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Emerging quantum computing technologies are poised to replace standard CMOS 

logic when the exponential size reduction reaches sub-atomic dimensions.  Quantum 

circuits are reversible and therefore promise the potential of computation without energy 

loss.  This research considers computer aided design (CAD) methods for all major 

aspects of quantum computing circuit design including logic synthesis, simulation, 

verification, and testing. 

The technologies we investigate include quantum cell automata (QCA) and 

general quantum circuits (QC), with significantly more emphasis on the later.  The 

recently introduced quantum multi-valued decision diagram (QMDD) provides an 

efficient method to represent and simulate quantum (and other classical reversible) 

circuits.  A major contribution of this dissertation is the development of a sift-like 

minimization as well as structure metrics based minimization techniques for QMDD.  We 

have used the enhanced QMDD to efficiently simulate quantum circuits as well as 

quantum vectors. 
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Our early investigation of reversible logic is concerned with a virtual 

implementation that uses a direct translation of relatively complex binary functions into 

circuits composed of Fredkin reversible gates.  This allowed us to project size and speed 

complexity of complex reversible circuits, although this direct translation approach fails 

to minimize garbage inputs and outputs.  To achieve proper garbage minimization, one 

must synthesize reversible logic using gate cascades with appropriate optimization 

methods embedded that attempt to minimize the total number of lines in the circuit.  To 

that end, we developed a novel QMDD-based tool for cascade logic synthesis that utilizes 

the QMDD minimized variable order for lexicographical synthesis with garbage 

minimization included as an optimization criterion.  

We developed a synthesis tool that investigates the QCA native 3-input majority 

gates ability to implement complex logic circuits.  In particular, we explore the benefit of 

transforming the logic description into exclusive sum of products (ESOP) forms prior to 

implementation in the majority gates. 

We survey recent efforts in establishing the foundation for QC testing and fault 

tolerant QC.  We project the potential use of random tests as well as built in self test 

(BIST) techniques for future QC.  A major contribution of this dissertation is the 

investigation of partially redundant reversible logic.  Detection of partially redundant 

logic within any design, reversible or irreversible, has ramifications for logic synthesis, 

for design verification, and for design for test (DFT) issues.   
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CHAPTER 1 

INTRODUCTION 

 

Quantum mechanics is the thought revolution of the 20th century.  The Einstein, 

Podolsky, and Rosen experiment created a paradox when a pair of two entangled 

photons go in different directions and undergo polarization measurements.  The pair 

seems to affect the polarization of each other while they are separated by a long 

distance [EPR35].  The EPR experiment suggested the possibility of hidden variables of 

quantum particles that inherently cannot be measured.  The Heisenberg uncertainty 

principle further complicated the intuitive interpretation of the emerging quantum 

mechanics field [Heis30].  The Copenhagen interpretation during the 1930s, led by 

Niels Bohr, promoted the notion that a particle property may be considered real only 

when it is actually measured [Waer67, Omne99].  Bell’s theorem proved that no hidden 

variable theory that preserves locality and determinisms can explain the prediction of 

quantum mechanics for an entangled photon pair [Bell64].  The field of quantum 

mechanics has seen tremendous developments since that time, but it is still entangled 

with magnificent wonders and phenomenon that defy our intuition.  

Quantum mechanics was bridged to computing when Richard Feynman 

demonstrated in 1982 that various quantum mechanics effects cannot be simulated 
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properly on classical computers [Feyn82].  This observation brought forth the idea that 

perhaps we can obtain a new type of efficient computation if the computer itself is made 

to use quantum effects natively.  Feynman and David Deutsch independently conceived 

the notion of the quantum computer in 1985 [Feyn85, Deut85].  Deutsch and Jozsa 

followed with the observation that quantum systems exhibit exponential increase in 

parallelism when the system size is increased [DJ92].  In 1993, Bennett et al. invented 

the notion of quantum teleportation [BBC+93].  A critical breakthrough was Peter 

Shor’s seminal paper of 1994 that illustrated how a quantum computer may be able to 

factor primes exponentially faster than classical computation [Shor94].  Since the 

difficulty of factoring a large number into primes lies at the heart of the RSA encryption 

algorithm, such a potential breakthrough immediately caught worldwide attention.  Lev 

Grover’s search algorithm in 1996 that breaks the classical barrier of O(n) with an 

O( n ) complexity further accelerated research interest in the new field of quantum 

computing [Grov96].  However, the prospects of better performance were not the only 

motivation for the immense interest we now see in quantum computing.     

It has been projected that by 2018, mainstream CMOS technology will not be 

able to follow Moore’s Law of speed and density doubling every 18 months [XCN+06].  

So far, technologists have been able to overcome major hurdles such as lithographic 

limits, power constraints, electric field breakdown, and leakage currents.  However, the 

accelerated shrinkage of circuit dimensions will eventually bring the size of basic circuit 

elements to the molecular and atomic scale where quantum phenomena rules prevail.  



 3
 

This is the boundary which spells the imminent demise of conventional CMOS 

technology and motivates us to investigate quantum technology.   

Ray Kurzweil and other futurists noted that regardless of the hurdles, overall 

technology must continue to follow Moore’s Law, causing new technologies to be 

invented [Kurz07].  And indeed, the projected demise of CMOS spawns the arrival of 

quantum computing (QC).  We briefly describe the fundamentals of quantum computing 

in Chapter 2, where, in a somewhat simplistic approach, we include several 

technologies whose basic circuit elements must deal with individual atoms at the 

quantum phenomenon level. 

1.1. Emerging Quantum Computing Technologies 

Emerging quantum nanotechnologies have been developed in the hope of 

achieving a performance that goes beyond the end-of-the-curve limits of CMOS.  

Quantum-dot cellular automata (QCA), invented by Lent et al. in 1993 [LTP93, 

TLP93], is a very promising technology.  QCA had become the topic of intense research 

due to its projected size density of several orders of magnitude smaller than CMOS.  It 

also promises fast switching time in the range of 10-12 to 10-15 seconds, and extremely 

low power.  Experimental circuits utilizing metal dots were demonstrated in the late 90s 

[AOSL98], followed by the recent development of molecular QCA circuits [QSL+03].  

QCA is radically different from today’s CMOS technology.  Information in QCA 

propagates along a line of cells via Coulombic charge interactions as opposed to 

conventional electric current as used in CMOS devices.  Unlike the gate versatility of 

CMOS, the QCA technology natively implements the 3-input majority gate as the basic 
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building block.  QCA also requires a new multi-zone clock mechanism for proper data 

propagation, prompting electrical and magnetic based solutions.  The 3-input majority 

gate can easily implement 2-input AND or OR gates provided the third input is set at 

the logic ‘0’ or ‘1’ state, respectively.  However, to avoid the waste of fixed logic states 

in one third of the inputs, researchers have been investigating improved utilization of all 

three inputs of the majority gates [ZWWJ04, WSJ+04].  QCA fundamentals are further 

described in Chapter 2.3.   

In classical irreversible logic design, the circuit’s inputs are evaluated to provide 

the output results in a process that does not preserve input information once the output 

is computed.  As a result, one cannot recreate the inputs from the output information.  In 

the extreme case of a decision circuit, an n-bit input is processed to obtain a single bit 

yes/no result.  Clearly there is no way that a one bit result can re-construct an n-bit 

input.  In contrast, reversible logic circuits have the main property that the circuit’s 

input information can be fully reconstructed at any time from the output [NC00].  

Landauer’s principle states that each erasure of one bit of information dissipates 

at least KBTln2 energy, where KB is the Boltzmann’s constant and T is the temperature 

[L61].  Pioneering work by Bennet [Benn73], Fredkin and Toffoli [FT82], and 

Feynman [F85] illustrated the potential of reversible logic to create circuits with 

theoretical zero internal power dissipation.  Reversible logic circuits are modeled as 

bijective functions that allow the full reconstruction of the circuit’s input information 

from the output, thus eliminating the energy loss with the absence of erased bits.  While 

Landauer’s erasure energy is currently many orders of magnitude below today’s CMOS 
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leakage current, it will play a major role in the future, posing a limiting factor for QCA 

and other futuristic irreversible logic circuits.  As a result, the common consensus 

among computer scientists and theoretical physicists is that the long term quantum 

technology is likely to be based on reversible logic. 

  In addition to the theoretical elimination of energy loss, it seems that future 

implementation of quantum logic circuits based on optical or other quantum effects will 

necessarily be reversible for another reason - they impose the characteristic fan-in and 

fan-out of one due to the principle of conservation of matter.  

We would like to emphasize that there are currently no substantial 

implementations of reversible QC circuits, although interesting small experimental 

circuits have been reported extensively [NC00, Hirv04].  An excellent recent survey of 

the architectural implementation of quantum computing technologies appears in 

[VMO06].  In contrast, logic reversibility can be synthesized and simulated on classical 

computers, as demonstrated in this research as well as in the large body of published 

relevant research [Cabe04]. 

To fulfill the bijective relation between input and output, reversible logic circuits 

must have the same number of outputs as inputs (or have disallowed patterns on the 

largest set).  To illustrate this initial discussion of reversible logic, Fig. 1.1 previews the 

Toffoli reversible logic gate that is commonly used for quantum computing and will be 

formally described in Section 2.2.  Note that this gate has three inputs and three outputs, 

and the specification shows that every output set bijectively relates to a specific input 

set.  The transformation matrix indicates the permutation relation between the 8 
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combinations of inputs (23) to the 8 combination of outputs (23).   For example, the first 

column indicates the mapping (a,b,c)→(a’,b’,c’): 000→000,  while the seventh column 

indicates the mapping 110→111.  We will see in Chapters 2 and 3 that transformation 

matrices describing all quantum circuits are unitary and can consist of more complex 

mappings. 

 

 

Figure 1.1.  Transformation Matrix Representation of the Toffoli Gate 

 
The requirement of a bijective relation between inputs and outputs can easily lead to 

a large number of unused (garbage) outputs for circuits with more inputs than outputs, 

and poses an immediate challenge for logic synthesis in order to minimize the garbage 

outputs.  One can readily imagine the exponential explosion of the transformation 

matrix size with increasing numbers of lines.  

Although general QC is materially different than QCA, we believe that there is 

some interesting commonality to allow their mutual inclusion in the present research.  

Both technologies are so radically different than CMOS that they require major new 

design paradigms to deal with circuit simulation, synthesis, and testing.  The different 
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approaches taken with each technology provides added insight to the uniqueness of 

quantum computing.  

1.2. Quantum Computing Computer Aided Design Tools 

Following the development of classical digital logic, emerging QC technologies 

rely heavily on computer aided design (CAD) tools.  For this dissertation we have 

developed several CAD tools that encompass the main targets of synthesis, simulation, 

testing and verification.  Fig. 1.2 provides an overview of the QC CAD tools. 

 

Figure 1.2.  Overview of the Quantum Computing CAD Tools 

 
Several of our tools are based on the quantum multi-valued decision diagram 

(QMDD) originally proposed by Miller and Thornton to simulate and specify the 

transformation matrix of reversible logic circuits in a compact form [MT06, MTG06].  

Like all decision diagrams, QMDD suffers from the exponential size explosion of the 

data structure so that size minimization becomes crucial.  In this dissertation, we have 
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further developed the QMDDsift package that includes a sift-like minimization 

[MFT07, MFT07b].  Further minimization improvements were achieved with the 

QMDDmet tool that guides the minimization process based on the structure metrics 

[FTM08b].  We have used various implementations of the QMDD packages to simulate 

QC benchmark circuits, as well as simulation of vector multiplication [GTFM07].  

  The QCAexor logic synthesis tool for QCA using exclusive-OR sum of 

products (ESOP) minimization is detailed in [FT07].  The major efforts in this 

dissertation target QC and classical reversible logic synthesis.  In our initial work on 

reversible logic synthesis, we developed the Virtual Fredkin Translation tool [FTN07].  

Using Altera’s Quartus II common synthesis tool, we demonstrate how to virtually 

implement relatively complex logic circuits in reversible Fredkin gates.  This approach, 

as discussed in Section 4.2, allowed us to gain a preliminary glimpse into the size and 

speed complexities of reversible logic.  However, since this approach cannot control the 

exploding number of garbage outputs it is not intended as a replacement for other 

approaches to synthesize cascades of gates.    

The state-of-the-art of gates cascade synthesis is currently limited to twenty 

inputs or less [AP05].  The QMDDsyn tool improves lexicographic synthesis of 

reversible logic by employing improved variable ordering as obtained by the QMDD 

package.   

Quantum logic testing and verification is quite different from standard logic.  It 

was shown by Agrawal that reversible logic circuits are easier to test since a single fault 

detection implies the ability for multiple fault detection [Agra81].  On the other hand, 
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testing of QC bring us to the problem of measurement in the quantum mechanics sense.  

The QC decoherence problem (described in Chapter 2) mandates the extensive use of 

QC fault tolerance techniques.  There is also the unique issue of probabilistic testing 

versus deterministic testing.   

The QMDDceq tool is useful for both design for test (DFT) and verification.  It 

investigates the detection of partially redundant reversible logic.  We have also 

developed a similar tool (called CMBtest) for classical irreversible logic. Compared 

results between reversible and irreversible logic enable us to gain new theoretical 

insight into reversible logic.  

1.3. Impact and Contributions of this Research 

We made several contributions to the major disciplines of CAD for QC, 

including simulation, synthesis, testing, and verification.  In simulation, our work 

resulted in an improved QMDD package that can dynamically reduce its size and 

accommodate larger quantum circuits.  Our work on data metrics based QMDD 

minimization represents a novel approach to decision diagram (DD) minimization, and 

may have application with other DD packages.  We developed several approaches for 

reversible logic and for QC synthesis.  We also introduce a new method to synthesize 

logic within the native 3-input majority gates of QCA.  The QMDDceq tool for 

detecting partially redundant logic in reversible logic has ramifications for design 

verification, and for design for test (DFT) issues.  Our comparative work on detection of 

partially redundant logic in irreversible logic can enhance traditional logic synthesis by 

eliminating wasted resources. 
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Our work on improving the QMDD and using it in various tools may prompt 

other researchers to further exploit the QMDD (or other DD tools for QC) for different 

CAD tasks beyond those explored in our research. 

In addition to the experimental success of our various tools, several theoretical 

contributions have been made throughout this dissertation.  

There is no doubt that the field of quantum computation is exploding.  In fact, 

Adan Cabello’s monumental bibliographic compendium on the foundation of quantum 

mechanics and quantum information details more than 11,000 publications [Cabe04].  

This research further provides a contemporary survey of various theoretical and 

practical aspects of QC CAD.  As we feel that QC logic synthesis is a crucial barrier in 

the development of QC, we made an effort to cover many different synthesis methods at 

some length, in addition to the disclosure of our original work.  A good portion of the 

prior work we cite in this dissertation does not appear in the widely cited text book 

“Quantum Computation and Quantum Information” published by Nielsen and Chuang 

in 2000 [NC00].  We therefore hope that this dissertation will prove to be useful for 

other researchers who are new to this field. 

1.4. Organization 

The remainder of this dissertation is organized as follows.  In Chapter 2 we 

discuss the fundamentals of the transition from quantum mechanics to quantum 

computing.  Chapter 3 is devoted to the representation and simulation of QC and 

classical reversible logic.  It introduces the QMDD package and details our novel 

minimization techniques.  Chapter 4 discloses our contributions for reversible logic 
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synthesis as well as the QCAexor QCA synthesis tool.  Our work on QC testing and 

verification is presented in Chapter 5.  

Chapter 2 covers the fundamentals background for this research.  We briefly 

survey the key ideas of quantum mechanics from the Stern-Gerlach experiment to 

entanglement.  We then discuss the important issues of measurement and decoherence 

in view of the 3rd postulate of quantum mechanics.  We then expand on the basic 

properties of reversible logic.  With this theoretical foundation we proceed to outline the 

basic ideas of QC and quantum information as they evolved from quantum mechanics.  

Special attention is spent on quantum operations and elementary quantum gates since 

these are the building blocks used in our research.  We conclude this chapter with a 

discussion of the QCA fundamental properties.  

We open Chapter 3 with a discussion of classical binary decision diagrams 

(BDD) followed by a survey of QC simulation on computers using various BDDs.  The 

novel QMDD simulation package is introduced followed by a detailed discussion of the 

sift-like minimization tool QMDDsift [MFT07, MFT07b].  We then disclose our recent 

work on QMDD minimization based on QMDD data structure metrics [FTM08b].  We 

conclude Chapter 3 with our simulation results of QC benchmark circuits from the 

Maslov web-page [Masl05] and briefly discuss the simulation of vector matrix 

multiplication [GTFM07].   

 Chapter 4 is dedicated to the synthesis of quantum circuits, where we start with 

our work on ESOP transformation to majority gates for QCA [FT07] and virtual 

implementation of reversible logic [FTN07].  We follow with a brief but comprehensive 
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survey of current approaches for reversible and QC synthesis.  We close with a detailed 

discussion of our contribution to lexicographical synthesis using variable selection 

based on the QMDDsyn tool variable order. 

We turn our attention to QC testing and verification in Chapter 5.  We start with 

a survey of reversible logic testing techniques and various proposals to create a unified 

QC fault model.  Our contribution for QC verification is then disclosed with a detailed 

description of the QMDDceq tool.  

Finally, our conclusions and future research areas appear in Chapter 6.  In view 

of the nascent nature of QC, it should be no surprise that we foresee substantial future 

areas of work in all the aspects of quantum computing CAD outlined in this research.  
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CHAPTER 2 

FROM QUANTUM MECHANICS TO QUANTUM COMPUTING 

 

Quantum computing developed in the past two decades from the core ideas of 

quantum mechanics that shook the physics world in the 1930s.  In this chapter we delve 

into some of the major concepts of quantum mechanics and show how they evolved into 

today’s foundation of quantum computing and quantum information.  Fundamental 

ideas of reversible logic and QC that are crucial for this dissertation are introduced.  We 

conclude this chapter with an introduction of QCA. 

2.1. Key Ideas of Quantum Mechanics 

We briefly discuss several key ideas that are crucial to better understand the 

evolution of quantum mechanics into the framework of quantum computing and 

quantum information in this section.  Section 2.1.1 starts with some fundamental 

concepts of linear algebra.  We then illustrate the famous Stern-Gerlach experiment that 

justifies the notion of qubits and superposition.  Section 2.1.4 follows with the four 

postulates of quantum mechanics to illustrate the importance of the Hilbert space, the 

Hamiltonian operation, and measurements.  The discussion of measurement in quantum 

mechanics is rather detailed in view of its importance for QC.     
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2.1.1. Linear Algebra Preliminaries 

We briefly introduce a few of the concepts of linear algebra that are crucial to 

understand quantum circuits.  More extensive background is available in [NC00, 

MM05, Saku92, Bohm01, Holl90, Dira58, Lawd67]. 

We start with the famous Dirac notation for complex vectors, which use a clever 

play on the pseudo-word “braket”. 

Definition 2.1: (Dirac Notation).  A complex vector u which is represented by a 

single column vector is called a ket vector and is denoted as |u〉.  A complex vector v 

which is represented by a single row vector is called a bra vector and is denoted as 〈v|. 

Definition 2.2: An inner product produces a complex number while operating 

on two vectors |u〉 and |v〉.  The vector space Cn has an inner product defined as 

∑≡
i

iinn vuvvvvuuuu *
321321 )),...,,,(),,...,,,((                         (2.1) 

in Dirac notation, the inner product of |u〉 and |v〉 is denoted as 〈u|v〉 where 〈u| is formed 

as |u*〉T. 

Definition 2.3: A vector space Cn that includes the inner product operation is 

called Hilbert space.  The Hilbert space is commonly denoted Hn. 

We can span the Hilbert space Hn with the following {|0〉,|1〉,…,|i〉,…,|n-1〉} set 

of basis vectors.  These kets are defined as 
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The same Hilbert space Hn may be spanned by the {〈0|,〈1|,…,〈i|,…〈n-1|} set of 

bra basis vectors.   

