog assertion file
produced automatically.

1. Introduction
 As Moore’s Law continues to push the boundaries of
hardware capabilities, embedded systems designers are
confronted with the challenge of how best to draw the
line between hardware and software. Functionality that
was once relegated to software is now considered for the
possibility of implementation in hardware while
hardware components must integrate with higher-level
software APIs.
 To help address these problems, the area of
hardware/software co-design has evolved as an
architectural approach to system design where decisions
concerning hardware-software allocation are deferred as
late as possible within the design cycle. A Model Driven
Architecture (MDA) approach is proposed in [1] where
system functionality and semantics at a high level of
abstraction is used and then tools are described that
generate different platform specific implementations.
 While MDA is technically neutral about the syntax and
structure of high-level models, the Unified Modeling
Language (UML) [2] has emerged as a common
foundation for MDA modeling. Initially proposed as a
unifying notation for object-oriented design, UML has
added a semantic underpinning that makes it possible to
build platform independent descriptions that can be used
by designers and architects to make informed decisions
about hardware/software tradeoffs. Since UML was
initially introduced in the software domain, most
commercial tools based on UML descriptions have the
ability of generating software code such as Java and C++.

However, no such tools are commercially available that
can synthesize UML models into a Hardware
Description Language (HDL) model directly, thus
imposing a limitation for the usage of UML in embedded
system design.
 Additionally, it is also observed that assuring correct
functional behavior is the dominating factor of a
successful hardware design. Today, in many circuit
design projects, up to 80% of the overall design costs are
due to verification tasks.
 Assertion-based verification plays an important role in
today’s large, complex designs. The basic function of an
assertion is to specify some behavior that is expected to
hold true for a given design or component. However,
system specification of a design is usually given in a
natural language which is hard to translate into an
assertion directly. It is necessary to describe the system
specification in a more rigorous and well-formed
language in order to bridge the gap between a system
specification and design validation assertions that
formally describes such specifications.
 In this paper, our main contribution is the development
of synthesis and assertion generation tools that utilize
UML version 1.3 as a system specification language and
automatically generate assertions that can be used by a
verification engineer to validate the hardware as well as a
synthesizable HDL-RTL module description. We believe
this is an important contribution since the description of
validation for a particular design developed during the
time of system specification is as important as property
specification at later stages of synthesis.

The remainder of the paper is organized as follows. In
Section 2, we provide background information about
UML and SystemVerilog. In Section 3, our tool that
comprises an automatic assertion generator and HDL
synthesis based on a UML description is introduced. An
example is given to demonstrate the capability of the
tools. Future work and conclusions are provided in
Section 4.

2. Preliminaries and Related Work

In this section, we introduce the use of UML and HDL
for describing hardware and assertions that are used for
circuit validation.

2.1 Unified Modeling Language (UML)
 UML is a modeling language that is very well accepted
in the software domain for system modeling. UML

UML to SystemVerilog Synthesis for Embedded System Models
with Support for Assertion Generation

Lun Li*, Frank P. Coyle, and Mitchell A. Thornton

Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas, U.S.A.
{lli, coyle,mitch}@engr.smu.edu

defines twelve types of diagrams which can be divided
into three categories: (i) Structural Diagrams which
include the Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram, (ii) Behavior
Diagrams which include the Use Case Diagram (used by
some methodologies during requirements gathering);
Sequence Diagram, Activity Diagram, Collaboration
Diagram, and State Machine Diagram, and (iii) Model
Management Diagrams which include Packages,
Subsystems, and Models. UML has been used across a
wide variety of domains, from computational to physical,
making it suitable for specifying systems independently
of whether the implementation is accomplished via
software or hardware.
 The recent addition of action semantics to UML has
led to the development of executable UML (xUML)
which supports the direct execution of UML models [2].
UML is supported by a wide range of tools such as
IBM’s Rational Toolset [3] and I-Logix’s Rhapsody [4].
The exchange of models between tools is supported by
the XMI standard. This standard is an XML-based
description language which captures the details of UML
model diagrams in a portable, machine readable format.
Most UML tools can automatically generate XMI which
is used as the basis for our prototype tool as described
here.

2.2 SystemVerilog and SystemVerilog Assertions

(SVA)
The SystemVerilog language evolved from the Verilog

hardware description language as an industrial standard
language to describe hardware design as well as to write
assertions supporting the enormous task of verifying the
correctness of a design. The basic function of an assertion
is to specify a set of behaviors that is expected to hold
true for a given design or component. The capability to
encapsulate a design and a verification strategy in one
language provides a unified environment for engineers
who have the formidable challenge of designing and
verifying present day complex systems. Assertions can
dramatically decrease the amount of effort required to
define intelligent, self-checking testbenches, and at the
same time, increase the effectiveness of a testbench [6].
 SystemVerilog provides two types of assertions:
immediate and concurrent. Both assertion types are
intended to convey the intent of the design engineer and
to identify the source of a problem as quickly and directly
as possible. Immediate assertions are procedural
statements that can occur anywhere within always or
initial blocks, and include a conditional expression
to be tested and a set of statements to be executed
depending on the result of the expression evaluation.

Concurrent assertions provide the ability to specify
sequential behavior concisely and to evaluate that
behavior at discrete points in time, usually at clock ticks
(e.g. “posedge clk”).

2.3 Related Work
 In [10], the authors present a framework for generating
VHDL specifications from a subset of UML, and a set of
rules to map UML class and state diagrams to VHDL.
The authors concentrate on UML behavioral models
described using state diagrams, and use a mapping for
class diagrams that differs from our approach. Bjhrklund
and Lilius [11] generate VHDL code from UML
behavioral models (state and activity diagrams) using
SMDL as an intermediary language. Authors in [12]
present an approach for modeling embedded systems
using extended UML as well as generating SystemC code
from UML class and object diagrams. In [13],
Damasevicius and Stuikys examined system level design
processes that are aimed at designing a hardware system
by integrating soft IPs at a high level of abstraction. They
combine this concept with object-oriented hardware
design using UML and metaprogramming paradigm for
describing generation of domain code. However, none of
the above approaches use UML to automatically generate
assertions for the purpose of verifying the functional
correctness of the synthesized code.

2.4 Case Study
 In this section of the paper we introduce an example
that is used to demonstrate the capability of our tools.
This example is a simple traffic light controller. Although
we present a simple example, the validation for this
system is very important and encompasses important
properties such as safety, liveness, and fairness. Figure 1
shows the traffic light environment. The highway traffic
light is normally green and the farm road traffic light is
red until a sensor from farm road traffic is detected
indicating a vehicle is waiting for pass-through.

Figure 1. Traffic light Environment [7]

 The system for the traffic light is shown in Figure 2.
The whole system consists of 5 parts:
TrafficLightController, Timer, Roadsensor,
HighwayTrafficLight, and FarmTrafficLight.
TrafficLightController is the central part of the system
which accepts a signal from the Timer and the
Roadsensor and controls the Timer, HighwayTrafficLight
and FarmTrafficLight. The Timer is used to control the
length of the traffic light in every state. The Roadsensor
detects if a vehicle is coming from the farm road and
sends the information to the TrafficLightController.

Farm road

Farm road

sensor

sensor

Highway

Highway

Timer

Roadsensor

HighwayTrafficlight

FarmroadTrafficlight

Trafficlight Controller

setlight

setlight

settimer

timeout

Figure 2. Traffic Light System

 The detailed requirements for the traffic light system
are listed as follows [7]:

1. Normally the highway light shall be green and the
farm road shall be red.

2. When a sensor signals that a vehicle is on the farm
road, the highway light shall change to yellow.

3. After a Short-Time Interval (STI, normally 10
seconds) the highway light shall change to red and
the farm road light shall change to green

4. The farm road light shall stay green until the tractor
clears the sensor or after a Long-Time Interval (LTI,
normally 50 seconds), whichever comes first. Then
the farm road light shall become yellow.

5. After an STI, the farm road light shall become red
and the highway light shall become green.

6. The system shall stay in that state for at least the
length of an LTI.

7. After an LTI the highway shall be switched when the
sensor detects a tractor.

3. Prototype Design Tools
 Figure 3 shows an overall design flow that includes
our tools. The system description will be first described
in UML where functional requirements are represented as
UML models and non-functional requirements are
represented using the UML real-time profile based on a
UML quality of service profile or some other specified
comments. UML diagrams are exported to XMI, a
standard XML-based intermediate form. XMI uses
predefined XML elements and attributes to specify the
states, events, and actions that make up the state diagram.
The initial impetus for XMI is to enable UML diagrams
to be imported and exported across different UML
toolsets. Our approach uses XMI as an intermediate input
to the next stage of our processing. Two separate tools
have been developed: u2SVA and u2HDL.