A complex state vector ψ in a Hilbert space Hn is noted as 

>−++>++>+>>= − 1|...|...1|0|| 110 ni ni ααααψ                       (2.3) 

where 110 ,...,..., −ni αααα  are complex valued scalars.  Each ket vector |ψ〉 has a dual bra 

vector 〈ψ| which is defined as 

|1...|...|1|0| *
1

**
1

*
0 −〈++〈++〈+〈=〈 − ni ni ααααψ                       (2.4) 

Example 2.1: The following example demonstrates the inner and outer products 

of qubit states using the Dirac notation.  Let |ψ1〉=(1, -i)T and |ψ2〉=(e-i, -1)T, then the 

inner product  is 

  〈ψ 1 |ψ 2 〉 = 1× e− i + (−i) × (−1) = e− i + i , and the outer product is 
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Let the linear operator A* be the complex conjugate of linear operator A.  For a 

linear operator A on a Hilbert space Hn there exists a Hermitian conjugate or adjoint 

such that A+=(AT)*.  The linear operator A+ acts on space V so that for all vectors |v〉, 

|w〉∈V, we have  

(|v〉, A|w〉) = (A+|v〉,|w〉).                                             (2.5) 

 

Definition 2.4: A matrix U is said to be unitary if U+U=UU+=I.  Thus, a unitary 

matrix or unitary operator is reversible by definition.   
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Unitary operators preserve inner products between vectors so that 

〈x|y〉=〈Ux|Uy〉.  Their determinant is unity and they preserve the norms, that is ||x|| = 

||Ux||.  The rank of a unitary matrix U defined over Cn is n. 

The importance of the unitary operation is illustrated in the second postulate of 

quantum mechanics which will be described in Section 2.1.3.  

Definition 2.5: A k × k unitary matrix U is called special unitary and marked 

)(kSUU∈  if the determinant of U is equal to 1.  

Lemma 2.1: Any special unitary 2×2 matrix U can be decomposed as follows: 
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for real valued θ, α, and β. 

Proof:  Since the rows and columns of a unitary matrix must be orthonormal, 

every 2×2 unitary matrix U can be written as 
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where δ is also real valued.  For a special unitary matrix, the determinant must be 1 so 

that 1±=δie .  The factorization in (2.6) then follows.                                                     � 

Definition 2.6: The tensor product of r × s and t × u matrices, also called 

Kronecker product, is an rt × su matrix defined by 
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2.1.2. The Stern-Gerlach Experiment and the Idea of Superposition 

 

 

Figure 2.1.  The Stern-Gerlach Experiment 

 
The Stern-Gerlach experiment from 1922 posed one of the first paradoxes of 

quantum mechanics [SG22, Heis30].  The original experiment used an oven that heated 

silver atoms and the source particle beams were polarized using a magnetic field that 

operated on the particle spins.  Later versions with hydrogen atoms as well as with 

polarized light conveyed the same paradoxical result.  We assume that the source 

particle beams enter the first left Z polarizer of Fig. 2.1 and being polarized to 

components |+Z〉 and |-Z〉.  The |-Z〉 beam is blocked and the |+Z〉 beam is sent to the 

second polarizer, which operates along the X basis.   

The |+Z〉 is polarized again into two beams, |+X〉 and |-X〉.  The results after the 

second X polarizer are indeed quite intuitive.  The paradox appears on the third Z 

polarizer which seems to recreate the |-Z〉 by magic, since the |-Z〉 beam was clearly 

blocked after the first polarizer. 

Definition 2.7: We define the qubit (quantum bit) model as representing the 

general state of a single quantum bit |x〉 with the vector: 
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〉+〉=〉 1|0|| βαx                                                  (2.9)                           

where α and β are complex numbers satisfying the relation:   

1|||| 22 =+ βα .                                                         (2.10) 

Extrapolating the notion of a qubit to the state of the beams in the Stern-Gerlach 

experiment, we can explain the paradox if we make the following assignments: 

|0〉  |+Z〉;  |1〉  |-Z〉;  (|0〉+|1〉)/ 2  |+X〉; and  (|0〉-|1〉)/ 2  |-X〉.      (2.11) 

We assume that the Z polarizer works on the basis {|0〉,|1〉} and the X polarizer 

works on the basis {(|0〉+|1〉)/ 2 , (|0〉-|1〉)/ 2 }.  If we further assume that the state of 

the beam after the first Z polarizer is |+Z〉 =|0〉 which equals to (|+X〉 + |-X〉)/ 2 , it 

follows that the state after the second X polarizer includes a superposition of both |0〉 

and |1〉, hence the recreation of the |-Z〉 =|1〉 by the third polarizer.  

2.1.3. The Four Postulates of Quantum Mechanics 

While quantum mechanics deals with very complex phenomenon and provides 

results that may be regarded as counterintuitive, it is very interesting that the following 

four relatively simple postulates quite successfully define the foundation of this field.  

Postulate 1 – The Hilbert Space of a Closed System S 

A closed system S takes place in the quantum mechanics sense in a complex 

Hilbert space called the state space of S.  As defined in Section 2.1.1, the Hilbert space 

is a complex vector space that includes the inner product.  S is completely specified by 

the unit vector |ψ〉.  Two states are equivalent even if they differ by a phase.  Thus, |ψ〉 is 

equivalent to |ψ’〉 if, and only if, 
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〉=〉 ψψ θ |'| ie                                                            (2.12) 

Postulate 2 –The Change of the State of a Closed Quantum System S 

A closed quantum system changes in time along a unitary transformation U.  

The unitary operator U depends only on the times t1 and t2 to describe the time 

evolution 

〉=〉
12

||
tt ψψ U .                                                      (2.13) 

Werner Heisenberg first formulated this relation in 1925.  A few months later, 

M. Born and P. Jordan recognized the use of matrix algebra for this formulation 

[Wear67, Heis30].  Alternatively, we can describe the time evolution of the system S by 

the Schrödinger equation 

〉=〉∂
∂ ψψ || Htih                                                     (2.14) 

where ћ is Planck’s constant, and H is the fixed self-adjoint (Hamiltonian) operator of 

the system S.  We note that a unitary operation is always reversible since the inverse of 

a unitary matrix is equivalent to its complex conjugate.  Dirac and Von Neumann 

independently showed that equation 2.14 and 2.15 are equivalent [Vonn95, Dira58, 

Lawd67]. 

Postulate 3 – Quantum Measurements 

Quantum measurements are described by a collection of measurement operators 

{Mm}.  Each operator, called an observable, has the spectral decomposition  

∑= m mm mPM                                                          (2.15) 

where Pm is the projector onto the eigenspace of eigenvalue m. 
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All the eigenvalues m of M describe possible results of the measurement.  The 

probability of getting the result m while measuring |ψ〉 is  

〉〈= + ψψ ||)( mmMMmp                                               (2.16) 

This reduces |ψ〉 to the post measurement state of |ψ’〉 

〉〈

〉
=〉

+ ψψ
ψψ

||
|'|

mm

m

MM
M                                             (2.17) 

Postulate 4 – Composite of Quantum States 

The composite state space H of a group of states {|ψ1〉, |ψ2〉, |ψ3〉,…, |ψn〉} is the 

tensor product of these states.  If the subsystems are in the states |ψi〉, then the joint state 

of the entire composite system is 

〉⊗⊗〉〉⊗〉⊗=〉Ψ nψψψψ |...|||| 321                                 (2.18) 

2.1.4. Entanglement 

A composite system |Ψ〉 of the pair |xi〉 and |yj〉 can be represented as 

∑∑ 〉=〉Ψ
i j

jiij yx ,|| α   with 1|| 2 =∑∑
i j

ijα                        (2.19) 

Definition 2.8: If the coefficients αij in (2.16) can be written as jiij γβα = , the 

system is in a decomposeable state.  Otherwise, the system is in an entangled state. 

For example, the state )11|00(|
2

1
〉〉+  is entangled, while the state 

)11|10|01|00(|
2
1

〉〉+〉+〉+  is decomposable.   
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The property of entanglement is crucial in many of the important algorithms that 

portray the major benefits of QC, including superdense coding and quantum 

teleportation [NC00, KLM07]. 

2.1.5. Measurement and Decoherence in Quantum Mechanics 

Measurement in quantum mechanics cause any state held at superposition to 

collapse to an observable result.  Decoherence is the phenomenon by which a quantum 

state held at superposition tends to “decay” into the basis states, resulting in a loss of the 

quantum state information (similar to noise in classical computing and communication 

theory).   

In the following discussion we show that the measurement of an observable of a 

quantum system comprised of a single qubit will always yield an eigenvalue of the 

Hermitian matrix A representing the measurement operator. 

We first need to prove the following fundamental Theorem: 

Theorem 2.1:  The eigenvalues ,...., ji λλ  of a Hermitian operator A are real, 

and the eigenkets ,...., ji ζζ  of A corresponding to different eigenvalues ,...., ji λλ  are 

orthogonal. 

Proof:  Following [Saku94], by definition of eigenvalues and eigenvectors 

  〉=〉 iii ζλζ ||A                                                  (2.20) 

and because of the Hermitian properties,  

  || *
jjj ζλζ 〈=〈 A                                                (2.21) 
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By left multiplication of both sides of equation (2.14) by |jζ〈 , right 

multiplication of both sides of equation (2) by 〉jζ| , and subtracting the two results, we 

get 

0|)( * =〉〈− ijjj ζζλλ                                              (2.22) 

First, let us assume that ij λλ ,  are the same eigenvalue.  Since 〉iζ|  is not the 

null ket, we must have *
jj λλ = , which means that the eigenvalues are real.   

If the eigenvalues are different, then since they are real, the first multiplicand of 

(2.22) cannot disappear.  Thus we obtain the orthogonality property 

0| =〉〈 ij ζζ ,   )( jj ζζ ≠                                       (2.23)                           

This completes the proof.                                                                                      � 

Before the measurement of the observable A, we can represent our system |ψ〉 

(not necessarily just the single qubit of the question) by the following linear 

combination: 

∑ 〉=〉
λ

λ λψ || c                                                 (2.24) 

We now multiply on the left with 〈λ| and by applying the orthogonality property 

from theorem 2.1, we find that for all λ, 

〉〈= ψλλ |c                                                         (2.25) 

and consequently, equation (2.17) becomes 

∑ 〉〉〈=〉
λ

ψλλψ |||                                             (2.26) 
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When the measurement is performed, the system is “thrown to” one of the 

eigenstates of the observable A, say |λ〉.  This is what Dirac meant in his 1958 book 

regarding the postulate that “a measurement always causes the system to jump into an 

eigenstate of the dynamical variable that is being measured.”  In this sense, the result of 

the measurement yields one of the eigenvalues of the observable being measured.  Since 

the observables are the quantum analogue of dynamical variables (e.g. position, spin, 

linear and angular momentum, energy, polarization), the theorem stating that the 

eigenvalues of the Hermitian operator are real is crucial.  In other words, we cannot 

observe “complex” outcomes of measurements. 

We note, of course, that if |ψ〉 is already in the state |λ〉, the measurement by A 

yields the result λ with certainty. 

However, postulate 3 of quantum mechanics states that the probability of the 

system being thrown to or collapsed to a particular eigenstate | λ〉 is 

   2| 〉〈= ψλλP                                                     (2.27) 

This postulate insures us that the probability conforms to the requirements that 

each eigenvalue of A has a nonnegative probability.  It also provides 

   1=∑
λ

λ
P                                                       (2.28) 

Since we deal here with a single qubit, the Hermitian observable A has two 

eigenvalues, λ1 and λ2 each with a probability as shown in (2.24).  It should be noted that 

it is possible to have the original qubit already prepared in the eigenstate | ζ1〉.  In this 
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case, the same observable A will result in the eigenvalue λ1 with certainty.  This is 

similar to the case of measurements in repeated tests [MM05]. 

The measurement problem is one the key concepts of quantum mechanics.  An 

interesting discussion relates to the famous Schrödinger’s Cat Paradox [Schr35].  The 

single quantum bit has the basis states of ALIVE and DEAD, and while the cat is in the 

box, its state |ψ〉 is the superposition of  

〉+〉=〉 DEADALIVE ||| 21 ααψ                                     (2.29) 

A common superposition with 50/50 chance for the cat being alive is  

)|(|
2

1| 0 〉〉+=〉 DEADALIVEψ                                    (2.30) 

The measurement observable A of this qubit is performed by simply opening the 

box in which the “superpositioned” cat is enclosed.  When the box is opened and a 

measurement is made, the system is “thrown to” (or collapses to) only one of the 

eigenvalues of the observable A – ALIVE or DEAD.  Clearly, the observable A has the 

form 
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0
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A      or  ⎟⎟
⎠
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⎝
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=
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DEAD

0
0

A                     (2.31) 

This observable was the basis of a huge debate at the heart of quantum physics: 

“What mechanism converts the probabilities of live/dead into such a sharp outcome?” 

Briefly, there were the Copenhagen Interpretation (QC deals only with the 

probabilities of the observable quantities – all other quantities are just meta-physical), 

the Quantum Decoherence (the macroscopic nature of the measurement apparatus 
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allows physicists to distinguish the fuzzy boundary between quantum world and actual 

world) and other philosophies (non-scientific like “conscious collapse” etc.)  [Bohm01, 

BCS04, Hirv04, MM05, Omne99]. 

A very detailed and modern discussion of the measurement problem and 

decoherence appears in Schlosshauer [Schl05].  Another extensive discussion appears in 

Chapter 3 of the original class notes from 1997 of John Preskill of Caltech [Pres97].  

2.2. Reversible Logic 

Quantum computation is reversible in nature.  In this section we present the 

foundation of reversible logic.  We show how reversible logic can be regarded from the 

point of view of group symmetry.  Efficient reversible circuits that minimize garbage 

inputs and outputs are built in the form of cascades of gates that are defined in Section 

2.2.3.  We also discuss simple implementations of common logic functions that may be 

obtained directly from Toffoli and Fredkin gates.  

2.2.1. Defining Reversible Logic 

Definition 2.9: A gate or a circuit is logically reversible if it maps each input 

pattern to a unique output pattern.  For classical reversible logic, the mapping is a 

permutation matrix.  For quantum circuits, the gate or circuit operation can be described 

by a unitary transformation matrix.  Another way to describe the notion of logically 

reversible circuits is to note that the functions describing the behavior of the circuits are 

bijective. 
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Reversible gates or circuits can be designed with a different number of inputs 

and outputs [Alra04b].  In such cases, not all the patterns of the largest set of outputs or 

inputs are used.  However, in the main research stream and in the remainder of this 

dissertation we are concerned only with n ×  n reversible circuits with equal number (n) 

of inputs and outputs.  We should note inputs/outputs of reversible circuits are 

commonly referred to as “variables” or “lines” in this dissertation and in the literature 

[MM05, NC00]. 

Bennett showed that reversible gates can theoretically result in binary circuits 

that are completely free from energy loss [Benn73].  The concept of reversibility has 

been extended to multiple-valued logic (MVL) circuits [MDM04, Alra04b].  Binary 

quantum logic gates and circuits are inherently both logically and physically reversible 

[NC00].  Non-binary quantum logic circuits are logically reversible. 

A variety of basic reversible gates have been proposed in the past few decades.  

In Chapter 1 we illustrated a 3-variable Toffoli gate in Fig. 1.1.  We can easily extend 

the 3-variable Toffoli gate to an arbitrary n-variable Toffoli gate as shown in Fig. 2.2.  

It has n-1 control lines (filled circles) and one target line (open circle).  For each gate, 

the value on the target line is negated if, and only if, all the n-1 control lines are set at 

‘1’.  We denote a n-variable Toffoli gate as TOF(x0,x1,…,xi-1,xi+1,…,xn-1;xi), where the 

target line xi is separated by a semicolon from the control lines.   
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Figure 2.2.  n-variable Toffoli Gate 

 
A common alternate notation for this gate is [t,C] where t is the target line and C 

comprises the set of control lines.  With this notation, the gate of Fig. 2.2 is denoted  

[xi, {x0,x1,…,xi-1,xi+1,…,xn-1}]. 

A library of universal gates is a set of gates that can implement any arbitrary 

quantum circuit.  We encounter classical reversible libraries like the NCT (not, control 

not, Toffoli), NCTF (NCT with Fredkin gate) and NCTFS (NCTF with the swap gate). 

2.2.2. Symmetry in Reversible Logic 

Let ρ: Bn  Bn be a binary logic circuit with n inputs and outputs, where  

B = {0, 1}. 

If 〈X1,…, Xn 〉 ∈ Bn  and 〈Y1,…, Yn 〉 ∈ Bn be the input and output vectors 

respectively, then there are 2n different assignments for the input vectors.  A binary 

logic circuit ρ is reversible if, and only if, it is a one-to-one and onto function.  Such a 

function is called a bijective function. 
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A binary reversible logic circuit with n inputs and n outputs is also called an n-

qubit binary reversible gate.  There are a total of (2n)! different n-qubit binary reversible 

circuits. 

A bijective mapping s: M  M can be written as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

snsss

n

xxxx
xxxx

s
,...,,,

,...,,,

321

321                                                (2.32) 

and is called a permutation.   

 

Figure  2.3.  Toffoli Gate as a cycle(6,7) Operation 

 
All the possible permutations form a group under the composition of mappings 

and is denoted by Sk [GFX06].  In Fig. 2.3 we demonstrate how the Toffoli T(x0,x1;x2) 

gate is equivalent to cycle(6,7) operation when considered as a permutation. 

2.2.3. Reversible Gates Cascade 

Reversible circuits are synthesized in the form of a cascade of gates.  Fig. 2.4 

shows the benchmark circuit “hbw5” which is the 5-variable hidden weighted bit 

function from the Maslov web page [Masl05].  The circuit uses 5 lines that represent 5 

inputs and 5 outputs.  Each vertical line depicts a controlled NOT gate (if the gate 

operates on only two lines) or generalized n-input Toffoli gates.   
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Figure 2.4.  The 5-variable "hwb5" Cascade of Gates 

 

This cascade example includes 54 gates illustrating the inherent complexity of 

quantum circuits.  The transformation matrix of the entire circuit is computed by 

repeated matrix multiplication of the individual gates and the tensor product among the 

individual lines which results in an overall circuit transfer matrix of dimension 32×32 

(25×25).   

Definition 2.10: An n-variable reversible gate cascade is composed of adjacent 

reversible gates that operate on the same n variables represented by horizontal lines 

across the circuit.  Each gate may be connected to one or more of the lines and must be 

extended via tensor product to affect all n lines.   

Cascading of two reversible gates is equivalent to the multiplication of the two 

permutation matrices representing the corresponding gates.  We demonstrate the 

computation of the transformation matrix on the smaller cascade of four gates shown in 

Fig. 2.5. 
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Figure 2.5.  A Cascade of 4 Gates with 4 Variables 

 

Each gate is part of a stage of the cascade which must include the gate and all 

the unconnected lines running through it.  For example, gate G3, is a reversible NOT 

gate with a 2×2 transformation matrix.  However, in view of the 4 variables that the 

circuit depends upon, it must have a 16×16 transformation matrix.  We thus extend the 

reversible NOT operation on variable x2 into a 16×16 transformation matrix using the 

tensor product with the 2×2 identity matrix I2 

2224 INOTII ⊗⊗⊗=G                                       (2.33) 

The overall transformation matrix C of this cascade is obtained by multiplying 

the transformation matrices of the 4 gates in reverse order [MM05, NC00].  Thus,  

C = G4 × G3 × G2 × G1                                        (2.34) 

2.2.4. Logic Function Realization with Classical Reversible Gates 

Many more classical reversible gates have been introduced including the 

Feynman (Control NOT), the Fredkin gate and the swap gate [FT82].  We will re-visit 

these gates as well as quantum reversible gates in the next Section.  The Fredkin gate is 

defined in Fig. 2.6.  Using only Toffoli and Fredkin gates, we show in Fig. 2.3 the 
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implementation of common classical logic operations (NAND, AND, NOT, and fan-out 

duplication).  It is clear that once the NAND gate or the equivalent set of AND and 

NOT gates are achievable, any arbitrary logic function can be implemented.  Note that 

these implementations require the extra cost of auxiliary inputs (also called ancilla 

inputs), which are crucial to the operation of the gates.  For example, the Fredkin NOT 

and Fan-out implementation uses only one input for the input variable x, while the 

remaining gate inputs become ancillary inputs, initialized to either 0 or 1.  

 

 

Figure 2.6.  Logic Functions by Toffoli and Fredkin Gates 

 

Since the number of outputs for reversible logic gates must equal the number of 

inputs, we find that reversible circuits can create a large number of unused or “garbage” 

outputs.  Therefore, a major constraint in the synthesis, specification, and simulation of 

quantum circuits is the need to minimize the garbage outputs and the ancillary inputs. 
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2.3. Quantum Computation and Quantum Information 

The pioneering works of Feynman, Deutsch, Sozja, Shor, and Grover have 

spawned an immense interest in quantum computation and quantum information 

[RP00].  In Section 2.3.1 we briefly discuss their work to justify our interest in QC.  We 

then describe the building blocks of quantum computation, starting with quantum bits 

(qubits) and quantum registers, and following with the basic quantum operations and 

gates.  We conclude this section with the important Beck-Zeilinger-Bernstein-Bertani 

decomposition Theorem.  

2.3.1. Quantum Computing Algorithms  

The promise of QC was staked on the success of four important algorithms: 

dense coding, quantum teleportation, quantum prime factoring, and quantum search.  