In this section of the paper, we will describe more
details of the synthesis tool u2HDL, and the automatic
assertion generation tool u2SVA. We first introduce a
high-level synthesis tool, u2HDL, that transforms UML
models into HDL (we only support the Verilog HDL
currently). u2SVA is an automatic SVA generation tool
that transforms a system specification represented by a
UML diagram into SVAs. After the HDL code and SVAs
are generated, both are sent to the SystemVerilog
simulator/Assertion Checker to validate if the properties
hold for the design. u2SVA and u2HDL are totally
independent tools in that they are used with third party
designs or SVAs separately.

 For the traffic light controller example described
previously, the system specification can be described in
UML as shown in Figure 4.

Figure 3. Overall System Design Tool Flow

3.1 u2HDL: A Synthesis Tool from UML to HDL
 u2HDL is a high-level synthesis tool that translates
UML models into HDL descriptions. Currently, we only
support the Verilog HDL.
 The translation procedure is accomplished in two steps
as shown in Figure 5. During the translation, a tool
referred to as XLST is used because we use XMI as an
output format for UML models. XSLT [8] is used to
transform a XML document into another XML
document, or another type of document that is recognized
by a browser, such as HTML or XHTML or some other
text editor. The first XSLT translates XMI to State
Machine eXtensible Markup Language (SCXML) [9].
SCXML was developed by the Voice Browser Working
Group as part of the W3C Voice Browser Activity.
SCXML provides a generic state- machine based
execution environment based on CCXML and Harel State
Tables. Harel State Tables are a type of state machine
notation that is part of UML.
 Different commercial UML tools generate different
forms of XMI. Using SCXML as a middle layer can
avoid writing different tools for each commercial UML
tool. We focus on the second part of XSLT which
translates SCXML to SVA. In this translation task, the
extraction of various property assertions is a challenge.

The second part of XSLT shown in Figure 5 translates
SCXML into HDL (Verilog). For a State Machine
diagram, the “case” template can be applied for state
transitions.

Figure 4. UML State Machine Diagram for Traffic Light

Controller

Figure 5. Procedures of u2SVA and u2HDL

There are two major parts in the case statement, one

part specifies the state transition information in given
state while the other part specifies the action in the given
state. The transition information can be obtained from the
edges in the UML state diagram. An example of a
transition definition in UML is shown in Figure 6. We
can easily extract the information of the state transition
required for HDL, shown as the part 2 in Figure 7.

The second portion is the part specifies the action in
the given state. UML allows one to define different types
of action. Currently supported actions are “on entry”,
“do”, “on exit” and “on event”. For each action, you can
also specify “Send arguments” and “Send Target” as
shown in Figure 8.

Based on the example in Figure 8, we can extract
information shown as Part 1 in Figure 7.

Figure 6. Transition Definition in UML

Figure 7. Resulting HDL code

 To generate more efficient HDL, several more things
that are addressed in the translation procedure are, the
state encoding method for state variables; the BUS width
for input, output, and registers, and, input ports and
output ports. We explain each of these considerations in
the following text.
 The default state encoding style is minimum encoding
where the number of encoding bits is calculated by the
integer ceiling of 2log (# states available)of . A user can
specify an alternative encoding style by using UML
comments with the special keyword “CODINGSTYLE”.
Currently, our prototype tool supports state encoding
methods of one-hot and gray (minimum-distance).
 The BUS width for inputs, outputs, and registers is
specified by the system designer in order to generate an
efficient hardware implementation. Non-specified ports
are set to a 16-bit width as a default condition. The
system designer can set an alternative bus width by
specifying the maximum value (keyword “MAXVALUE”)
for a port or by emulating all possible values (keyword
“LIST”) of a port.

…
<UML:Transition xmi.id = 'G.15' name =
'' visibility = 'public' isSpecification
= 'false' >
 <UML:Transition.trigger>
 <UML:Event xmi.idref =
'S.220.0226.38.9'/>
 </UML:Transition.trigger>
 <UML:Transition.source>
 <UML:StateVertex xmi.idref='G.14'/>
 </UML:Transition.source>
 <UML:Transition.target>
 <UML:StateVertex xmi.idref='G.1'/>
 </UML:Transition.target>
</UML:Transition>
…

…
case (pstate)
 `Normal: begin

 Timer_setTimer=50;
 FarmRoadTrafficLight_setLight=`Red;
 HighwayTrafficLight_setLight=`Green;

 if(roadSensor==`Triggered&&(timeOut))
 nstate=`Trigger;
 else
 nstate=`Normal;
 end
…

Part 1

Part 2

Figure 8. Supported action in UML

 Regarding input ports and output ports, currently, we
list all control lines in a state machine as input ports and
all assignment lines in a state machine as an output port.

3.2 u2SVA: A Validation Tool from UML to SVA
 u2SVA is a validation tool that translates a system
specification represented as a UML model into
SystemVerilog Assertions.

3.2.1 Automatic Assertion Extraction from State

Machine diagram
 We classify properties into two categories: state

properties and transition properties. A State property
defines the property that should hold within states while a
Transition property defines the property that should hold
when a state transition occurs. We use an example to
show the functionality of u2SVA. Figure 9 shows a
portion of the state machine in Figure 4.

Figure 9. Example for state and transition properties

 As described previously, state properties are those that
should hold within each state. If the system is currently in
the state Normal, two safety properties that should always
hold are HighwayTrafficLight = Green and
FarmRoadTrafficLight = Red which is categorized as a
do action in the state Normal. The entry action is ignored
for this state property since it can be validated with the
Timer. The corresponding property is

 Transition properties are properties that should hold
for state transitions. If the system is currently in state
Normal, then if roadSensor is triggered at Timer=50, the
state goes to state Triggered, otherwise, it stays in the
Normal state.

3.2.2 Additional Assertion Specification

For some properties that cannot be extracted from a
state machine diagram, we specify comments that start
with the keyword ASSERTION to address this instance.
There are usually three kinds of properties that are
important to check, liveness, safety, and fairness [5]. For
the traffic light example, the liveness property could be:
if Roadsensor is triggered when timeout, the
FarmRoadTrafficlight will eventually be green. A safety
property could be that the FarmRoadTrafficlight and
HighwayTrafficLight cannot be green at the same time. A
fairness property could be that eventually the
FarmRoadTraffic light will become green. Here we
define some keywords that we use to define various
properties in a UML description as shown in Table 1.

Table 1. Keywords for SVA Assertions
Keywords Explanation

Always The property should always hold
Exist The property should hold at least one

time
After … The property should hold after some

time units
Next The property should hold in next time

unit
Not The inverse of property should hold

If A Then B If condition A hold, Property B should
hold

And Two properties should both hold
Or At least one property should hold
== Equal

We use properties of the traffic light controller
example to show how the ASSERTION comment works.

Liveness property: if the road sensor is triggered
during timeout, the farm road traffic light will eventually
be green. (in this example, eventually means 10 seconds).

…
property transition_Normal;
 @(posedge clk)
 pstate ==`Normal && roadSensor==
Triggered && Timer==50 |-> pstate
==`Triggered;
…

…
property state_Normal;
 @(posedge clk)
 pstate==`Normal |->
FarmRoadTrafficLight==`Red &&
HighwayTrafficLight==`Green ;
…

The Assertion Comment is:

Given above description, the generated SVA are show

in the following:

Safety property: farm road traffic light and highway

traffic light cannot be green at the same time.
The Assertion Comment is

Given above description, the generated SVA is shown

in the following:

The specified properties may be used in a later

synthesis stage by tools that perform formal model
checking [14] or by automatic testbench generation tools
tools to generate test vector files.

4. Conclusion
 In this paper, we have described a high-level synthesis
and validation tool that translates UML descriptions of
embedded systems into Hardware Description Language
models with associated SVAs. SVAs are used to check if
the desired properties of an embedded system hold in the
synthesized design. These tools are independent in that
they can be used for third party design and SVAs
separately. We believe this is a very convenient
approach for embedded system designers as it allows for
system property assertions (for the purpose of design
validation) to be written at the time of specification.