The first two algorithms depend on the entanglement phenomenon.  Quantum prime 

factoring and quantum search depends on the ultimate parallelism due to the 

superposition phenomenon.  Both phenomena have no counterparts in classical 

computing. 

In dense coding, a quantum communication channel allows for sending 

exponentially more information using entangled qubits rather than classical bits.  For 

example, one entangled qubit has the information content of two classical bits 

[KLM07]. 

The important no-cloning theorem states that an unknown quantum state cannot 

be copied [NC00].  Bennett et al. discovered that quantum teleportation enables the 
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transmission of quantum states from point A to point B, using entangled pairs of qubits 

[BBC+93].  However, the original quantum state is destroyed in the process, thus 

complying with the no-cloning theorem. 

Peter Shor’s prime factorization uses repeated reduction of the factoring 

problem into an order finding problem and phase estimation problem.  The solution for 

the later problem is based on the quantum fast Fourier transform (QFFT) and illustrates 

the inherent parallelism of QC [Shor94].  The Deutsch and Sozja algorithm also relates 

to QFFT [DJ92]. 

The quantum search algorithm is also based on exploiting the parallelism of 

superposition and was proposed by Grover [Grov96].  A quantum register with the 

search data is initialized and then transformed into a superposition by the Walsh-

Hadamard transform (see Section 2.3.5).  A repeated Grover’s iteration step which 

utilizes a special oracle is performed to “amplify” the searched items.  This algorithm 

breaks the classical barrier of time complexity from O(n) to O( n ) when searching a 

dataset of n items.   

An important group of algorithms deals with simulating quantum systems as 

suggested by Feynman [Feyn85].  Ultimately, a future quantum computer will be the 

best choice for simulation of quantum systems.  In the meantime, results such as our 

contribution in simulation (Chapter 3) illustrate the potentials and pitfalls when using 

classical computers to simulate quantum systems.   
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2.3.2. Quantum Bits and Registers 

The basic computing element in quantum computing is the qubit– the quantum 

bit that was defined in section 2.1.2.  A qubit exists in a Hilbert space H2 where it 

represents the superimposed state of the smallest unit of computational data.  The 

simplest basis states that span H2 are 

⎥
⎦

⎤
⎢
⎣

⎡
=〉

0
1

0|  and ⎥
⎦

⎤
⎢
⎣

⎡
=〉

1
0

1|                                                  (2.35) 

Equation (2.7) showed that the qubit quantum state in the basis {|0〉, |1〉} can be 

described as 〉+〉=〉 1|0|| βαx , where α  and β  are complex numbers satisfying the 

relation 1|||| 22 =+ βα . 

Before we measure the qubit state, it still represents a superposition of |0〉 and 

|1〉.  Once we actually measure the quantum state, we obtain the state |0〉 with a 

probability of 2||α  and state |1〉 with probability 2|| β .  Clearly, this superposition and 

the dependence on measurement is significantly different than the familiar classical 

computing where determinism ensures that ‘1’ is a ‘1’ and ‘0’ is ‘0’.   

A system of two qubits comprises a four-dimensional Hilbert space H4 with the 

standard basis set of {|00〉, |01〉,|10〉, |11〉}.  Obviously, other orthonormal basis sets can 

be used.  This system is a quantum register of two qubits.  Larger quantum registers are 

composed using the tensor product according to the 4th postulate of quantum mechanics 

(2.18).  The superposition of the entire basis set in a quantum register is the source for 
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the parallelism potential of QC.  There is no parallel for this phenomenon in classical 

logic. 

2.3.3. Quantum Operations on a Single Qubit 

The quantum operation on a qubit must be reversible and preserve the norm and 

the inner product.  Therefore they are represented by 2×2 unitary matrices.  Although 

there is an infinite number of 2×2 unitary matrices, we list some important single qubit 

operations in Table 2.1. 

Table 2.1.  Single Qubit Operations 

Name Unitary 
matrix 

Symbol Name Unitary 
matrix 

Symbol 

Pauli 

I≡0σ  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

  
Pauli 

Xx ≡≡ σσ1

NOT 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

  

 

Pauli 

Yy ≡≡ σσ 2  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
0

0
i

i
 

Pauli 

Zz ≡≡ σσ 3  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−10
01

  

Hadamard 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−11
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2
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Phase 
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⎠
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01
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2.3.4. Elementary Quantum Gates and Quantum Circuits 

Feynman proposed the general notation for a controlled operation shown in Fig. 

2.7 as an extension of a qubit operation that works on more than one variable [Feyn85].  

This is similar to the n-variable Toffoli gates we have shown in Fig. 2.2, except that we 

use any general single qubit operation specified by the 2×2 unitary matrix, U, instead of 

the NOT operation used in classical reversible logic.  Again, the control lines with dots 

are transferred without a change.  The lower target line performs the unitary operation 

U only when all the control lines are set to |1〉.  There is no limit on the number of 

control lines.   

 

Figure 2.7.  The General Controlled Operation 

 
An alternate notation for the control operation is )(1 U−∧n as used in the seminal 

paper on elementary quantum gates by Barenco et al. [BBC+95].  Unlike the n-variable 

Toffoli gate shown in Fig. 2.2, the )(1 U−∧n notation is always normalized so that the 

control lines precede the target line.  The transformation matrix for an n-variable 

)(1 Un−∧ is the nn 22 × matrix 
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                                      (2.36) 

Where the single qubit operation U is ⎥
⎦

⎤
⎢
⎣

⎡

1110

0100

uu
uu

. 

A variety of basic reversible gates that are realizable using quantum devices 

include the Deutsch-Toffoli, Controlled-NOT, Controlled-V, and controlled V+  and 

many more [KSV02].  Fig. 2.8 illustrates the Deutsch-Toffoli gate )(2 xR∧ which was 

shown to be a universal gate for quantum computing [Deut89].  We note that many 

other sets of quantum universal gate sets have been proposed.   

 
 

 
 
 
 

             

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

≡

2
cos

2
sin000000

2
sin

2
cos000000

00100000
00010000
00001000
00000100
00000010
00000001

θθ

θθ

i

i

 

 

Figure 2.8.  The Deutsch-Toffoli Universal Gate 

  
The Deutsch-Toffoli gate is a two-level unitary matrix.  The two-level unitary 

matrix is formally defined as follows. 
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Definition 2.11: A two-level unitary matrix transforms only two or fewer vector 

components.  Therefore, a n × n two-level unitary matrix V that implements the unitary 

operation U = ⎥
⎦

⎤
⎢
⎣

⎡

1110

0100

uu
uu

 is an identity matrix In with two or fewer diagonal ‘1’s 

replaced by the unitary components of U.  For example, equation (2.38) is an 8×8 two-

level unitary matrix, while a 4×4 two-level unitary matrix V, may appear as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
00
0010
00

1110

0100

uu

uu

V                                               (2.37)  

Quantum circuits are represented as gate cascades and are of a form in a similar 

way to Figure 2.5 where the large variety of single qubit operations can replace the 

Toffoli NOT operator.  We should note that a quantum gate cascade is actually a 

quantum register with control and time flowing from left to right [Cybe01].  It is for this 

reason that the overall circuit transformation matrix is formed as a product of gate 

component transformation matrices from right to left. 

When synthesizing quantum and classical reversible circuits, it is often 

convenience to have a standardized cost measure that can help in the comparison of 

competing implementations.  The following definition of the quantum cost of a circuit is 

used throughout this dissertation [Masl03] 

Definition 2.12: The quantum cost of a circuit C is the number of elementary 

quantum operations that are required to implement the function of C.   



 39
 

The number of elementary quantum operations is usually determined in 

accordance with Barenco et al. interpretation of elementary quantum gates [BBC+95].  

2.3.5. The Walsh-Hadamard Transformation 

The Hadamard single bit operation that was described in Table 2.1 is very 

important in QC.  When applied to a qubit initialized to state |0〉, it creates the evenly 

distributed superposition 

)1|0(|
2

1
0
1

11
11

2
10| 〉+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=〉H .                                (2.38) 

When similar transformation is applied to a quantum register of n-qubits, it 

creates a superposition of all the numbers from 0 to 2n-1.  Such a transformation is 

called a Walsh-Hadamard transform and is defined using Dirac notation as follows: 

=〉〉+⊗⊗〉〉+⊗〉〉+=〉⊗⊗⊗ )1|0(|...)1|0(|)1|0(|
2
10..00|...

n
HHH  

∑
−

=

〉=
12

0
|

2
1 n

x
n

x                                                         (2.39) 

An alternative recursive definition for the Walsh-Hadamard transformation 

matrix is 

HW =1 ,   1−⊗= nn WHW                                              (2.40) 

The Walsh-Hadamard ability to create arbitrary large qubit register 

superposition states makes it crucial for QC and we will revisit it in the next chapter. 
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2.3.6. The Beck-Zeilinger-Bernstein-Bertani Theorem 

The beam splitter is an important component for quantum optical experiments.  

The function of a beam splitter can be represented by a two-level unitary matrix.  Beck, 

Zeilinger, Bernstein and Bertani proved the following important theorem in their quest 

to show that any arbitrary finite dimension unitary matrix can be implemented in the 

laboratory by beam splitters [BZBB94].  Expressed in the context of two-level unitary 

matrices, the theorem is stated as follows: 

Theorem 2.2: An arbitrary k × k unity matrix U can be decomposed into a 

product of two-level unitary matrices so that  

U=V1V2….Vn                                               (2.41)  

and 

2/)1( −≤ kkn                                                (2.42) 

Proof:  (By construction.)  We first reduce U into a k×k matrix U1 that has 1 on 

its first diagonal element and 0s elsewhere on the first column and first row.  We 

perform this task by multiplying U by up to k-1 two level unitary matrices, each 

designed to achieve one 0 on the first column and first row.  If U already has 0s in the 

first column and/or column, the required number of two level unitary matrices is 

reduced accordingly.  In the next step, we reduce U1 into a k × k matrix U2 which now 

has 1s on the first two elements of the diagonal with 0s elsewhere on the first and 

second column and row.  This step requires up to k-2 multiplications of U1 by two-level 

unitary matrices.   
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This process continues recursively until U is fully reduced to the identity matrix 

by   

V1V2...VnU=I                                            (2.43)           

Since all the matrices on the left side of (2.42) are unitary, we obtain the desired 

decomposition   

+++= nVVVU ...21                                          (2.44) 

The total number n of two level matrices is smaller than  

2/)1(1...)2()1( −=++−+−≤ kkkkn                    (2.45) 

This completes the proof.                                                                                      � 

Example 2.2: We are going to use the BZBB decomposition process to 

investigate a phenomenon of skipped variables occurring in our QMDD tools to be 

described in Chapter 3.  Therefore, it is important to demonstrate this decomposition 

with the following 4×4 unitary matrix U (taken from [NC00] exercise 4.37).   

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

ii

ii

5.05.05.05.0
5.05.05.05.0
5.05.05.05.0
5.05.05.05.0

U                                          (2.46) 

We first calculate the two-level unitary V1 that will produce ‘0’ in the second 

element of the first column (a21) to obtain 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
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007071.07071.0
007071.07071.0

1V
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
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⎣

⎡

−−
−−
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−+

=
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5.05.05.05.0

3536.03536.07071.03536.03536.00
3536.03536.003536.03536.07071.0

1UV
  (2.47) 

The two-level unitary V2 should produce ‘0’ in a31 to obtain 
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⎥
⎥
⎥
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⎤
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⎢

⎣

⎡

−
=
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12 UVV
     (2.48) 

The two-level unitary V3 should produce ‘0’ in a41 to obtain 

⎥
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⎡
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3536.03536.07071.03536.03536.00

0001

123 UVVV
 (2.49) 

The two-level unitary V4 should produce ‘0’ in a32 to obtain 
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⎡

−

=

ii
i

i

5774.05774.05774.00
7071.07071.000
4082.04082.08165.00
0001

1234 UVVVV
   (2.50) 

The two-level unitary V5 should produce ‘0’ in a42 to obtain 

⎥
⎥
⎥
⎥

⎦
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⎢
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⎣

⎡
−
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⎡
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=

i
i

7071.07071.000
7071.07071.000
0010
0001

12345 UVVVVV
         (2.51) 

The decomposition in the right side of (2.51) is already in the form of a final 

two-level matrix.  Therefore, the two-level unitary matrix V6 is essentially the simple 

inverse of the last decomposition to achieve the identity matrix.  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎣

⎡

−−
−

=

ii 7071.07071.000
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0001

6V
    →  

⎥
⎥
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⎦
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⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
00.01

123456 UVVVVVV
             (2.52) 

The required decomposition of U is therefore 

++++++= 654321 VVVVVVU                                       (2.53) 



 43
 

as each 61, ≤≤+ iiV  is a two-level unitary operation.  It is important to note that we have 

actually run this example (using Maple 11) at the high precision of 8 decimals.  We use 

rounding here for conciseness.                                                                                        � 

Cybenko pointed out the similarity of this construction to the classical 

triangularization or QR factorization of a general matrix.  Since we start with a unitary 

matrix, one can expect the factorized upper triangular matrix to be diagonal [Cybe01].  

Equation (2.43) indeed shows that the BZBB decomposition process reaches the 

identity matrix.  Cybenko treats the general unitary matrix of n× n as a depiction of the 

nth dimension on which Schrödinger’s unitary time evolution equation operates.  

Accordingly, he denotes a two-level unitary matrix as a 2D unitary operation which 

performs the Givens rotation operation. 

2.3.7. Decoherence and Fault Tolerance for Quantum Circuits 

QC reliance on extensive data communication is further impacted by the 

decoherence problem.  Decoherence is the tendency of a quantum state held at 

superposition to “decay” into the basis states, resulting in a loss of the quantum state 

information (like noise in classical computing).  Isailovic et al. showed that decoherence 

causes an extremely large error rate of single quantum gate of 10-3 [IPWK06].  While 

near future enhancements are projected to improve this failure rate to 10-8, it is still 

many orders of magnitude below the standard CMOS gate’s error rate of 10-19.  

Therefore, QC must rely extensively on quantum error correction codes (QECC) for 

proper operation [Stea96].  All current and proposed implementations for quantum 
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computing typically use [n,k,d] quantum error correcting codes, where a total of n 

qubits are used to encode k qubits of data, with distance d.  This code is capable of 

correcting the error set {Ei} if and only if  

PPEPE ijji α=+                                                        (2.54) 

where α is an Hermitian matrix with complex elements and P is a projector into the 

code [NC00, Niel98]. 

After an error is detected, a properly designed fault-tolerant QC circuit must 

activate its error recovery means.  Such a QC circuit can tolerate a single-fault failure 

probability p in the circuit’s gates provided the measurement result reported has 

probability of error of O(p2) [AB97].  

The important threshold theorem for quantum computation states that an 

arbitrarily complex QC circuit can work reliably, provided the error probability p of 

each individual gate is below a certain threshold [NC00].  While the QC circuit still 

requires some reasonable overhead in size for QECC and other noise avoidance circuits, 

this theorem is heralded by QC researchers as the light at the end of the tunnel that leads 

to the emergence of real quantum computers.  

 

2.4. Quantum Cellular Array Fundamentals 

In this section we introduce the basic structure of the quantum cellular array 

(QCA).  We also discuss the QCA native 3-input majority gates ability to implement the 

basic logic functions. 
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2.4.1. The Quantum Cellular Array Basic Cell and Wires 

The basic QCA cell can be schematically depicted as a square substrate with 

four quantum dots located at the four corners [LTP93].  Each cell has only two electrons 

so that they tend to be in the two bistable arrangements shown in Fig. 2.9.a.  The 

electrons cannot occupy two adjacent dots due to the columbic repulsion between them.  

We arbitrarily select the first cell as logic 1 encoding, leaving the second cell to encode 

logic 0.  

 

 

Figure 2.9.  Basic QCA Cell (a) and (b) QCA Wires 

 

The same columbic repulsion aligns the data within the cells when they are 

arranged along a wire as shown in Fig. 2.9.b.  When two electrons occupy quantum dots 

that are near one another, the electrostatic Coulombic repulsion between them causes 

one of the electrons to move to another quantum dot further in distance by using the 

quantum effect of “tunneling”.  Here we assume that information flows from left to 

right and the cells in the dotted box are next to respond.  Various clocking mechanisms, 

as described in [WJ06] are used to enforce the proper or desired direction of data 
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propagation.  It should be noted that since no current is flowing between the cells, QCA 

is essentially a very low power technology (even though current is used, and hence 

power is dissipated, in some implementations for the clocking zones [XCN+06]).  

2.4.2. The Native Gates of QCA 

The native gate for QCA is created when five cells are placed adjacently in the 

geometric configuration as shown in Fig. 2.9.  The result is a logical majority gate with 

three inputs and one output.  This three input majority gate performs the Boolean 

operation described by the binary function  

M(a,b,c) = ab + bc + ac .                                            (2.55) 

Basic two variable AND and OR functions can be readily implemented by 

M(a,b,0) and M(a,b,1), respectively.  However, the majority gate is not a universal gate 

since it is unable to implement the NOT function.  Therefore, majority logic gates must 

be combined with inverter circuits in order to implement any possible arbitrary logic 

function. 

 

 

Figure 2.10.  QCA 3-input Majority Gate 
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Fig. 2.11 shows a fork inverter.  The output cell is affected by both end cells of 

the fork to insure reliable operations.  Other inverters that use 450 and 900 cells 

orientations have been developed [HMS+05].    

 

 

Figure 2.11.  QCA Fork Inverter 

 

Recently, the QCADesigner synthesis and simulation tool was developed by 

Walus et al. [WDJB04, WJ06, WSJ+04], allowing convenient experimentation with 

virtual QCA circuits. 
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CHAPTER 3 

REPRESENTATION AND SIMULATION OF QUANTUM CIRCUITS 

 

Richard Feynman’s demonstration that some quantum mechanics effects cannot 

be simulated properly on classical computers prompted the initial interest in quantum 

computing and quantum information [Feyn82].  However, since quantum computers are 

not yet available, we must find ways to use classical computers based on conventional 

deterministic logic operations to represent and simulate quantum circuits.  We begin by 

discussing the challenge of quantum circuit representation and simulation and briefly 

survey the previous work.  We introduce the quantum multi-valued decision diagram 

(QMDD) in some detail in Section 3.2.  We then describe our contribution to QMDD 

minimization in sections 3.3 and 3.4.  We conclude this chapter with our work on QC 

simulation.   

3.1. Quantum Simulation on Classical Computers 

It is quite clear that classical computers cannot fully simulate quantum 

phenomena since it often relates to an infinite series of evolution matrices [Omne99].  

However extensive research has been expended with some degree of success to simulate 

specific aspects of quantum networks.  Quantum programming languages like Q-gol, 

qGCL, Quantum C, and QCL have been proposed in the past decade and have been 
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successfully used in various QC simulation environments [Omer03].  A reader 

interested in more details on such QC simulators may consult Julia Wallace’s survey at 

[Wall01].  In this dissertation we mainly consider the use of decision diagrams for QC 

simulation.   

3.1.1. Classical Binary Decision Diagrams (BDD) 

Binary decision diagrams (BDD) were developed by Akers [Aker78] and can be 

considered to be an exploitation of the Shannon expansion theorem for representing 

complex Boolean functions as a compact directed graph [Shan48].  In 1986, Bryant’s 

seminal paper [Brya86] introduced reduced order binary decision diagrams (ROBDD) 

that reduce the size of a BDD and create a canonic representation of the switching 

function utilizing:  

 Redundant node removal. 

 Sharing of isomorphic graphs. 

All modern BDD packages (like the popular F. Somenzi CUDD package 

[Some95]) are based on Bryant’s ROBDD so that mentioning BDD inherently implies a 

ROBDD.  Depending on the switching function that is being represented, BDDs can 

suffer from memory overflow as the number of variables grows.  Various heuristics for 

variable ordering and reordering have been developed to reduce the size complexity of 

BDDs [FS90, FMK91, ISY91, PS95, Rude93].  The BDD size minimization for 

incompletely specified functions was shown to be NP-complete by Sauerhoff and 

Wegener [SW94].  It was later shown that the problem is also NP-Complete for the 

general ROBDD by Bollig and Wegener [BW96].  
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3.1.2. Early Quantum Circuit Simulation Tool Using BDDs 

  In 1999, Greve created a quantum decision diagram (QDD) tool based on Jorn 

Lind-Nielsen’s BuDDy package [Grev99].  Greve was able to successfully simulate 

Shor's quantum factoring algorithm using the QDD structure he developed.  The 

program was able to factor a 16 bit number in about 8 minutes on a Pentium 200MHz 

computer with 64M of RAM 

  Ablayev et al. [AGK01] proposed the use of a quantum circuit BDD in 2001.  

Homemister et al. [HW05] described the QBDD proposed by Ablayev as a node having 

four outgoing edges, each marked with the amplitude for choosing the particular edge.   

3.1.3. The QuIDDPro Tool 

Viamontes et al. [VRM+03] suggested the Quantum Information Decision 

Diagram (QuIDD) as an application of the Algebraic Decision Diagram (ADD) to 

quantum computing [BFGH+93].  QuIDD matrices and QuIDD vectors allow for 

matrix-vector computation to be performed efficiently within the QuIDD structure.  

Similar to the general ROBDD, a new QuIDD may be constructed recursively using the 

APPLY operation on other QuIDDs.  The QuIDDPro package is implemented using the 

well-known CUDD package for manipulation of BDDs developed at the University of 

Colorado [Some95]. 

3.1.4. The Binary Control Signal Constraint 

A common crucial issue for quantum circuit simulation is whether we should 

constrain the control lines to take only the “binary” values |0〉 and |1〉 or to allow the 
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control lines the freedom of using superposition values.  In their paper on quantum 

synthesis using the quantum decision diagram (QDD) structure, Abdollahi and Pedram 

dubbed this issue as the binary control signal constraint [AP05].  They pointed out that 

it is the practice of many researchers to adopt this constraint in quantum logic synthesis.  

Further, they stipulated that relaxing this constraint will not improve the optimality of 

the synthesis result.  

As described in the previous chapter, many quantum algorithm circuits clearly 

require the control inputs to have superposition values.  We therefore believe that this 

crucial issue must be further addressed.  We re-visit this issue in Section 3.3.4 to show 

that relaxing this constraint results in a unique phenomenon of skipped variables in our 

QMDD tools.  

 

3.2. The QMDD Data Structure 

Miller and Thornton proposed the QMDD structure to simulate and specify 

reversible logic circuits in a compact form [MT06, MTG06].  As discussed in section 

2.2.3, a reversible circuit with n variables (that is, a circuit with n inputs and n outputs) 

requires a transformation matrix of dimension rn × rn, where r is the radix.  Such 

transformation matrices quickly explode in size [FMY97].  However, this 

transformation matrix exhibits a great degree of regularity that motivated the idea for 

the development of the QMDD data structure. 
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3.2.1. Properties of the QMDD  

A transformation matrix M of dimension n nr r×  can be partitioned as: 

 

2 2 2

0 1 1

1 2 1

1 1

r

r r r

r r r r r

M M M
M M M
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M M M

−

+ −
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⎢ ⎥
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L

                                    (3.1) 

 
where each Mi element is a matrix of dimension 1 1.n nr r− −×   A QMDD applies this 

partitioning analogous to how a reduced ordered binary decision diagram (ROBDD) 

[Brya86] recursively applies Shannon decompositions.  In a similar manner to 

ROBDDs, a QMDD adheres to a fixed variable ordering and common substructures 

(submatrices) are shared.  A QMDD has a single terminal vertex with value 1, and each 

edge in the QMDD, including the edge pointing to the start vertex, has an associated 

complex-valued multiplicative weight.  For the binary case with radix r = 2, a 

representation matrix M of dimension 2n × 2n can be readily decomposed into four 

matrices M0,..,M3 so that: 

⎥
⎦

⎤
⎢
⎣

⎡
=

32

10

MM
MM

M                                                       (3.2) 

Definition 3.1: A quantum multiple-valued decision diagram (QMDD) [MT06] 

is a directed acyclic graph with the following properties: 

• There is a single terminal vertex (or node) annotated with value 1.  The 

terminal vertex has no outgoing edges. 
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• There is a number of non-terminal vertices (or nodes) each labeled by an r2-

valued selection variable.  Each non-terminal vertex has a plurality of r2 outgoing edges 

designated e0, e1, ..., er
2
−1. 

• One vertex is the start vertex and has a single incoming edge that itself has no 

source vertex. 

• Every edge in the QMDD, including the one leading to the start vertex, has an 

associated complex-valued weight.  An edge with weight of 0 must point to the terminal 

vertex.  This is required to ensure uniqueness of the representation of each distinct 

matrix. 

• The selection variables are ordered (assume with no loss of generality the 

ordering x0, x1, ..., xn−1) and the QMDD satisfies the following two rules: 

– Each selection variable appears at most once on each path from the start vertex 

to the terminal vertex. 

– An edge from a non-terminal vertex labeled xi points to a nonterminal vertex 

labeled xj , j < i or to the terminal vertex.  Hence x0 is closest to the terminal and xn−1 

labels the start vertex. 

• No non-terminal vertex is redundant, i.e. no non-terminal vertex has its r2 

outgoing edges all with the same weight and pointing to a common vertex. 

• Each non-terminal vertex has outgoing edges with normalized complex weight 

values.  Such a vertex is referred to as being normalized. 
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• Non-terminal vertices are unique so that no two non-terminal vertices labeled 

by the same xi can have the same set of outgoing edges with the same destinations and 

weights. 

Since each row and column of a unitary matrix must be orthonormal, we note 

that the magnitude of each element of such a matrix must be equal to or smaller than 1.  

This allows the following vertex normalization rule for QMDD to be formulated. 

Definition 3.2: A QMDD vertex is normalized if its outgoing edges are such 

that the largest weight on any edge exiting a vertex is 1.  

Since there is no natural ordering for complex numbers, we determine that the 

complex number ai
aer θ to be greater than bi

ber θ  if ra>rb or in the case of ra=rb, if θa< θb.  

3.2.2. QMDD Representation is Canonic  

 Like Bryant’s ROBDD [Brya86], the QMDD is useful due to its canonicity.  

 Theorem 3.1: An rn x rn complex valued matrix M has a unique (up to variable 

reordering or relabeling) QMDD representation [MT06]. 

Proof: The proof is by induction on n. 

n = 0:   In this case, M is a single element.  The QMDD representation consists 

of the terminal vertex which is also the start vertex and no nonterminal vertices.  The 

weight on the edge leading to the terminal (start) vertex is the value in M.  This is 

clearly a unique representation. 

n > 0:   Assume the result holds for all rn−1 × rn−1 matrices.  Consider the r2-

partitioning of a matrix M of dimension rn × rn.  Since each sub-matrix Mi has 
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dimension rn−1 × rn−1, by the inductive hypothesis, the QMDD for each Mi is unique.  

Let sv, which is labeled xn−1, denote the start vertex for the QMDD representing M.  

Initially, equate each outgoing edge ek, 0≤k≤rn-1 from sv to the edge pointing to the start 

vertex in the QMDD representation of Mi, and give the edge leading to sv weight 1. 

Normalizing sv as defined above, begins by finding the smallest k such that the 

weight wk on edge ek from sv is nonzero.  If wk = 1, sv is already normalized.  If wk ≠ 0, 

divide all the nonzero weights on outgoing edges from sv by wk and set the weight on 

the edge leading to sv to wk. 

Since the QMDD for each Mi is unique up to variable reordering or relabeling 

and the normalization process ensures sv and its associated edge weights are unique, the 

QMDD for M is unique up to variable reordering or relabeling [MFT07b].                   � 

3.2.3. A QMDD Example 

To familiarize the reader with the QMDD representation and operation, we 

provide a detailed example of the construction of a QMDD for a Controlled-V gate 

directly from its transformation matrix in Fig. 3.1.  The general Controlled-U operation 

and the V gate are detailed in section 2.3.  

 

 
 

Figure 3.1.  Transformation Matrix of the Controlled-V Gate 
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The construction of the Controlled-V QMDD representation (in radix 2) is 

detailed in Fig. 3.2.  In step 1 we construct the start node for the first decision variable 

X2 which decomposes the original 8×8 transformation matrix into four 4×4 matrices.  

For illustration purposes, we depict the resulting decomposed matrices near each 

QMDD node throughout Fig. 3.2.  Note that there is an incoming edge with a weight of 

one pointing to the start node.  We initially set the weights along the four edges from 

the start node to be one.  Redundant nodes are nodes having all their edges pointing to 

the same node with the same weight on each edge.  Node N3 and N4 illustrate the 

efficiency of the QMDD presentation as these redundant nodes are immediately 

eliminated in step 2 by connecting their incoming edge directly to the terminal node 

with weight 0.  As we encounter a lot of all-zero matrices in the process, we use a short 

stub with value 0 to indicate an edge with zero weight to the terminal node.  

In step 2 we further decompose the matrices of step 1 by applying the second 

decision variable X2.  The 4×4 matrices associated with nodes N2 and N5 are further 

decomposed to the eight 2×2 matrices along nodes N6 to N13.  We can see that nodes 

N7 and N8 represent the zero matrix and they are eliminated in step 3.  

A QMDD requires all the non-terminal nodes to be unique so that nodes having 

all their edges pointing to the same nodes with the same relative weights must be 

merged into a single node.  In the figures, redundant nodes can be identified if they 

represent the same decomposed matrices.  Redundant QMDD nodes (N10, N13) and 

(N11, N12) are merged in step 3. 
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Figure 3.2.  Detailed QMDD Construction for the Controlled-V Gate 
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Each non-terminal QMDD node is normalized to ensure canonicity as illustrated 

in step 4.  Normalization is accomplished by assigning a weight of one to the first non-

zero edge of the node.  There must be such an edge since if all the edges of the nodes 

are annotated with a zero-valued weight, the node is redundant, and all the incoming 

edges that point to it should point to the terminal node with zero weight. 

To make the weight of the first non-zero weighted edge of N5 equal to one, we 

divide all the other edges with the current weight of (i+1)/2 and multiply the incoming 

edge with this weight.  The weights for the edges from node N5 now become {1,-i, -i, 

1}.  Note that normalization is preserved at the start node, as its first edge pointing to 

node N2 remains with a weight of one.  Since nodes N10 and N11 represent the same 

decomposed 2×2 identity matrix, redundant node N11 is merged into node N10. 

In the final step 5, we merge the non-unique node N10 into node N6.  Node N6 

is the third decision variable X3 and it is decomposed into primitive 1×1 matrices that 

directly connect to the terminal node T. 

The final QMDD must uniquely resolve to the original transformation matrix.  

This is verified by following the path from the start node to the terminal node as 

determined by the variable assignments.  The normalized weights along each path are 

multiplied to achieve the corresponding values in the transformation matrix.   
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3.2.4. QMDD Construction and Matrix Operations 

The QMDD representing the transformation matrix of a circuit is constructed by 

reading a quantum gate cascade description of the circuit from a netlist file.  As each 

gate is parsed, it is converted to a QMDD representation of that particular gate.  During 

the process of parsing the circuit file, these QMDD representations of the gates are 

multiplied together to form the complete QMDD of the circuit.  Because QMDDs are 

directed graphs, multiplication is achieved through a graph traversal algorithm. 

 QMDD algorithms have been developed to perform the following operations on 

two matrices A and B, where both A and B are QMDDs and accessed by the edges to 

their start nodes: 

• Matrix addition A+B. 

• Matrix multiplication A+B. 

• Tensor products .BA ⊗  

For details, please see [MT06].  Using these operations, the QMDD software 

can efficiently simulate the gate transformation in a one pass process without 

backtracking or recursion.   

 

3.3. QMDD Sift-Like Minimization and Manipulation 

In this section we describe an important contribution of this research that relates 

to QMDD sift-like minimization [MFT07, MFT07b].  As shown in Section 3.1.1, 
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classical BDDs use dynamic variable reordering to minimize the BDD size.  The 

QMDD seems to benefit equally from the implementation of dynamic reordering. 

3.3.1. Dynamic Variables Re-ordering Using Sifting 

We first examine the dynamic variable reordering technique commonly referred 

to as sifting in classical BDDs, where local variable swap operations are exploited 

allowing for a technique to be implemented that iteratively works on a small local 

subset of BDD nodes [FMK91, ISY91, YMSS06].  The sifting method was first 

proposed by Rudell where a single variable is sifted (moved) within a local group until 

minimal size is achieved for this particular local group of nodes [Rude93].  Panda and 

Somenzi extended Rudell’s work to group sifting, but this approach (and many other 

heuristics) can just find a local minima [PS95].  The problem of finding the best 

variable ordering has been proven to be NP-Hard and just improving a given variable 

order is NP-Complete, with currently known optimal algorithms requiring exponential 

time complexities of O(n23n) [AGK01]. 

  The key observation used in Rudell’s sifting method is that the swapping of 

two adjacent variables in a given ordering can be accomplished with a simple exchange 

of two pointer values and avoids the need to traverse the entire BDD.  Fig. 3.3 

illustrates this local complexity in the trivial case when we swap node i and i+1, with 

node i+1 following after node i in the original variable order.  Since an advantage of 

ROBDDs is the elimination of the need to keep back pointers, node i+1 can be simply 

placed in the new order before node i (that is, performing the swap) without any change. 
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Figure 3.3.  Local Complexity in a Trivial BDD Swap 

 
The more general case is shown in Fig. 3.4 where the replacement of nodes i and 

i+1 causes a swap of the cofactors F10 and F01, as shown in red.  Using the common if-

then-else tuple notation, the local swap operation is represented by replacing the 

original function f=(xi, F1, F0) pointing to node i with a new function g pointing to node 

i+1 so that: 

       g= (xi+1,(xi,F11,F01), (xi,F10,F00))                                          (3.3) 

 

 

Figure 3.4.  The General Case of Local Swap Affects the Cofactors 
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3.3.2. QMDDs without Skipped Variables  

Definition 3.3: A QMDD variable i is skipped if a non-terminal vertex of 

decision variable i+1 has a non-zero weighted edge that points to a non-terminal vertex 

of decision variable i-1 skipping the intermediate variable i in the overall ordering. 

A very efficient local variable swap in a QMDD can be implemented if there are 

no skipped variables.  Local swap of skipped variables is performed in accordance with 

the procedure shown in [MD03].  In this section we prove that QMDD representing 

classical reversible circuits and binary quantum controlled-NOT gates do not have 

skipped variables.  In the following section, we show that quantum cascades may have 

skipped variables. 

We begin with Lemma 3.1 that outlines the requirement for a skipped variable in 

a QMDD structure. 

Lemma 3.1: In order for an intermediate vertex representing decision variable i 

to be skipped in a QMDD, at least one of the r × r decomposed sub-matrices for the 

decision variable i+1 matrix must be further decomposed by r2 identical sub-matrices. 

Proof:  The ri × ri sub-matrix of decision variable i+1 with r2 identical sub-

matrix decompositions represents a vertex that has all outgoing edges pointing to 

identical subtrees.  By Definition 3.1, a non-terminal vertex is redundant if all r2 edges 

point to the same vertex with the same weight.  It is easy to see that the condition in 

Lemma 3.1 causes the intermediate vertex i to be redundant, since the identical matrices 

pointed to by all edges are represented by the same vertex due to the uniqueness 

requirement of all the QMDD vertices.  This same vertex represents a matrix of size  
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ri-1 x ri-1, which represents decision variable i+1.  We thus show that the condition in 

Lemma 3.1 causes a vertex of decision variable i+1 to skip directly to decision variable  

i-1.                                                                                                                                     � 

Fig. 3.5 illustrates the condition of Lemma 3.1 for the construction of a non-zero 

weighted edge that skips all the nodes representing variable Xi in a simplified reversible 

circuit.  Matrix elements a, b, c, d, e, and f can have complex values.  Notice that the 

higher index variables are closer to the start vertex while variable 0 is closer to the 

terminal node.   

 

Figure 3.5.  The Condition for a QMDD Skipped Variable 
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We now show that a classical logic reversible circuit does not have skipped 

variables.  

Theorem 3.2: A QMDD for a matrix representing a binary or multiple-valued 

reversible circuit has no edges that skip variables except for edges that point to the 

terminal vertex and have weight 0. 

Proof: It is clear from the definition of a QMDD, that an edge annotated with a 

nonzero weight that skips a variable means the corresponding matrix has a sub-matrix 

of adjacent non-zero entries of dimension k kr r× for some k > 0.  However, the matrix 

representing a binary or multiple-valued reversible function is a permutation matrix 

since reversible functions are bijections and thus have only ‘0’ and ‘1’ entries with a 

single ‘1’ in each row and column.  It follows that the QMDD for such a circuit can 

have no edges with a nonzero weight that skips variables.                                               � 

Theorem 3.3:  A QMDD for a matrix representing a two-level unitary matrix or 

controlled unitary operation has no edges that skip variables except for edges that point 

to the terminal vertex and have weight of zero.  Furthermore, even if a controlled 

unitary operation of m-variables operates on an n-variable circuit, m<n, the 

transformation matrix that describes this gate does not have skipped variables.  

Proof:  It is easy to see by reviewing expressions (2.36) and (2.37) that a 

controlled operation gate or a two-level unitary matrix can have only one ‘1’ or a couple 

of the unitary complex elements Vxx in each row or column.  Therefore, the condition of 

Lemma 3.1 for the existence of skipped variables cannot be met.    



 65
 

When an m-variable controlled-U gate is part of an n-variable circuit, n>m, it 

must leave n-m lines of the circuit unconnected.  According to the 4th postulate of 

quantum mechanics, the unitary transformation matrix for this gate in the context of the 

n-variable circuit must be represented by the tensor (Kronecker) product of the gate 

matrix with identity matrices [MM05].  The order and size depends on the exact circuit 

architecture and an example is shown in Fig 3.6.  

  

 
 

Figure 3.6.  Transformation Matrix for a 2-variable Gate in a 3-variable Circuit 

 
 

The property of the tensor product ensures that each row and each column can 

have only one ‘1’ or two of the unitary complex elements Vxx.  Again, the condition of 

Lemma 3.1 cannot be met and the circuit does not have skipped variables.                    � 

3.3.3. Skipped QMDD Variables Appear in QC Cascades 

In this section we consider the possibility of skipped variables in an arbitrary 

QC cascade.  Since any unitary matrix can be decomposed into a cascade of gates in 

view of Theorem 2.2, we need to consider skipped variables in a general unitary matrix.  

When keeping the binary control signal constraint (Section 3.1.4), we were so far 
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unable to find quantum circuits that will cause skipped variables in QMDD 

representation (see the Conjecture in [MFT07b]). 

However, we do find skipped QMDD variables when we relax this constraint. 

As an example of the skipped variable phenomena, quantum circuits that have been 

proposed for quantum error correction codes (Chapter 5) or the quantum search 

algorithms (Section 2.3.1) exhibit this property.  We found that a very important unitary 

matrix that is used in the Grover sorting algorithm for inversion about the average 

produces skipped variables when represented as a QMDD.   

Definition 3.4: We will refer to an N × N matrix D with all diagonal elements 

equal to 12
−

N
 and all the remaining elements equal to 

N
2  as DI(N) matrices. 

Equation (3.3) illustrates the structure of DI(N). 
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Lemma 3.2:  If N is an integer such that N>1, then DI(N) matrix is unitary.  If m 

is an integer such that m>1, then a QMDD representing DI(2m) must have skipped 

variables.  Further, the QMDD must have at least one vertex with a non-zero weight 

that skips m-1 variables.    

Proof:  It is easy to show that DI(2m) DI(2m)*=I, and therefore, DI(2m) is unitary 

and represents a valid quantum state transformation.  When n = 2m, where m is an 
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integer and m>1, DI(2m) can be represented by a binary (radix r = 2) QMDD.  To prove 

that DI(2m) has a skipped variable, consider the decomposition of the matrix into 4 sub-

matrices at each decision variable during the QMDD build up.  For m=2, DI(4) is the 

4×4 unitary matrix 

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

−

=

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

)4(ID

 

The first decision variable x1 decomposes DI(4) into four 2×2 sub-matrices 

according to (3.1).  Clearly these sub-matrices are not equal.  The next and final 

decision variable x0 further decomposes each of the four 2×2 sub-matrices into four 1×1 

sub-matrices.  With this example, it is easy to show that the condition of Lemma 3.1 

exists within the second and third sub-matrices that are  
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It is easy to show by induction that matrix DI(2m) where m>1 results in a QMDD 

containing skipped variables that actually skip over m-1 variables.  This proves the case 

for m=2 that there is a non-zero weighted edge that skips m-1=1 variables.   

For the m+1 case, we note that increasing m by 1 adds one decision variable and 

quadruples the size of the transformation matrix from that of m.  Since all elements 

except the diagonal elements are the same, we have a skipped variable which skips one 

more variable than the case for m.                                                                                    � 
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Fig. 3.8 illustrates the skipped variables that arise in the DI(8) unitary matrix.  

For conciseness, we present the transformation matrices with 
4
12

==
N

a  and with the 

diagonal elements 1
4
112
−=−=

N
b .  The left part of the drawing shows the creation of 

the QMDD prior to the elimination of the redundant vertices.  The resultant QMDD is 

depicted on the right side of the drawing.  The red edges skip two decision variables 

while the blue edges skip one decision variable. 