In the work presented here, we have focused on the
category of the “behavior” diagrams among the 12
specified diagrams in the UML standard with specific
emphasis on the state machine diagram. In future work
we plan to include the “structure” diagram category. We

have most recently extended our tool to support datapath
portions of hardware subsystems [16] and we plan to
elaborate on this aspect in a future publication.
Furthermore, we have utilized textual annotations in the
comment field of the UML diagram to specify
information used to form the SVAs. We believe the
emergence of the SysML specification allows for
formalisms within the specified diagrams that may be
directly used to generate the SVAs and we intend to
investigate utilizing SysML [17] instead of UML as a
specification medium for our tool in the future.

Acknowledgement
 We wish to thank the Synopsys Corporation for their
generous donation of design tools and training.

References
[1] F.P. Coyle and M.A. Thornton, From UML to HDL:

a Model Driven Architectural Approach to
Hardware-Software Co-Design, in Proceedings of
Information Systems: New Generations Conference
(ISNG), April 4-6, 2005, pp. 88-93.

[2] G. Booch, I. Jacobson, and J. Rumbaugh, Unified
Modeling Language User Guide, Addison-Wesley,
1998.

[3] IBM Rational Software,
 http://www-306.ibm.com/software/rational.
[4] I-Logix’s Rhapsody Software,
 http://www.ilogix.com.
[5] J. L. Peterson, Petri Net Theory and the Modeling

of Systems, Prentice Hall, 1981
[6] Tom Fitzpatrick, Assertions in SystemVerilog: A

Unified Language for More Efficient Verification,
Synopsys Inc.,
http://www.synopsys.com/products/simulation/assert
_sverilog_wp.html

[7] Jorge Buenfil, “Project Estimation based on
Requirements Analysis with UML/SysML,”
Presentation given at INCOSE Heartland Chapter,
Jun. 2005, http://www.incose.org/heartld/.

[8] Khum Yee Fung, XSLT: Working with XML and
HTML, Addison Wesley, 2001.

[9] RJ Auburn, Jim Barnett, Michael Bodell, and T.V.
Raman, “State Chart XML (SCXML): State Machine
Notation for Control Abstraction 1.0,” W3C
Working Draft 5, July 2005
http://www.w3.org/TR/2005/WD-scxml-20050705/.

[10] W.E. McUmber and B.H.C. Cheng, UML-based
analysis of embedded systems using a mapping to
VHDL, in Proceedings of lEEE Int. Symposium on
High Assurance Software Engineering (HASE'99).
November 1999, Washington, DC, USA, pp. 56-63.

[11] D. Bjarklund and J. Lilius. From UML behavioral
descriptions to efficient synthesirable VHDL, in
Proceedings of 20th IEEE NORCHIP Conference,
11-12 November 2002, Copenhagen, Denmark.

[12] V. Sinha. D. Doucet, C. Siska, and R. Gupla,
YAML: a tool for hardware design visualization and
capture, in Proceedings of 13th Int. Symposium on

ASSERTION: Always (If(roadsensor ==
triggerd and timeout==1) Then
(After(10), FarmRoadTrafficLight ==
green))

ASSERTION: Always (Not (
FarmRoadTrafficLight == green and
HighwayTrafficLight == green))

…
property liveness;
 @(posedge clk)
 (roadsensor == triggerd &&
timeout==1) |=> ##[0:$]
FarmRoadTrafficLight == green;
…

…
property safety;
 @(posedge clk)
 not((FarmRoadTrafficLight ==
green) && (HighwayTrafficLight ==
green)
…

System Synthesis (ISSS), 20-22 September 2000,
Spain, pp. 9-16

[13] R. Damasevicius and V. Stuikys, Application of
UML for hardware design based on design process
model, in Proceedings of the Asian South Pacific
Design Automation Conference (ASP-DAC), 2004.

[14] Clarke, E.M., Grumberg, O., and Peled, D.A.,
Model Checking, The MIT Press, 1999, ISBN 0-
262-03270-8.

[15] Object Management Group, OMG Unified Modeling
Language Specification, Version 1.3, March 2000,
http://www.omg.org/cgi-bin/doc?formal/00-03-01.

[16] K. Hawkins, An Automated Tool for HDL and
Configuration File Generation from UML
Descriptions, M.S.C.p.E. thesis, Department of
Computer Science and Engineering, Southern
Methodist University, June 2007.

[17] Object Management Group, OMG SysML
Specification, Version 1.0, April 2007,
http://www.sysml.org/docs/specs/OMGSysML-FAS-
06-05-04.pdf.