 

Figure 3.7.  QMDD with One and Two Skipped Variables 

 

Corollary 3.1:  An N×N matrix with all elements equal to 
N
2  except for the 

cross diagonal elements which are equal to 12
−

N
, causes skipped variables to occur in 
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the corresponding QMDD representation similar to the  DI(N) matrix.  We call such a 

matrix a reversed DI(N) matrix.   

Proof:  The proof is very similar to Lemma 3.2 in view of the symmetry of both 

matrices.                                                                                                                            � 

 The simple circuit HCH, shown in Fig. 3.8 is used in the stabilizer circuit for 

QC error correction codes.  The HCH circuit is represented by the transformation matrix 

of (3.4) that is a reversed DI(4).  Therefore, by Corollary 3.1, the QMDD representing 

this circuit must have at least one non-zero weight edge that skips one variable (shown 

in blue). 

 

 

Figure 3.8.  The HCH Circuit 

 

We decompose the HCH circuit using the Beck-Zeilinger-Bernstein-Bertani 

Theorem of Section 2.3.6.  We follow steps (2.47)-(2.53) so that we can compare this 

matrix decomposition to the example of Section 2.3.6 that did not create skipped 

variables. 



 70
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

==

5.05.05.05.0
5.05.05.05.0
5.05.05.05.0
5.05.05.05.0

HCHU                                          (3.5) 

We first calculate the two-level unitary V1 that will produce ‘0’ in the second 

element of the first column (a21) to obtain 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0100
007071.07071.0
007071.07071.0

1V
  →       

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

5.05.05.05.0
5.05.05.05.0

7071.07071.000
007071.07071.0

1UV
      (3.6) 

The two-level unitary V2 should produce ‘0’ in a31 to obtain 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
08165.05774.0
0010
05774.008165.0

2V
  →      

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−

=

5.05.05.05.0
4082.04082.08165.00
7071.07071.000

2887.02887.02887.0866.0

12 UVV
      (3.7) 

The two-level unitary V3 should produce ‘0’ in a41 to obtain 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

=

866.0005.0
0100
0010

5.000866.0

3V
   →     

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−
−

=

5774.05774.05774.00
4082.04082.08165.00
7071.07071.000
0001

123 UVVV
       (3.8) 

The two-level unitary V4 should produce ‘0’ in a32 to obtain 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
010
0100
0001

4V
   →                

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−
−−

=

5774.05774.05774.00
7071.07071.000
4082.04082.08165.00
0001

1234 UVVVV
       (3.9) 

The two-level unitary V5 should produce ‘0’ in a42 to obtain 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
=
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⎥
⎥
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⎢
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⎢

⎣

⎡

−
=

7071.07071.000
7071.07071.000
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0001

12345 UVVVVV
        (3.10) 



 71
 

The decomposition in the right side of (2.51) is already in the form of a final 

two-level matrix.  Therefore, the two-level unitary matrix V6 is essentially a simple 

inverse of the last decomposition to achieve the identity matrix in the decomposition.  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

7071.07071.000
7071.07071.000
0010
0001

6V
   →    

IUVVVVVV =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

123456

           (3.11) 

The required decomposition of U is therefore 

++++++= 654321 VVVVVVU                                       (3.12) 

Consider the transition between (3.6) to (3.7) to the comparable transition in 

Chapter 2 between (2.48) and (2.49).  In this step the algorithm attempts to convert 

matrix element a41 to ‘0’.  Notice that in the HCH case, this step also sets the diagonal 

element a22 to ‘0’.  Our intuition is summarized in the following conjectures [FTM08d]: 

Conjecture 3.1: A QMDD representation of a unitary matrix that has any of its 

diagonal elements changing to ‘0’ during the BZBB decomposition steps must exhibit 

skipped variables. 

Conjecture 3.2: A QMDD representation of a unitary matrix has skipped 

variable only if we relax the binary control signal constraint.  
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3.3.4. Local Variable Swap for QMDD with no Skipped Variables 

The local variable swap is the basic operation in dynamic variable re-ordering 

algorithms for decision diagrams.  An extremely efficient algorithm results for QMDD 

with no skipped variables.  

 

 

Algorithm 3.1:  QMDD Local Adjacent Variable Pair Swap 

Input:  QMDD f representing a reversible quantum circuit with k variables and n nodes.  

i, a variable to swap, 1<i<k.  t is the number of all nodes representing variable i 

in QMDD f. 

Output: QMDD g with n’ nodes, which is QMDD f with swapped variables i and i-1. 

Initialization: Reset queue q1 and an array of t lists Lx. 

1.   Enter pointers to all the t nodes Nx ,0<x<t, representing variable i into the queue 

q1.    

2.  While queue q1 is not empty. 

3.   Get a node pointer p to Nx from q1. 

4.   Do a DFS search from the node Nx pointed by p and create a list Lx of all the 

paths and local weight from node Nx to all the reachable nodes representing 

variable i-2.  Each such path includes exactly two edges m and l so that  

0<=m,l<4, em is the edge from the i node Nx to an i-1 node, and el is the edge 

from the i-1 node to the i-2 node.  Each path is marked as Nxml.  It is stored in 
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pair with the local weight Nxw for each path, which is computed as em x el.  Each 

pair must be associated with the node Ej representing variable i-2 reachable by 

the path. 

5.   Delete all nodes currently representing variable i-1. 

6.   For (x=0; x<t; x++):  

[1]    Change Nx variable to i-1.    

[2]    Build a new set of nodes of variable i by reversing the paths in Lx from 

Nxml  to Nxlm and connecting the second edge to the appropriate Ej node 

of variable i-2.  Follow QMDD construction rules to eliminate 

redundant and non-unique new nodes.  Use normalization to assign 

new edges weight to equal the original path weight. 

7. Return the post-swap QMDD as g, and report its total number of nodes n’.          � 

    

  This algorithm may be best explained in conjunction with a detailed graphic 

example.  A portion of our example QMDD showing all the nodes for variables  

Xi+2, Xi+1, Xi, and Xi-1 is shown in Fig. 3.9a.  Our goal is to locally swap adjacent 

variables Xi+1 and Xi, which are bounded by the blue bracket.  Constant local complexity 

is achieved if the swap can be done completely within the bracket.  This is where the 

lack of non-zero weighted edges with skip variables assures us that we do not need to 

change the incoming edges from the Xi+2 top nodes.  Our local swap method provides 

new locally determined edges to connect to the six nodes of variable Xi-1 which are 

marked E0 to E5.  
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(a) Before local swap 

of variables  

Xi+1 and Xi 

 

 

 

(b) Mapping of all 

local paths and 

weights 

 

 

 

(c) Creating the local 

swap and weights 

normalization 

 

Figure 3.9.  QMDD Local Variable Swap Example 
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(d) After local swap 

of variables  

Xi+1 and Xi 

 

 
Figure 3.9.  (Cont’d)   QMDD Local Variable Swap Example  

 
 

3.3.5. The QMDD Sifting Procedure 

The QMDD sifting procedure repeatedly uses the local variable swap algorithm in a 

similar way to the sifting procedure for classical BDDs [Rude93]. 

Algorithm 3.2:  QMDD Sifting Procedure 

i)  Select a variable α that labels the most vertices in the QMDD.  In the event of a 

tie, choose the variable closest to the terminal vertex. 

ii)  Sift α to the bottom (closest to the terminal vertex) of the QMDD by a sequence 

of adjacent variable interchanges. 

iii) Sift α to the top of the QMDD by a sequence of adjacent variable interchanges. 

iv) During steps (ii) and (iii) a record is kept of the position of α that yields the 

smallest vertex count in the QMDD, so now sift α back down to that position. 
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v)  Repeat steps (i) to (iv) until each variable has been sifted into its best position 

noting that once a variable is selected for sifting, it is not selected a second time. 

3.3.6. QMDD Minimization Results with Sifting 

Table 3.1 shows the experimental minimization results with binary reversible 

benchmark circuits [Masl05].  The results show the sifting method can be quite 

effective, but at times, it can be computationally expensive with little benefit.  More 

results regarding our experimentation with ternary circuits can be found in the work 

reported in [MFT07].  

Table 3.1.  Experimental Results – Binary Circuits 

name type lines gates 

vertices 
before 
sifting 

time to 
build 

QMDD 
(ms) 

vertices 
after 

sifting 

time to 
sift 

QMDD 
(ms) 

vertex 
count 

reduction 
by sifting 

max. 
vertices 
during 
sifting 

5mod5 nct 6 17 28 0 16 8 43.9% 28 
6symd2 nct 10 20 247 7 170 42 31.2% 478 
9symd2 nct 12 28 229 7 184 50 19.7% 558 

c2 nct 35 116 150 30 136 289 9.3% 504 
c2 qc 35 305 150 220 136 241 9.3% 504 

c3-17 nct 3 6 10 0 10 4 0.0% 11 
c410184 nct 14 46 39 0 33 43 15.4% 86 
c410184 qc 14 74 39 0 33 52 15.4% 86 
cyc17-3 nct 20 48 236 10 42 131 82.2% 418 

ham3 nct 3 5 10 0 10 0 0.0% 10 
ham15 nct 15 132 4522 140 2638 488 42.7% 13878 
hwb4 nct 4 11 22 0 20 4 9.1% 22 
hwb4 qc 4 21 22 0 20 8 9.1% 22 
hwb7 nct 7 289 179 30 155 16 13.4% 181 
hwb8 nct 8 614 343 120 280 28 18.4% 351 
hwb9 nct 9 1541 683 640 520 40 23.9% 690 

hwb10 nct 10 3595 1331 2920 960 59 27.9% 1347 
hwb11 nct 11 9314 2639 14290 1730 130 34.4% 2685 
hwb12 nct 12 18393 5167 53350 3185 265 38.4% 5254 
rd84d1 nct 15 28 3588 27 396 117 89.0% 4415 
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In Table 3.2 we compare our minimized results to those obtained with the 

QuIDDPro tool [VRM+03].  Since the QMDD has four edges from each vertex and thus 

more efficient connectivity, we see that even before sifting, the QMDD requires 

significantly less vertices than the QuIDDPro tool. 

Table 3.2.  Size Comparison between QMDD and QuIDDPro  

name lines gates 

vertices 
before 
sifting 

vertices 
after 

sifting 

time to 
sift 

QMDD 
(ms) 

vertex 
count 

reduction 
by sifting 

QuIDDPro 
vertices 

time to 
build 
BDD 
(ms) 

5mod5 6 17 28 16 8 43.9% 45 77 
6symd2 10 20 247 170 42 31.2% 299 117 
9symd2 12 28 229 184 50 19.7% 445 194 

c2 35 116 150 136 289 9.3% 348 1546 
c2 35 305 150 136 241 9.3% 348 10245 

c3-17 3 6 10 10 4 0.0% 21 22 
c410184 14 46 39 33 43 15.4% 86 274 
c410184 14 74 39 33 52 15.4% 86 492 
cyc17-3 20 48 236 42 131 82.2% 584 880 

ham3 3 5 10 10 0 0.0% 21 21 
ham15 15 132 4522 2638 488 42.7% 7547 2051 
hwb4 4 11 22 20 4 9.1% 45 43 
hwb4 4 21 22 20 8 9.1% 45 83 
hwb7 7 289 179 155 16 13.4% 351 2117 
hwb8 8 614 343 280 28 18.4% 684 6254 
hwb9 9 1541 683 520 40 23.9% 1349 24566 

hwb10 10 3595 1331 960 59 27.9% 2650 98704 
hwb11 11 9314 2639 1730 130 34.4% 5223 478555 
hwb12 12 18393 5167 3185 265 38.4% 10283 1722050 
rd84d1 15 28 3588 396 117 89.0% 1252 255 

 

3.4. Data Structure Metrics of Quantum Multiple-valued Decision Diagrams  

In this section we consider the use of data structure metrics for the analysis and 

minimization of QMDD.  We should recall that a QMDD has r2 transition edges from 
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each vertex, where r is the radix.  Since the transformation matrices representing 

quantum circuits are often sparse, many QMDD edges point directly to the terminal 

node with zero weight.  This creates a complex inter-connectivity among the QMDD 

vertices that allows QMDD to represent relatively intricate circuits with a small number 

of vertices.  We were motivated to examine the frequency of non-zero weight edges as a 

potential indicator that improves the minimization of the QMDD. 

The data structure metrics proposed in this research allow us to better 

understand this inter-connectivity.  They include the ratio of non-zero weight edges to 

the number of vertices for the entire QMDD as well as a distribution of the similar ratio 

measured for each variable.  We propose a set of heuristics based on the values of these 

metrics to guide dynamic variable ordering (DVO) resulting in an improvement in 

minimization for many benchmark circuits.  

In our previous work, we have developed a DVO sifting algorithm that utilized 

efficient adjacent variable interchange [MFT07b].  The sifting algorithm, adapted for 

QMDD from Rudell’s binary ROBDD sifting approach [Rude93], achieved significant 

size reductions on some benchmark circuits of reversible/quantum circuits of n-

variables while considering only O(n2) of the n! possible variable orderings.  

In this work we offer additional heuristic algorithms for QMDD minimization.  

The new heuristics achieve improved minimization for some benchmark circuits over 

our previous sifting algorithm.  Since such DVO minimization efforts consume 

processing time, it is beneficial to be able to predict in advance whether a certain 

QMDD structure can be minimized [YMSS06].  We propose heuristics, based on our 
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new data structure metrics that provide effective prediction in this regard for most of the 

benchmark circuits we tested. 

3.4.1. Exploring QMDD Data Structure Metrics  

In this section, we demonstrate the proposed QMDD data structure metrics with 

the help of the simple benchmark file “C3_17.nct” shown in Fig. 3.10.  Fig. 3.11 shows 

the QMDD for benchmark file “c3_17.nct” of Fig. 3.10. 

 

 

 
 

Figure 3.10.  3-variable Benchmark Circuit “c3_17”  

 
The unique table used by the QMDD software continuously maintains and 

tracks Active[i], the number of active vertices for each variable i, 0≤i≤n, where n is the 

number of variables.  This is an important auxiliary QMDD data structure that we have 

used extensively in our previous work.  We define new QMDD data structure metrics as 

follows: 

Definition 3.5: Let α be the ratio of the total number of edges with non-zero 

weight to the total number of vertices in the entire QMDD.  Similarly, let α[i] be the 
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ratio of the number of edges with non-zero weight that emerge from all the vertices of 

variable i to the number of vertices of the same variable.  It follows that, 

∑
∑

−

−
×

= 1

0

1

0

][

][][
n

n

iActive

iiActive α
α                                                      (3.13) 

 

 

Figure 3.11.  The QMDD for Benchmark Circuit “c3_17”  

 

Since each nonterminal QMDD vertex has r2 edges, 1≤α≤r2 and 2][1 ri ≤≤α , 

where r is the QMDD radix.  For example, computing ]1[α  for the QMDD of Fig. 3.11, 

we have a total of four vertices and eight non-zero weight edges, thus ]1[α = 8/4=2.00.  

We observe that while vertex N1 has two edges with non-zero weight, they both 

connect N1 to N5, essentially connecting the vertex to only one unique vertex.  We 

therefore distinguish between the number of edges with non-zero weight and the 

number of unique connections that reach different vertices as follows: 
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Definition 3.6: Let β be the ratio of the total number of unique connections with 

non-zero weight to the total number of vertices in the entire QMDD.  Similarly, let β[i] 

be the ratio of the number of non-zero weight edges that emerge from all the vertices of 

variable i to the number of vertices of the same variable.  As above, 1≤α≤r2 and 

2][1 ri ≤≤ β .  It follows that 

∑
∑

−

−
×

= 1

0

1

0

][

][][
n

n

iActive

iiActive β
β                                                  (3.14)                           

For variable 1 in Fig. 3.11, we have a total of four vertices and seven unique 

connections with non-zero weight, thus ]1[β = 7/4=1.75.  The relation between α and β is 

given by the following lemma. 

Lemma 3.3: Let ],[,, iαβα and ][iβ be the data structure metrics of a QMDD with 

n variables as defined above.  Hence, (i) 2][][1 rii ≤≤≤ αβ  for all i, 0<i<n-1, and (ii) 

21 r≤≤≤ αβ .   

Proof: Each vertex representing variable i must have at least one edge with a 

non-zero weight, since a QMDD vertex with all edges having zero weight is redundant 

and would be removed.  This edge creates a unique connection to a nonterminal vertex, 

thus ][1 iβ≤  must be true.  We observe that the number of unique connections for the 

vertices of variable i cannot exceed the number of edges with non-zero weight by 

Definition 3.6.  Thus ][][ ii αβ ≤  must be true. 
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Let Active[i] denote the number of active vertices for variable i, and E the total 

number of the QMDD’s edges with non-zero weight and C the total number of unique 

connections.  Then 

∑ −
×=

1

0
][][n iiActiveE α                                          (3.15) 

and  

∑ −
×=

1

0
][][n iiActiveC β                                           (3.16)  

Since we have proven that ][][ ii αβ ≤ , it follows that C≤E and                

.
][][ 1

0

1

0

αβ =≤=
∑∑ −− nn iActive

E
iActive

C                              (3.17) 

 Clearly, 2][ ri ≤α , with the equality occurring when all edges have non-zero weights.  

The proof for (ii) follows similar arguments.                                                    � 

        Listing the metrics for QMDD metrics in tabular form provides a histogram-like 

display of the structure of the QMDD which, we will for convenience, refer to as a 

distribution.  

 
We demonstrate in Table 3.3 the distribution of the metrics for the QMDD in 

Fig. 3.11.  The bottom line of the distribution provides the overall βα ,  and number of 

vertices for the entire QMDD.  Note that the sum of Active[i] does not include the 

terminal node.  The distribution lists the variables according to the current variable 

order of the QMDD.  In Table 3.3, variable 2 labels the start node and variable 0 is the 

closest variable to the terminal node.  As a result, variable n-1, the start node, always 

has Active[n-1]=1.  The last row of the distribution shows the overall values for the 
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QMDD.  For the Active[i] column, this is the sum (total of nodes), and for the ][],[ ii βα  

columns, the last row depicts the overall βα , . 

Table 3.3.  Metric Values for Benchmark Circuit “3_17.nct” 

 
variable Active[i] ][iα  ][iβ  

2 1 4.00 4.00 
1 4 2.00 1.75 
0 4 1.00 1.00 

Overall 9 1.78 1.67 
 
 

BDD researchers have observed that the numbers of vertices for each variable 

(arranged by the variable order) in general exhibit a pear-shaped pattern [PS95].  We 

have observed that while most QMDD exhibit similar pear shape distributions of the 

metrics, many distributions exhibit quite a flat pattern, where most variables have 

roughly the same Active[i].  This allows us to classify QMDD metric distributions as 

“FLAT” or “PEAR”, as demonstrated in the two examples in Table 3.4.  The left 

distribution of “hwb12” exhibits the typical pear-like pattern commonly observed in 

classical BDDs.  The right distribution corresponding to the benchmark circuit 

“cycle10_2*” is of type flat as variables 7 to 2 have similar numbers of vertices in the 

range [15,18].  We later show that different minimization heuristics apply based on this 

classification. 

The ][iα  and ][iβ  distributions provide additional insight that is explored in the 

following Section.  It should be noted that the QMDD unique table provides an efficient 

means to compute the Active[i] as well as the ][iα  and ][iβ  distributions incurring very 

little processing overhead. 
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Table 3.4.  Histograms for “hwb12” and “cycle10_2*” 

var act[i] α[i] β[i] var act[i] α [i] β[i] 
11 1 4.00 4.00 11 1 2.00 2.00 
10 4 4.00 4.00 10 2 4.00 3.00 
9 16 4.00 4.00 9 6 1.67 1.67 
8 64 4.00 4.00 8 10 2.00 1.60 
7 256 3.91 3.91 7 16 1.44 1.19 
6 990 2.84 2.84 6 16 1.44 1.19 
5 2258 1.37 1.37 5 16 2.00 1.56 
4 1174 1.17 1.17 4 18 1.50 1.17 
3 304 1.16 1.16 3 18 2.00 1.00 
2 76 1.16 1.16 2 15 1.20 1.00 
1 19 1.21 1.21 1 9 1.33 1.00 
0 4 1.00 1.00 0 3 1.33 1.00 

Overall 5167 1.76 1.76 Overall 131 1.65 1.24 
 

  

3.4.2. Improving QMDD Minimization with the Data Structure Metrics  

The inability of our sifting algorithm (as well as any other similar heuristic 

algorithm) to achieve consistent positive results with all the benchmark circuits, is of 

course, due to the fact that it examines only n2 ordering possibilities out of n! possible 

orderings.  To achieve improved minimization, common binary BDD packages offer a 

rich choice of reordering heuristics.  These heuristics can be grouped into sifting 

algorithms (that include also group, iterative, and symmetric sifting), random 

algorithms, window algorithms, and other special algorithms (including simulated 

annealing and genetic evolutionary algorithms) [YMSS06]. 

While all of these heuristics can be extended for QMDD, we concentrate here on 

heuristics primarily based on sifting and random approaches.  Our experimentation with 

the group sifting approach that exploits the affinity among variables achieved limited 

success.  One reason is that benchmark circuits with sufficiently large numbers of 
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variables are currently not available.  Furthermore, it seems that since reversible circuits 

are maximally connected [Agra81, FTM08], they tend to display a strong group 

behavior as a whole, making attempts to identify subgroups more difficult or redundant.  

Our random algorithm performs a set of random variable position changes 

without regard to structure size between repeated applications of the sifting algorithm.  

This process breaks apart the initial grouping of variables allowing the sifting algorithm 

to find a better ordering.  A set of heuristics inferred from the data structure metrics is 

then used to determine when the process should stop. 

 

Algorithm 3.3: QMDD Minimization Procedure 

i)  Apply the sifting algorithm for initial reordering.  

ii)  Use metrics-based heuristics to predict if a better variable ordering is likely. If 

prediction is negative – stop the procedure. 

iii) Perform a random set (or a specially designed fixed set) of variable 

rearrangements without regard to structure size.  

iv) Repeat steps (i) to (iii). Stop the process if this step is repeated more than k times. 

 

We present a sample set of the data structure metrics heuristics that have been 

investigated.  Like all heuristics, they obtain different levels of success as described in 

the following section, hence the k limit in step iv.   
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Sample Heuristics: 

Heuristic 1: For pear-type QMDDs representing various benchmark circuits, if the 

sifting algorithm provides moderate or no improvement and if the pattern of the of ][iα  

and ][iβ  distribution is not changed by sifting, then no significant improvement is likely 

to be achieved. 

Heuristic 2: For flat-type QMDDs representing various benchmark circuits, no 

significant improvement is likely if the first half of the variables exhibit 00.2][ ≈iα .  

Heuristic 3: Appearance of ][iα  or ][iβ  equal to 2 in the first two variables (of the 

variable ordering) of a pear-type benchmark circuit suggests benefit for further 

reduction attempts, as the QMDD may become flat.  

Heuristic 4: Benchmark circuits with an ][iα  distribution that is not monotonically 

decreasing (along variable order from the start vertex) resist minimization.  

Heuristic 5: If reordering of a flat-type QMDD representing a benchmark circuit 

changes its distribution shape to pear-type, the total number of vertices will usually 

increase. 

3.4.3. Experimental Improvements with the Data Structure Metrics  

We summarize our results for a broad set of benchmark circuits in Table 3.5.  

The second column indicates the histogram type (PEAR or FLAT) as described in 

Section 3.  The last column indicates the improvement (if any) of the new algorithm 

over our previous sifting algorithm.  
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Table 3.5.  Improvements in QMDD Minimization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

We have seen significant improvements with the benchmark circuits “9symd2”, 

“cycle10_2”, “ham7”, “ham15m” and “rd73d2”.  We recorded the QMDD histogram 

during the entire minimization process.  An interesting observation for most benchmark 

cirucits is that the initial QMDD construction process produces a monotonically 

decreasing ][iα  distribution.  On the other hand, the ][iβ  distribution may exhibit 

fluctuations, although the values are generally decreasing in view of Lemma 1.  The 

only observed violation of the monotonic decrease of ][iα  appears with benchmark 

circuit “mod5adders”.  Since this circuit seems to resist minimization, we use this 

finding in Heuristic 4. 

Name Hist 
type 

vars gates Initial 
QMDD 
vertices

Previous 
sifting 

reduction

New 
algorithm 
reduction 

Improve-
ment 

5mod5 Pear 6 17 28 42.86% 46.43% 8.33% 
6symd2 Pear 10 20 247 50.20% 56.68% 12.91% 
9symd2 Pear 12 28 229 19.65% 48.19% 145.24% 

mod5adders Pear 6 21 38 0.00% 0.00% 0.00% 
0406142c2 Flat 35 116 150 9.33% 9.33% 0.00% 
0410184 Flat 14 46 39 15.38% 15.38% 0.00% 

0410184.qc Flat 14 74 39 15.38% 15.38% 0.00% 
cycle17_3 Flat 20 48 236 57.20% 82.20% 43.71% 
cycle17_3r Flat 20 48 236 82.20% 82.20% 0.00% 
cycle10_2 Flat 12 19 67 40.30% 62.69% 55.56% 

ham7 Pear 7 23 130 3.08% 24.62% 699.35% 
ham15 Pear 15 132 4521 49.56% 72.62% 46.53% 

ham15m Pear 15 132 1774 19.17% 36.30% 89.36% 
ham15r Pear 15 132 4522 60.59% 73.33% 21.03% 
hwb7 Pear 7 289 179 13.41% 13.41% 0.00% 
hwb8 Pear 8 614 343 18.37% 18.37% 0.00% 
hwb9 Pear 9 1541 683 23.87% 23.87% 0.00% 

hwb10 Pear 10 3631 1331 27.87% 29.30% 5.13% 
hwb11 Pear 11 9314 2639 34.44% 34.44% 0.00% 
hwb12 Pear 12 18393 5167 38.36% 39.40% 2.71% 
rd84d1 Pear 15 28 3588 92.64% 92.64% 0.00% 
rd73d2 Pear 15 28 3588 14.00% 40.76% 191.14% 
rd53d1 Pear 7 12 26 19.32% 19.32% 0.00% 
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   The “hidden weighted bit” benchmark files (“hwb7”, “hwb8”, “hwb9”, “hwb10”, 

“hwb11”, and “hwb12”) worked very well with Heuristic 1.  In its’ reversed application, 

it showed particularly good improvements for “rd73d2”, “ham15r”, “ham15”.   

Heuristic 2 appears to be effective, however, a large number of FLAT type 

benchmark circuits are needed to validate it more extensively.  A similar situation 

occurs with Heuristic 3.  

To further evaluate Heuristic 5, we subjected the benchmark circuit “cycle10_2” 

to several random variable reorderings, and captured distributions we marked as 

random0, random1 and random2.  We compared the active[i] (number of vertices of 

variable i) of these distributions with the minimized distributions obtained by our sifting 

algorithm and the new algorithm described here.  We show our results in Fig. 3.12, 

where we also include the original ordering distribution.  Each series in the graph 

illustrates the active[i] for each variable.  The variable number is assigned from the start 

node (1) to the last variable (12) as traversed along the QMDD variable order. 

 

random2
random1
random0
original
sifting
new

 
 

Figure 3.12.  Benchmark Circuit “cycle10_2” Changes from FLAT to PEAR  
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The total number of vertices for random2, random1, and random0 are 132, 126, 

and 131, respectively.  From Table 3.5, the total number for the original variable order 

is 67, and for the minimized sifting and new algorithm it is 40 and 25, respectively.  We 

can see that the shape changes from FLAT to PEAR for random2 and random1.  

Clearly, these variable orders cause the QMDD to use a much higher number of vertices 

than in our minimized variable orders.  Therefore, a minimized flat benchmark circuit 

must remain flat during further minimizations. 

These preliminary minimization results show significant improvement versus 

application of the sifting algorithm without using the metrics, although no improvement 

occurred for some benchmark circuits.   

 
 

3.5. Using QMDD for QC Simulation 

Wallace defined quantum computer simulators as computer programs executed 

on a classical machine to emulate the behavior of a quantum computer [Wall01]. 

Quantum circuit simulation is the prediction of the output of a circuit given a specific 

input stimulus.  In this dissertation we are concerned with the quantum circuit 

simulation obtained with our various QMDD tools.  

We primarily look at the ability of our tools to simulate the Maslov quantum 

circuit benchmark circuits [Masl05].  The QMDD essentially represents the 

transformation matrix of the circuit that needs to be simulated.  If M is the 
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transformation matrix, then the prediction of the output pattern O in relation to the input 

stimuli I is given by 

IO ×= M                                                           (3.18) 

We have formulated, implemented, and compared two approaches for quantum 

logic circuit simulation based on QMDDs.  The first approach is performed by explicit 

multiplication using QMDD representations of the circuit and input vector.  The second 

approach is performed through implicit multiplication where the QMDD representing 

the circuit undergoes a guided traversal based upon the input vector.  These methods 

were implemented and compared in terms of memory usage and runtime as shown in 

Table 3.6. [GTFM07]. 

Table 3.6.  Simulation of Implicit and Explicit QMDD Vector Multiplication 

Benchmark 
circuit 

Number of 
qubits 

Number of 
gates 

Number of 
Input vectors 

Average 
Implicit 

Multiplication 
Runtime 
(seconds) 

Average 
QMDD size for 

Implicit 
Multiplication

Average 
Explicit 

Multiplication 
Runtime 
(seconds) 

Average  
QMDD size for 

Explicit 
Multiplication 

Ham3 3 5 8 0.00005 11 0.00004 20 
3_17 3 6 8 0.00005 12 0.00007 21 
Rd32 4 4 16 0.00006 18 0.00006 28 

Mod5adders 6 21 64 0.00007 46 0.00007 51 
5mod5tc 6 17 64 0.00007 38 0.00006 52 

Hwb7 7 289 128 0.00016 220 0.00014 309 
Rd53 7 30 128 0.00008 127 0.00010 188 
Hwb9 9 1541 512 0.00084 851 0.00086 1176 
Hwb11 11 9314 2048 0.01028 3312 0.00988 4557 

0410184.nct 14 46 16384 0.00207 75 0.00009 105 
Ham15a 15 132 328 0.99800 36617 1.00677 49594 

Cycle17_3 20 48 1048 0.12637 255 0.00026 277 
Mod1408576 40 210 - Timeout - Timeout - 

 

In most of the benchmark circuits reported in Table 3.6 the average runtime for 

the implicit multiplication approach is slightly slower than the average runtime for the 

explicit multiplication approach (the exception is “Cycle17_3”).  From average QMDD 
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size point of view, the implicit multiplication approach consistently requires smaller 

QMDD sizes [GTFM07].  This result indicates the implicit approach is better in terms 

of memory requirements while the explicit approach generally has more desirable 

runtimes. 

The ability of the QMDD tools to simulate the output of the benchmark circuit 

files was used to create complete specifications in terms of the transformation matrix 

from the Maslov benchmark circuits.  These specification files were used extensively in 

our reversible circuit synthesis work described in Section 4.4. 

During simulation, any BDD based package periodically uses dynamic variable 

reordering to minimize the data structure and to perform appropriate garbage collection.  

The effect of the size and time requirements of dynamic variable reordering is discussed 

in detail in Sections 3.3 and 3.4.  
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CHAPTER 4 

SYNTHESIS OF QUANTUM AND CLASSICAL REVERSIBLE CIRCUITS 

 

Synthesis is the process of generating a circuit that implements a design 

specification.  In this section we introduce several synthesis tools that have been 

developed in this research.  Section 4.1 describes the QCAexor tool for synthesizing 

QCA circuits using ESOP minimization [FT07].  Section 4.2 discloses a method for 

virtual implementation of complex circuits in classical reversible logic using a 

commercially available synthesis tool [FTN07].  A comprehensive yet brief survey is 

provided in Section 4.3 regarding different approaches for synthesizing quantum 

reversible circuits using gate cascades.  In Section 4.4 the QMDDsyn tool is described 

for augmenting lexicographical synthesis of reversible logic with improved variable 

ordering. 

 

4.1. ESOP Techniques for Majority Gate Based Logic Synthesis for QCA  

QCA synthesis is different than quantum circuit synthesis since the QCA 

architecture is not logically reversible.  We investigate how to use the QCA native 3-

input majority gates in an efficient way to synthesize logic circuits.  In particular, the 

Exclusive-OR Sum of Products (ESOP) forms of logic description are transformed into 

an implementation composed of 3-input majority gates.  It is well known that ESOP 
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logic minimization can often (but not always) produce better results than the more well 

known inclusive-OR Sum of Products (SOP) minimization form [FK00, FTY87, MP01, 

S99, SB90, SMA01, BHMS84, Thor95].  Better results are quantified in terms of area 

minimization which implies the resulting circuit description is composed of as few 

cubes as possible and that each cube covers as large a number of minterms as possible. 

4.1.1. Multi-input XOR and AND/OR Implementation in QCA 

A 2-input XOR circuit can be formed using three 3-input majority gates as 

shown in Fig. 4.1.  The circuit performs the well known function 

__
bababa +=⊕                                                      (4.1) 

All these majority gates are of the first kind, since they have one input at a fixed 

logic state, in accordance with [M63].  The schematic diagram of this gate is also shown 

in Fig. 4.1. 

  

 

Figure 4.1.  2-input XOR Gate Implementation 

 

A naïve implementation of a 3-input XOR gate can be achieved by connecting 

two XOR2 gates as shown in Fig. 4.2a.  This implementation is inefficient as it 

consumes a total of 6 majority gates of the first kind.  A better implementation of the 
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XOR3 gate is illustrated in Fig. 4.2b.  Here we efficiently exploit only 3 majority gates 

of the second kind, namely, majority gates which use circuit variables in all of their 3 

inputs.  We can see that the XOR2 gate is equivalent to the minimized XOR3 gate of 

Fig. 4.2b with one input set to ‘0’, performing  

0+⊕=⊕ baba                                                            (4.2) 

 
(a) 

 
 

 
 

(b) 

 
 

Figure 4.2.  3-input XOR Gate Implementation 

 

In Fig. 4.3 we explore the architecture of XOR gates with 4 and 9 inputs (for 

more examples please refer to [FT07]).  It seems that only XOR3, XOR5, XOR7 and 

XOR9 are relatively efficient in the sense that they exclusively use majority gates of the 

second kind.  We assume, following [M63], that once all inputs of the 3-input majority 

gate are used we have a relatively efficient implementation.  However, it is still possible 

that the techniques shown in [ZWWJ04, ZJ06], combined with factoring or 

decomposition, may still improve our results.  However, our construction provides a 

reasonable base line estimation of the complexity of the general k-input XOR QCA 

implementation. 
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Based on the construction for n-input QCA XOR gates, the number of levels dxor 

is: 

 ⎡ ⎤nd xor 3log2×=                                                  (4.3)  

The number of 3-input majority gates mxor is  

⎥⎦
⎥

⎢⎣
⎢×=

2
3 nmxor                                                     (4.4) 

Each XOR3 element requires 3 inverters. The total number of inverters ixor is 

even
odd

is
is

n
n

if
if

m
m

i
⎩
⎨
⎧

−
=

1
                                           (4.5) 

 

 
4-in XOR 

 
 
 
 
 
9-in XOR 

 
 

Figure 4.3. Implementation of multi-input XOR Gates 

 

Clearly, the complexity of XOR implementation is O(log3n) delay and O(n) in 

size.  For example, an XOR10 will use 14 majority gates, 13 inverters, and have a delay 

of four.  We intuitively construct multi-input AND or OR gates using majority gates of 
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the first kind arranged in a binary tree like architecture.  Fig. 4.4 illustrates the 

construction of a 9-input AND/OR gate.  Note that setting S to 0 selects the AND 

functions, while S=1 selects the OR function.    

Based on this construction, the number of levels dand is: 

 ⎡ ⎤nd and 2log=                                                            (4.6)  

The number of 3-input majority gates m is  

1−= nmand                                                            (4.7) 

 

 

Figure 4.4.  Implementation of a 9-input AND or OR Gates  

 

The OR and AND functions have the same size and delay since the only 

difference is the value of S.  Notice that the OR/AND construction follows the same 

asymptotic complexity (O(log2n) delay and O(n) size) as the XOR construction.  

However, it is clear that even before considering the extra cost of inverters for the XOR 

construction, the AND/OR is significantly smaller.   
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4.1.2. The QCAexor Tool 

An overview of the QCAexor tool is shown in Fig. 4.5.  In the pre-processing 

step, the benchmark files in the *.pla format are minimized by ESPRESSO [BHMS84] 

for SOP cube list. The resulting files are minimized using EXORCISM4 to produce 

corresponding ESOP cube lists in a *.esop file.  Size comparisons between benchmark 

files in the *.pla and *.esop formats are reported in [MP01].  

 

Figure 4.5.  An Overview of the QCAexor Tool  

 

The QCAexor tool accepts both the *.pla and *.esop forms of circuit netlist files.  

The tool determines equivalent individual circuit outputs and processes each separately.  
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QCAexor estimates the size of the SOP cube lists when implemented as majority gate 

netlists.  Similarly, it estimates the size and delay of the ESOP cube list.  The tool also 

computes the numbers of inverters required by each XOR gate implementation since 

inverters are expensive resources for QCA technology.  After this analysis is performed, 

QCAexor saves the comparison results in a comma delimited file, *.cvs.  

The implementations based on the subcircuits described in section 4.1.1 require 

the ESOP cube list to be implemented by a single multi-input XOR function and several 

multi-input AND functions.  Similarly, the SOP cube list uses the simpler OR 

implementation.  Therefore, it is expected that ESOP synthesis may show a gain over 

SOP synthesis only when the number of cubes (that is, the size of the XOR) and their 

sizes are smaller.  For this reason it is useful to compare each output in the ON-set list 

rather than the entire circuit (which is the common practice when considering standard 

CMOS logic [MP01]).  

4.1.3. Experimental Results in ESOP vs. SOP QCA Synthesis  

A large number of the standard PLA benchmark circuits were synthesized and 

representative results are given in Table 4.1.  The first column depicts the circuit output 

investigated in each row of the table.  Columns 2-4 show the results for that output 

using the SOP specification data, and columns 5-8 show the results for the ESOP 

realizations.  The second and fifth columns show the number of product terms 

associated with the output.  The third and sixth columns show the total size in terms of 

required majority gates.  For the ESOP implementation, column 7 shows the extra 
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number of inverters required by the XOR gate in the second level of the circuit.  We 

show the maximum delay, as measured by majority gate levels, in columns 4 and 8. 

The GAIN ESOP column shows the size benefit (or loss) when an output is 

implemented in ESOP instead of SOP form, and it is computed as: 

GAIN = 100% (SOPsize–ESOPsize–ESOPPinverters)/SOP size           (4.8) 

A negative gain result indicates that the SOP form results in smaller sized 

circuits than the ESOP form.  Table 4.2 shows the results of the benchmark circuit 

ALU4.PLA.  The ESPRESSO minimization of the 14 inputs/8 outputs circuit in Table 

4.1  required 575 cubes, while the EXROCISM4 minimization required 426 cubes.  The 

large negative results for outputs 0, 2 and 3 validates our approach to investigate each 

output individually as these negative results would clearly mask the benefit of ESOP 

implementation for outputs 1, 4, 5, and 6.  

 

Table 4.1.  Comparison for ALU4.PLa - 14 inputs/8 outputs 

Out SOP 
prds 

SOP 
size 

SOP 
delay 

ESOP 
prds 

ESOP
size 

ESOP 
invs 

ESOP 
delay 

GAIN 
ESOP 

0 16 67 7 31 218 45 7 -292% 

1 12 51 6 5 15 6 6 58% 

2 50 247 9 51 466 75 9 -119% 

3 72 423 10 130 1327 195 10 -259% 

4 186 1594 12 53 481 78 12 64% 

5 90 614 10 25 161 36 10 67% 

6 36 206 9 9 37 12 9 76% 

7 182 1927 12 210 2183 315 12 -29% 
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  We summarize our results with various benchmark circuits in Table 4.2.  

Column 4 indicates the total number of cubes in the ESPRESSO minimization of the 

circuit, while column 5 shows the minimization results with EXORCISM4.  In column 

6 we show how many of the outputs can be implemented based on ESOP minimization 

with a gain over the results with SOP minimization.  We also show the best gain and the 

worst loss achieved during the processing of all the outputs individually.  

 

Table 4.2.  Potential Gains in ESOP Synthesis for QCA  

Benchmark 
circuit 

Inputs Outputs

ESPR.

Minim.

EX-4 

Minim.

ESOP 

GAINS 

Best  

gain 

Worst  

loss 

5xp1.pla 7 10 65 31 6 of 10 61% -100% 

dc2.pla 8 7 39 32 3 of  7 18% -64% 

alu1.pla 12 8 19 16 0 of 8 0% -150% 

seq.pla 41 35 336 246 6 of 35 74% -333% 

vg2.pla 25 8 110 184 0 of 8 none -303% 

alu4.pla 14 8 575 426 4 of 8 76% -259% 

9sym.pla 9 1 86 51 1 of 1 8% none 

c8.pla 28 18 79 50 4 of 18 31% -166% 

z5xp1.pla 7 10 65 33 9 of 10 89% -20% 

tial.pla 14 8 581 428 4 of 4 76% -317% 

x6dn 39 5 82 95 0 of 5 none -120% 

vda 17 39 93 87 4 of 39 12% -2820% 
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It is important to note that QCAexor was able to perform the entire analysis for 

all benchmark circuits in a fraction of a second, so this negligible amount of time is not 

added to the results.  

 

4.2. Virtual Implementation of Reversible Logic using Direct Translation 

We investigated a virtual implementation of reversible circuits that use a direct 

translation of complex binary functions into circuits composed of Fredkin reversible 

gates [FTN07].  We note in section 2.2.4 that the Fredkin gate can realize any arbitrary 

Boolean function.  We investigate the Brent-Kung Prefix Parallel Adder (PPA) as an 

example for a complex yet regular logic circuit [BK82, LF80, Zimm98, EL04]. 

Since a classical logic n-bit PPA requires 2n inputs and n outputs (neglecting the 

carry-in and the carry-out bits), a reversible counterpart will require at least 2n variables 

or lines.  As shown in the next section, current reversible logic synthesis based on gate 

cascading reported various size limits of 8-25 variables [MMD03].  In fact, very few 

benchmark circuits for reversible circuits with more than 25 variables are listed in the 

Maslov’s benchmark circuits page [Masl05].  Therefore, it is fair to assume that 32 and 

16 bit adders are beyond the scope of current reversible logic synthesis based on gate 

cascading.  We follow a direct translation approach similar to the work in [BTS+02].  

This results in an output VHDL file that is appropriate for Field Programmable Gate 

Array (FPGA) implementation.  The emphasis is on circuit regularity as opposed to 

minimization of the number of garbage outputs and ancillary inputs.  We recognized in 
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advance that our results will include a large number of such garbage outputs and 

ancillary inputs, and are therefore useful only for the purpose of virtual implementation 

in our current investigation.  Our implementation maintains direct correlation between 

the sub-modules of the reversible result to their standard logic counterpart.  We use the 

Altera Corporation’s Quartus II software, a comprehensive suite of tools for the 

synthesis, simulation, and implementation of complex logic circuits [Altera].  

We first modeled the basic Fredkin gate using CMOS transmission gates as 

shown in Fig. 4.6.  As VHDL implementation of the transmission gate is not a trivial 

matter [Leun89], we found that the approximation of a one-way transmission gate using 

the built-in Altera “TRI” primitive is useful for our application. 

 

 

Figure 4.6.  VHDL Model of a Fredkin Gate 

 
We use Zimmerman’s comprehensive parameterized VHDL library for the 

implementation and investigation of various PPA architectures [Zimm98].  We 

modified the Zimmerman VHDL files to create the Brent-Kung PPA using the Fredkin 

gate model.  We used direct translation by replacing each original standard logic 
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equation with a corresponding Fredkin implementation corresponding to the mappings 

of Fig. 4.6.  The resulting files were then used as input to the Quartus II tool for 

synthesis and simulation.  The simulation tool was quite useful for debugging 

translation errors occurring during the design decomposition into Fredkin gates. 

Our research methodology was to compare the size and the delay simulation 

results between reversible and standard logic versions of the Brent-Kung PPA of 

various operand sizes.  An interesting pitfall of our approach quickly appeared when we 

tried to place and route the resulting synthesis of both reversible and classic logic 

versions into Altera’s FPGA chips.  Our motivation was to use the number of Logic 

Element (LE) units reported at the end of device compilation as a measure of size.  Fig. 

4.7 shows the Place and Route map result when a reversible 16-bit Brent-Kung PPA is 

implemented in an Altera EP20K30E FPGA device.  Each small square within the chip 

map represents one LE unit. 

When we placed and routed reversible and standard logic versions of same size 

adders, the optimization and minimization phase of the Quartus II tool inadvertently 

converts the reversible logic files back to the standard logic implementation.  The 

solution was to use the Quartus II ‘s register transfer level (RTL) viewer which shows 

the non-optimized VHDL files and to manually count the number of Fredkin gates.  An 

example of the RTL Viewer output for the 8-bit Brent-Kung PPA is shown in Fig. 4.8. 
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Figure 4.7.  Place and Route Map of the 16-bit Brent-Kung PPA 

 

 

 

Figure 4.8.  The RTL Viewer Output for the 8-bit Brent-Kung PPA 

 
 



 105
 

We compare our virtual reversible logic implementation of the Brent and Kung 

PPA with the standard logic implementation in Fig. 4.9.  Our results indicate that our 

virtual reversible logic implementation still follows the O(log2n) delay and O(n) cost of 

the standard logic implementation.  Due to the complexity of the Fredkin gate as 

compared to a standard logic gate, the cost of the reversible logic implementation is 

roughly four times that of the standard logic implementation.  However, this is because 

the target technology used in the Altera tool is classical CMOS circuitry and not 

quantum logic technology. 
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Figure 4.9.  The Size and Delay Comparison of Classical and Reversible PPAs 

 
We could not compare power consumption estimates since the Quartus II tool Place 

and Route process converts the reversible implementation back to the standard 

irreversible logic implementation. 

 

4.3. Survey of Synthesis Methods for Reversible Gate Cascades 

Many recent papers and several books deal with synthesis of quantum reversible 

circuits.  In this section we describe recent results on this topic in order provide a survey 
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of the state-of-the-art.  Most synthesis approaches utilize a cascade of gates netlist as 

described in Definition 2.10 as input and attempt to minimize the number of gates.  Due 

to the relative absence of don’t-care assignments in reversible logic, the synthesis 

usually start with a complete specification of the circuit.  In classical reversible logic, 

the specification is a permutation that transforms the input to the output in a bijective 

manner.  In quantum logic the specification is typically a unitary matrix that describes 

the transformation that the target circuit is to provide. 

4.3.1. Exhaustive Approaches for Synthesis 

In the exhaustive approach, the synthesis algorithm attempts all the possible 

choices of gates and their connections in a gate cascade until the circuit is able to 

achieve the desired permutation [Kern00].  While this approach provides optimal 

solutions, it is useful for only a very small number of inputs due to the explosive search 

space size. Typically, exhaustive synthesis techniques are used on small benchmark 

circuits to determine the optimal solution in order to test the performance of other more 

efficient but non-optimal synthesis approaches based on heuristics.  

Shende et al. noted that even for small sized circuits of just three inputs, the 

exhaustive algorithm requires hours to complete [SPMH02, SPMH03].  For example, 

using the CNT library (Section 2.2.1), a 3-input circuit creates 8!=40,320 permutations.  

They explored the use of branch-and-bound algorithms to create a library of optimal 

circuits while reducing the search space.  They utilized the property that any portion of 

an optimal circuit is also optimal.  However, the runtime of their algorithm for finding 

optimal circuits is still exponential with respect to the number of variables.  
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4.3.2. Synthesis Using Formal Verification Methods 

Formal methods that heuristically deal with pruning the search space have been 

applied to reversible logic synthesis by Hung et al. [HSY+06].  They used 

nonpermutative quantum gates with symbolic reachability analysis in order to achieve 

optimal synthesis, or suboptimal synthesis with some speed up.  In effect, they reduce 

the synthesis problem of reversible logic into a multiple-value logic synthesis problem. 

Groβe et al. developed an algorithm to synthesize reversible functions using 

generalized Toffoli gates [GCD06, GCDD07, WG07].  They formulate the synthesis of 

d Toffoli gates as a sequence of Boolean Satisfiability (SAT) instances, where 

satisfiability indicates that a circuit of d gates exists.  As they iterate their algorithm 

with increasing d size, they are able to guarantee minimality.   

4.3.3. Template Based Synthesis 

Since the problem of quantum circuit synthesis is intractable, various synthesis 

techniques tend to produce circuits that contain unduly complex sub-circuits that cannot 

be easily minimized.  A common minimization technique is to attempt to match 

different sections of circuit to simpler stored equivalent sub-circuits called templates.  

The process of template matching can be accomplished using transformation rules.  

Therefore, template matching for circuit simplification can be regarded as performing a 

local optimization. 
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A set of six local transformation rules to reduce the cost of circuits comprised of  

n-variable Toffoli gates was developed by Iwama et al. [IKY02].  Using the notation of 

[t,C] described in Section 2.2.1, their set includes the following rules: 

 ε⇔• ],[],[ 1111 CtCt , namely two identical CNOT circuits in series cancel each 

other. 

 ],[],[],[],[ 11222211 CtCtCtCt •⇔•  only if 21 Ct ∉  and 12 Ct ∉ .  That means 

that gates order is not important if the gates are independent. 

 }]{,[],[],[],[],[ 221111222211 tCCtCtCtCtCt −∪••⇔• , if 21 Ct ∉  and 12 Ct ∈ .  

This transformation allows us to make a sequence of the gate B after A 

equivalent to the sequence of gate A after B, provided that the target of gate B is 

part of gate A’s control bits. 

 ],[],[}]{,[],[],[ 112212122211 CtCttCCtCtCt ••−∪⇔• , if 21 Ct ∈  and 12 Ct ∉ .  

This transformation is the dual of the previous one.  

 }]{,[}]{,[}]{,[}]{,[ 2221112211 tCtctcCtct ∪•⇔∪• , if t1>n+1 and there is no 

Toffoli gate with target on t1 before the gate }].{,[ 11 ct   

 ε⇔],[ Ct if the gate has an auxiliary control bit that remains at |0>. 

They also proved that any quantum circuit S can be transformed into the 

canonical form as specified in [IKY02] by using only these six transformation rules.  

Template matching based synthesis was reported in Maslov et al. [MDM03].  

They noted that although the template set was quite small, the potential for reduction in 

the synthesized circuit size is quite significant.  Figure 4.5 illustrates the MMD template 
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for 2×2 and 3×3 circuits composed of CNOT and Toffoli gates for post synthesis 

simplification, as reproduced here from their paper [MMD03]. 

 

 

Figure 4.10.  MMD’s Templates for 2x2 and 3x3 Quantum Circuits 

 

4.3.4. Lexicographic Based Reversible Logic Synthesis 

In this section we describe non-search based reversible logic synthesis 

techniques that proceed in a lexicographic order consistent with the function 

specification.   
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Definition 4.1 A Complete specification of a reversible circuit lists all output 

permutations of the function in a lexicographic order as represented by the function’s 

truth table. 

In 2003, Miller, Maslov, and Dueck proposed the well known “MMD” 

reversible logic synthesis, a non-search based lexicographic algorithm [MMD03].  The 

algorithm inspects the complete specification in a lexicographic order and for each input 

it implements a series of one or more gates that translate the input pattern into the 

output pattern.  The gates used by the MDD algorithm are from the NCTSF library.  

The key idea is that once an input pattern is transformed into the output pattern, this 

output must not be changed, hence the lexicographic order.  An interesting aspect of the 

algorithm is that the transformation can simultaneously proceed from the inputs to the 

outputs and from the outputs to the inputs. 

At each point in the lexicographic scan of an n ×  n complete specification, the 

algorithm heuristically selects the required translation gates without a search.  This 

results in a relatively fast algorithm which completes the synthesis of an n ×  n function 

in time O(n2n).  The algorithm has two variants: 

 The uni-directional “naïve” algorithm that adds gates while permuting 

from the output specification to the input; and 

 The bi-directional algorithm that advantageously synthesizes from both 

directions. 

Both algorithms are guaranteed to terminate with a valid circuit although the 

generated circuit is not necessarily optimal.  Therefore, the MMD algorithm employs a 
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post synthesis smoothing process which is based on template matching [IKY02, 

MDM03].  Template matching often requires multiple consideration of the same area of 

the circuit as smaller portions are being modified.  This emphasizes the importance of 

providing smaller circuits to the template matching step. 

Another non-search based reversible logic synthesis algorithm was recently 

introduced by Saeedi et al. [SSZ07].  Their algorithm scans a circuit specification 

lexicographically, and iteratively exchanges pairs of minterms that are out of order in 

each step.  In this dissertation we contribute an improvement for lexicographic 

synthesizers as described in Section 4.4. 

 

4.3.5. Group Theory and Symmetry Based Synthesis 

De Vos et al. investigated the structure of the group Rw that contains all 

reversible gates and their cascades with w inputs and outputs [DRS02].  They created a 

chain of maximal subgroups and found that the subgroup of control gates Cw (which 

includes Toffoli gates) is particularly useful to generate such chains.  The control gates 

Cw  subgroup form one of the Sylow 2-subgroups of the entire Rw  group. 

Galois field sum of products (GFSOP) is used in [KPK03] to synthesize 

multiple-valued reversible circuits efficiently using a generalization of ternary Toffoli 

and other ternary gates.  They proposed a local mirror technique whereby a garbage 

output is converted to a constant (e.g. |0〉) which is used as an input to the next stage of 
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the cascade.  The circuit is minimized in a gate cascade that  utilizes local mirrors, 

efficient variable ordering, and product ordering.. 

Symmetric function detection can help simplify the synthesis of reversible logic 

as described in Perkowski et al. [PKB01].  They devised a 2×2 net regular structure that 

is easier for reversible logic synthesis of symmetric functions.  They extend the method 

to other Boolean functions using the fact that non-symmetric functions can become 

symmetric by repeating selected inputs.  For this approach, the best improvement in 

terms of garbage output minimization was achieved with symmetric functions and with 

incompletely specified functions comprising many outputs.  Such incompletely 

specified functions could have their “don’t-cares” exploited to cause them to exhibit 

more symmetry.  Maslov also reported improvement in the cost of the realized circuits 

when he used a dynamic programming algorithm to realize symmetric functions in 

reversible logic [Masl02]. 

In [GFX06] the authors use symmetric and group theory methods to efficiently 

construct n-qubit reversible functions.  Observing the relations between the input and 

output patterns, they found a realization using CNOT gates that improves upon the size 

and time complexities of previous algorithms.  Still, these complexities grow 

exponentially with circuit’s size.     

4.3.6. Spectral and Reed-Muller Transformation Techniques 

Miller developed a synthesis method for reversible logic using the Rademacher-

Walsh spectral transform and two-place decompositions of Boolean functions [Mill02, 
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MD03b].  He first defined a table of the logic computation of NOT, AND, OR and 

EXOR in the spectral domain.  The reversible logic specification is then transformed to 

the spectral domain.  Within the spectral domain, the algorithm attempts to identify 

single Feynman, Toffoli and Fredkin gates that may be applied to specific inputs.  The 

spectral NOT, AND, OR, and EXOR are then applied to achieve the overall synthesis. 

Permutation-based fast transforms for multiple-valued quantum circuit synthesis 

were developed by Al-Rabadi [Alra04].  The algorithm uses two planes, the first for 

reversible permutation butterfly circuit in the spectral plane, and the second for the 

actual quantum gates that perform the actual additions and multiplications. 

Agrawal and Jha describe a heuristic-based tool called RMRLS for the synthesis 

of reversible logic using the positive-polarity Reed-Muller decomposition at each stage 

[AJ04].  A priority queue based search tree attempts to find the best factors at each 

stage.  The Positive Polarity Reed-Muller expansion of a function is uniquely 

represented in the form: 
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where ai∈{0,1} and all xi are un-complemented for positive polarity.  They outlined 

several examples which provided the same results obtained by other researchers in a 

shorter synthesis time.  In a later version of that work [GAJ06], the authors were able to 

synthesize most randomly generated reversible functions with up to 25 gates and 16 

variables.  
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4.3.7. Synthesis Approaches Based on Decision Diagrams 

Kerntopf [Kern04] offered a PPRM heuristic algorithm for reversible logic 

synthesis using a complexity measure based on shared binary decision diagrams (BDD) 

with complemented edges.  This replaces complexity measure that relates to the 

complexity of the specification as provided by the circuit truth table or its PPRM forms. 

Since the algorithm produces several implementations, the user can globally select the 

best among them.  Experimental results in this paper also relate to only small circuits 

with few inputs/outputs and with up to 14 gates.  

Abdollahi and Pedram developed a synthesis framework for quantum logic that 

uses the basic rotation and controlled rotation operators [AP05].  We have already 

described their binary control signal constraint issue in Section 3.1.4.  They produced a 

canonical representation tool called quantum decision diagrams (QDD) that apply 

recursive unitary functional bi-decomposition of the original graph created when the 

circuit specification is loaded onto the tool.  Like QMDD and classical logic BDDs, the 

QDD tool recursively implements the quantum APPLY operation to combine to QDD 

nodes.  They detailed two variants of their synthesis algorithm, the q-factor and the 

modified q-factor, and show promising synthesis results. 

 

4.4. Using QMDD Minimization for Efficient Synthesis 

 An immediate problem with a lexicographic order is the fact that it may lead the 

synthesis into an excessively non-optimal circuit implementation.  In our research, we 
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were motivated to improve the synthesis by adjusting the lexicographic order based on 

the best dynamic variable reordering obtained by the QMDD minimization technique 

described in Chapter 3.  

In classical irreversible logic, Fujita et al. used the structural shape of the circuit 

to select the best initial variable order for the implementation of the binary decision 

diagram [FMK91].  They minimized the number of wire crossings and gave priority to 

fan-outs encountered during their depth-first transversal from the outputs to the inputs 

of the circuit.  We found that minimizing the QMDD representation of the specification 

and using the corresponding variable order significantly improves the lexicographic 

reversible logic synthesizer [FTM08c]. 

4.4.1. Circuit Complexity versus QMDD Metrics 

In this section we investigate the relation between the reversible circuit size 

complexity and the size metrics of the QMDD that represent the circuit. 

Lemma 4.1: Two equivalent reversible circuits composed of a different number 

of gates result in the same QMDD for a given variable ordering. 

Proof: Directly from the canonic property of QMDD [MT06], and following the 

discussion in [FTM08b]. 

 
Assume that circuit C1 comprised of s gates and circuit C2 comprised of t gates 

are two distinct implementations of the same function specification, where t>s.  Since 

Lemma 1 indicates that C1 and C2 are represented by the same QMDD, the QMDD size 

metrics cannot be used as an absolute measure of circuit complexity.  Reversible 
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circuits may include partially redundant logic that artificially increases the size as 

shown in [FTM08b].  Furthermore, the following lemma illustrates that an arbitrarily 

large section of a synthesized circuit may represent the functionality of an identity sub-

circuit that is not reflected in the size of the QMDD, but that unnecessarily increases the 

size of the gate cascade.  

Lemma 4.2:  There exists an n ×  n trivial identity reversible circuit cascade 

with any arbitrary even number of gates.  

Proof: Let m=2k be the number of gates, where k is an integer so that k≥0. For 

k=0, the circuits merely passes all the lines and therefore is a trivial identity circuit.  For 

k=1, we make a cascade of two identical arbitrary gates.  It is easy to see that such a 

circuit is a trivial identity reversible circuit. For k>1, we first build a cascade C of k 

arbitrary gates.  We then build another cascade C’ using exactly the same gates but in a 

reversed order.    Let A and A’ be the transformation matrices of C and C’ respectively. 

Since C is equivalent to reversing a cascade so that the outputs exchange with the 

inputs, A’=AT. It then follows that A’×A=AT×A=I, which completes the proof.              � 

Example 4.1: We illustrate the implication of Lemma 4.2 in the inability of the 

QMDD size to predict the size of the reversible circuit with the example in Fig. 4.11.  

We simply add 10 gates to the left of circuit syn_3v_rnd1, comprising two groups of 

five gates.  The second group is identical but in reverse order of the first group in 

accordance with Lemma 4.2.  We have noted the quantum cost of each circuit based on 

Definition 2.11 and on the work of Maslov [Masl03]. 
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Syn_3v_rnd1.tfc 

9 gates, 10 QMDD nodes 
Quantum cost=19 

Syn_3v_rnd1_eq.tfc 
19 gates, 10 QMDD nodes 

Quantum cost=45 

Figure 4.11.  Functionally Equivalent Circuits of Different Sizes 

 
We now consider the relation between circuit size and QMDD size in more 

detail.  An identity n× n circuit (one that maps each input pattern to the same output 

pattern) requires only n non-terminal nodes in its QMDD representation. 

Since a binary QMDD has four edges exiting from each node, the upper limit for 

QMDD size is reached if each edge points to a different node in a unique way.  This 

condition leads to a geometric series with size equal to  

∑
=

−=
n

i

i
nS

1

14                                                       (4.10) 

However, for classical reversible logic, the transformation matrix represented by 

the QMDD has only a single ‘1’ element in each row and each column [MFT07].  This 

immense sparsity leads to much smaller QMDD size as shown in the following 

experimental results. 



 118
 

Table 4.3 shows the maximum and minimum theoretical limits for the QMDD 

size as related to the number of variables in the circuit.  The first column depicts the 

number of variables, and the largest QMDD size predicted by equation (4.10) is shown 

in the third column. 

 

Table 4.3.  Maximal and Minimal QMDD’ Size vs. Circuit Size.  

Variables Minimum 
QMDD 
size 

Maximum 
QMDD 
size 

2 2 5 
3 3 21 
4 4 85 
5 5 341 
6 6 1365 
7 7 5461 
8 8 21845 

 
 

Our experimental results are shown in Table 4.4.  We explored circuits of 5, 6, 

and 7 variables, with number of gates ranging up to 100.  For each circuit with a given 

number of gates, we show the quantum cost (see Definition 2.11) and the number of 

nodes in the QMDD representing the circuit.  The results include published benchmark 

circuits as well as randomly generated circuits.  We tried to match a published 

benchmark circuit to the required number of gates (depicted in each row) even if the 

benchmark circuit size is slightly different.   

The results in Table 4.4 that use published benchmark circuits are marked with a 

file identifier as follows: 1 – “mod5d1” (8 gates), 2 – “hwb5tc” (55 gates), 3 – “2of5d1” 

(18 gates), 4 – “rd53d1” (12 gates), and 5-ham7tc (23 gates). 
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Table 4.4.  Maximal and Minimal QMDD Size versus Circuit Size. 

       5 -vars  6-vars   7 -vars 
Gates Quant. 

cost 
QMDD 
size 

Quant. 
cost 

QMDD
size 

Quant.  
cost 

QMDD 
size 

0 (Ident) 0 5   0 6 0 7 
1 5 13    1 11 5 17 
10 24  (1) 19  (1)  158 42 120 (4) 26 (4) 
20 208  36    158 (3) 56 (3) 81 (5) 130 (5) 
30 310  41    494 82 836 137 
40 424  46   696 77 968 141 
50 510  44   830 84 1340 134 
60 313 (2)  47 (2) 1016 83 1712 153 
70 682  42  1186 72 1968 149 
80 808  46 1388 82 2344 140 
90 918  42 1388 82 2716 164 
100 1036  45 1824 83 3047 176 

 

The results demonstrate that the QMDD size does not follow the circuit size 

once the circuit size passes 20-40 gates. In contrast, the quantum cost does follow the 

circuit size, as expected.  For example, for 5-variable, a circuit with 90 gates is 

represented by a QMDD with 42 nodes, less than the 46-node QMDD that represents 

the circuit with 40 gates. These experimental results illustrate the outcome of Lemma 

4.2, as well as the work on partially redundant reversible logic reported in [FTM08].  

Due to the large degree of sparsity commonly present in most transformation 

matrices, Table 4.4 shows that the size range is significantly smaller than the maximum 

size predicted by (4.10).  This finding corresponds to the fact that most edges in a 

QMDD are essentially zero-weighted, pointing to the terminal node (see Section 3.4). 

Fig. 4.12 demonstrates how the size of QMDD for random circuits of six 

variables relates to the number of gates.  A circuit composed of no gates (i.e. one that is 

only a quantum register), the functionality is described by the identity transformation 

matrix and the QMDD size is the minimal 6 nodes.  As we increase the number of 
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gates, the number of nodes grows while the QMDD data structure implements the 

deviation of the transformation matrix from the simple identity.  However, this growth 

is neither monotonic nor linear.  With larger numbers of gates, we see much less 

correlation in QMDD size as compared to circuit size.  Our experiments also show that 

adding and removing NOT gates often has little incremental effect on the resulting 

QMDD size.  

 

QMDD size vs circuit size

0

20

40

60

80

100

120

140

160

180

200

0 1 10 20 30 40 50 60 70 80 90 100

Number of gates

N
um

be
r 

of
 n

od
es

5-vars
6-vars
7-vars

 

Figure 4.12.  QMDD Size for the Circuits of Table 4.4.  
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4.4.2. Lexicographic Synthesis Approach 

We have seen in Section 4.3.4 that a reversible logic circuit lexicographic 

synthesizer can be implemented using the time consuming step of template matching 

reduction in order to minimize the size of the resulting circuit. We propose the 

“QMDDsyn” framework to improve such template-matching based synthesizers using 

the best variable order obtained when the QMDD that represents the function 

specification is minimized.  The key idea is to delay the time consuming process of 

template matching until it can be provided with a smaller circuit to optimize. Fig. 4.13 

illustrates this process.  

We first synthesize the complete specification lexicographically to obtain the 

baseline circuit C1. The circuit is then converted into a QMDD representation and a 

sifting minimization using dynamic variable ordering (DVO) is performed [FMT07b, 

YMS06].  While the QMDD can be built directly from the complete specification, we 

must have circuit C1 in order to gauge the efficiency of the proposed framework’s 

results. 

The full specification is reordered based on the variable order that minimized the 

QMDD.  The re-ordered specification is used to lexicographically synthesize   circuit 

C2.  Since we use the bidirectional version of the MMD algorithm, the framework must 

also re-order the complete specification in the reversed variable order of the minimized 

QMDD.  This reversed re-ordered specification is used to synthesize circuit C3.  

 



 122
 

 
 

Figure 4.13.  The “QMDDsyn” Framework  

 
The framework then selects the smaller of circuits C1, C2, and C3 for the final 

step of template matching minimization.  Since the QMDD minimization may provide 

several variable orders that produce the same minimized QMDD, the process of Fig. 

4.13 is repeated to obtain the smaller circuit.   

 
Example 4.2: In the following example the QMDDsyn framework demonstrates 

the synthesis of the 3-variable function specification {5,3,4,7,2,6,1,0}.  This 

specification list the order of the output minterms as related to ascending input 
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minterms.  We first use the MMD unidirectional algorithm to produce circuit C1 of 12 

gates with quantum cost of 30 as shown in Fig. 4.14a. 

While this initial circuit may not be optimal, it is an exact implementation of the 

specification.  Using the standard variable order of {a,b,c}, C1 is represented by a 

QMDD with 10 non-terminal nodes.  Using the minimization techniques reported in 

[MFT07b, FTM08b], the QMDD is reduced to 9 non-terminal nodes with variable order 

of {b,a,c}. 

The specification is reordered by first applying the new variable order as shown 

on the left truth table of Table 4.5.  The results need to be ordered lexicographically 

according to the input as shown in the right truth table of Table 4.5. 

 

Table 4.5.  Re-ordering the Specification for Example 4.2. 

 
b a c b’a’c’  b a c b’a’c’ 
000 011  000 011 
010 110 Ordering  001 100 
100 001 lexicographically  → 010 110 
110 111  011 101 
001 100  100 001 
011 101  101 010 
101 010  110 111 
111 000  111 000 

 
 
The MMD unidirectional algorithm is applied on the reordered specification 

{3,4,6,5,1,2,7,0} to produce circuit C2 of 7 gates with quantum cost of 11 as shown in 

Fig. 4.14b.  The lines of C2 are rearranged according to the variable order by moving 

the top line to the bottom while still keeping the same gates’ connections.  The final 

circuit C3 is shown on Fig. 4.14c. 
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The QMDDsyn framework verifies that circuit C3 is equivalent to C1 as they 

are both represented by the same QMDD in view of Theorem 3.1.  This example 

illustrates an overall size reduction in terms of gates of 7/12 (42%) as well as size 

reduction in terms of quantum cost of 11/30 (53%).  In this example there was no need 

to produce C3 since we selected the unidirectional MMD algorithm.  In the following 

section, we exclusively use the better bidirectional MMD algorithm for the 

lexicographic synthesis step.    

 
 
(a) 

    

  

 
(b) 

 
(c)

 

Figure 4.14.  Minimization of the Circuit of Example 4.2 

 

4.4.3. The QMDDsyn Framework Synthesis Results 

Table 4.6 illustrates the preliminary experimental results obtained by the 

QMDDsyn framework [FTM08c].  We use the complete specification from the 

published benchmark circuits [Masl05] as well as the specification obtained from the 

random circuits in Table 4.4.  We should note that we merely convert the benchmark 

circuits into complete function specification regardless of the garbage and ancilla 

assignments that are included with the benchmark files.  Therefore, the lexicographic 

algorithm cannot be expected to produce smaller size then the benchmark circuits.  The 

benchmark circuits were made with significant don’t-care assignment that allowed their 
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designers to minimize the number of gates.  When we converted those files to a 

complete specification, there are no don’t-care assignment in these specification.  

However, this does not affect the ability to compare the lexicographic synthesis results 

as we use complete specifications for both processes (with and without variable re-

order).  

For each specification, we list the number of variables in column 2 and the 

QMDD size in non-terminal nodes in column 3.  The minimization results are shown in 

columns 4 to 5.  Column 6 lists the variable order obtained during the QMDD 

minimization.  Column 7 shows the quantum cost of the baseline circuit C1. Column 8 

displays the quantum cost of circuit C2 obtained with the variable reorder of column 6. 

Column 9 lists the quantum cost of circuit C3 obtained with the reversed variable 

reorder.  In column 10 there is a comparison quantum cost for circuit C4 that is 

synthesized with a random variable order.   

The quantum cost improvement obtained when using the QMDD variable 

reorder is depicted in column 11. Negative percentage indicates that the QMDDsyn 

obtain a smaller circuit with the variable reorder.  We should note that the smaller of C2 

and C3 is compared to the baseline C1, as discussed in Section 4.4.2. 

The results show significant overall improvement in the quantum cost using the 

approach of QMDDsyn. There is generally a good correlation between the level of 

QMDD size reduction and the improvement in the quantum cost.   

As is observed in Table 2, the QMDD size grows rapidly from the number of 

variables (for trivial circuit) to a certain fluctuating range. Smaller QMDD size 
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indicates less permutation by the specification. It seems from our results that 

specifications with smaller QMDD sizes (i.e. less permutation) are likely to produce 

better quantum cost reduction on the QMDDsyn framework. 

Table 4.6.  QMDDsyn Synthesis Results 

Specifi-
cation 
Source 

Vars QMDD 
nodes 

Minim 
nodes 

QMDD 
reduction
 
     (%) 

Variable  
reorder 

Circuit C1 
(w/o 
reorder) 
Quantum 
cost 

 Circuit C2
(with 
reorder) 
Quantum 
cost 

Circuit C3
(reversed 
reorder) 
Quantum 
cost 

Circuit C4 
(random 
reorder) 
Quantum 
cost 

Reordered
Quantum 

cost 
change
     (%) 

4_49tc1 4 21 20 4.76% 0 2 1 3 135 126 169 199 -6.66% 
hwb4tc 4 22 20 9.09% 0 2 1 3 96 87 87 88 -9.35% 
hwb5tc 5 47 38 19.15% 0 2 3 1 4 488 487 518 536 0% 
rand5v1 5 36 32 11.11% 2 0 3 1 4 441 312 287 200 -35.60% 
rand5v2 5 44 34 22.73% 2 1 0 3 4 567 370 409 464 -34.74% 
rand5v3 5 41 37 9.76% 2 3 0 1 4 421 475 360 466 -14.48% 
5mod5 6 28 15 46.43% 5 3 1 4 0 2 185 185 185 185 0% 
2of5d1 6 56 49 12.50% 3 1 0 4 5 2 525 481 507 766 -8.38% 
rand6v1 6 64 42 34.38% 3 1 0 4 2 5 1114 619 661 845 -44.43% 
rand6v2 6 78 67 14.10% 3 1 0 2 4 5 1518 1643 1460 1941 -3.82% 
rand6v3 6 82 72 12.00% 2 1 0 3 4 5 2218 1753 2121 1951 -20.96% 
rand6v4 6 77 69 10.39% 2 1 0 3 4 5 1668 1584 1767 1861 -5.03% 
rd53d1 7 26 21 19.23% 2 1 0 3 4 5 6 176 188 120 139 -31.81% 
rand7v1 7 95 56 41.00% 2 4 3 0 6 1 5 2997 3109 1744 2413 -41.81% 
rand7v2 7 123 75 39.02% 3 4 2 0 5 16 6902 6159 4170 4987 -39.58% 
rand7v4 7 141 100 29.08% 4 2 0 3 5 1 6 5028 4640 7099 6999 -7.71% 
rand7v5 7 134 111 17.16% 3 2 0 5 4 1 6 6390 5770 7162 7558 -9.70% 
rand7v6 7 176 147 16.48% 2 3 0 4 1 5 6 7075 7792 7609 6981 +7.54% 
rand8v1 8 167 60 64.07% 2 0 5 4 6 1 3 7 2933 1136 8081 8510 -61.26% 
rand8v2 8 242 150 38.02% 2 5 0 3 4 1 6 7 22968 19227 23270 22388 -16.29% 
rand8v3 8 313 210 32.91% 3 5 2 0 1 6 4 7 20951 17094 13585 23105 -35.18% 
rand9v1 9 114 59 48.25% 0 4 2 3 7 5 1 8 6 14242 11680 4930 22970 -65.38% 
rand9v2 9  242 186 23.14% 2 0 3 6 4 7 5 1 8 55200 56569 29422 55512 -46.69% 
rand9v3 9 368 337 8.42% 5 2 0 3 4 7 6 1 8 63009 55924 62431 60341 -11.24% 

 

 Since this approach is based on a heuristic observation, it does not work in all 

cases, and for several specifications (“hwb4tc”, “rand5v1”, “rand7v6”), the selection of 

a random variable order obtained a better quantum cost reduction.  There is an 8% 

quantum cost deterioration for “rand7v6”.  The file “5mod5tc” resists any size change 



 127
 

apparently due to its unique construction with 5 garbage outputs and only one 

controlled output.  

The run times for the QMDDsyn framework are not shown in Table 4.6 since 

they are not substantially different than the “MMD” run times, except that the synthesis 

process is repeated two times to evaluate C2 and C3.  

Comparing our results to those obtained by Fujita et al. with classical 

irreversible  logic circuits, it seems that heuristics for reversible logic are likely to have 

less dramatic improvements due to the inherent maximal connectivity associated with 

each output.  
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CHAPTER 5 

TESTING AND VERIFICATION OF QUANTUM CIRCUITS 

 

Relatively little work has been accomplished in the area of reversible logic 

testing, and in particular, quantum circuit testing [FTN07].  Most verification work so 

far has been limited to symbolic circuit equivalence checking.  This is not surprising 

since quantum circuits have not yet been implemented in a meaningful way. However, 

theoreticians have already created an interesting foundation.  In this chapter we consider 

the differences between testing of general reversible circuits and testing future QC.  

Since QCA is different from QC we briefly discuss several QCA testing issues.  We 

conclude this chapter with our investigation of partially redundant logic detection in 

both reversible and irreversible logic circuits.  This work relates to verification and 

design for test (DFT) aspects of QC. 

5.1. Testing of Reversible Logic 

Agrawal investigated the probability of fault detection in logic circuits using the 

principle of maximum entropy from general thermodynamics [Agra81].  Based on the 

principle of maximum entropy, he demonstrated that one can obtain a high level of 

confidence in the test if the output entropy of the system is maximized.   
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Definition 5.1: A maximized output is achieved when the output information in 

changed bits/pattern equals the input information. 

Let the inputs of a circuit with n inputs and m outputs be connected to an 

information source (or a pattern generator).  Let the input information be Hi changed 

bits/pattern and the output information be Ho changed bits/pattern.  It is easy to show 

that Ho≤Hi.  The limiting case with Ho=Hi is referred to as maximized output.  It is easy 

to show that n=m is a necessary condition for maximized output. 

 Since an n × n reversible logic circuits constitute a bijective relation between 

the inputs and outputs, they must have maximized outputs.  Thus, based on Agrawal 

analysis it is should be easier to detect faults in reversible logic circuits. 

Patel et al. [PHM04] showed that reversible circuits require fewer test vectors 

for multiple fault detection based on the stuck-at model as compared to classical 

circuits.  They found that in reversible logic, the number of test vectors grows 

logarithmically in both the number of inputs/output and the number of gates. 

Moreover, they demonstrated a critical and unique feature for reversible logic 

testing – any test-set that can detect all single faults in a reversible logic circuit will 

also detect all multiple stuck-at faults.  This feat cannot be achieved in irreversible logic 

where multiple stuck-at faults are significantly more difficult to cover than single stuck-

at faults.  They further developed practical test-set generation algorithms.  
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5.2. Towards a Unified QC Fault Model 

In general, only a few of the many fault models of conventional logic can be 

immediately extended to quantum logic.  For example, quantum logic has not reached 

the real technological level that allows the use of behavioral faults that deal with the 

highest level of design [VMO06].  Similarly, the concept of delay faults and defect 

faults as applied to conventional logic currently do no analog within the QL domain 

[BA01].  In contrast, logic-level fault models that deal with a netlist of quantum gate 

interconnections can be readily adapted to QC.  Logic-level faults are commonly 

referred to as register transfer level RTL faults. 

The most popular RTL fault model is the stuck-at-fault.  In conventional logic, a 

“stuck-at” fault is modeled by assigning a fixed logic value to net of the circuit under 

test.  Perkowski et al. [PBL05] proposed two fault models, the first for binary 

permutative QC, and the second for general quantum gates.  In the first model, they 

define multiple-valued states for the wires, including {|0〉, |1〉, |V0〉, and |V1〉} which are 

observed to determine if any state of the wire is stuck at a given value.  The main 

difference between their two fault models is the need for probabilistic tests whenever 

the outputs use complex values.  

Conventional logic often defines stuck-at faults using particular gate fault 

models [MZ00, Micz03].  Polian et al. promoted the use of a gate fault model for QC 

over the stuck-at model [PFBH05].  They derived a family of logical fault models for 
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reversible circuits composed of k-input controlled-NOT (k-CNOT) gates.  Their model 

relates to the single missing-gate fault model (MGF).  Our work disclosed in Section 5.6 

is related to this MGF-like fault model. 

In conventional logic, the stuck-open and stuck-short faults are used to model 

specific problems for a single transistor within the construction of a full CMOS gate.  

Specific device faults similar to these have been discussed for primitive QC devices like 

Si nuclear magnetic resonance (NMR), solution NMR, quantum-dot charge, scalable 

ion trap, Josephson junction charge, and the Kane solid-state NMR [VMO06].  

However, they have been formally developed in a proper fault model formalism as of 

yet.  

An interesting and unique aspect of quantum circuit testing is the need to 

distinguish between probabilistic tests and deterministic tests.  Clearly, the deterministic 

tests required multiple measurements, preferably in different bases. 

Leakage faults, which are very important in conventional digital logic, have 

been treated sparsely in the QC literature [Pres97].  We assume that each qubit operates 

in complete isolation within its two dimensional Hilbert space H2 so that in response to 

an error, the qubit can either become entangled with the environment or rotated 

unpredictably within the two dimensional space.  The leakage in quantum circuits 

occurs when the qubit leaks out of this two-dimensional Hilbert space into a larger 

space.  The testing of QC leakage faults is a difficult open issue.  We note that faults 

manifested as rotations can be modeled as the unintentional insertion of a single qubit 

Pauli rotation gate and that faults causing only phase changes in the qubit may be 
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ignored since the only information carrying portion of the qubit is the direction it points 

to in the Hilbert space.  

It is possible that more than one fault (single-fault model) can materialize at the 

same time, thus leading to the multiple-fault model [BA00, MZ00, Micz03].  

The test generation problem for irreversible, classical circuits was shown to be 

an intractable problem by Ibarra and Sahni as early as 1975 [IS75].  Agrawal noted in 

the early 80s that fault detection is improved when the output content of the tested 

circuit is maximized [Agra81].  Since reversible logic circuits have maximized outputs, 

it should be easier to detect faults in QC reversible logic circuits as compared to 

conventional logic.  

 

Biamonte and Perkowski demonstrated that quantum circuits can only use some 

of the test methods developed for reversible circuits [BP04].  In [Haye05] it is stated 

that QC testing may be more difficult than conventional digital testing.  

Due to the no-cloning theorem of QC, quantum computers can be modeled as 

physically moving the qubits from the storage area to the quantum processing area and 

back to storage during every computation cycle [CLM07].  A suitable QC transmission 

channel fault model is adapted from the conventional binary symmetric channel fault 

model.  It assumes the same probability p for a qubit to flip from |0〉 to |1〉 or from |1〉 to 

|0〉 [NC00, Niel98].  The binary symmetric channel fault model is shown in Fig. 5.1. 
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Figure 5.1.  The Binary Symmetry Channel Fault Model 

 

To survive the challenges of transportation and decoherence, QC must rely 

extensively on quantum error correction codes QECC for proper operation.  

 

5.3. Technology Specific Defect Characterization for QCA Testing 

The individual QCA cell by itself is reversible in view of its quantum nature.  

However, QCA circuits are not reversible since the QCA cells are subjected to electrical 

or magnetic fields.  This results directly from the first two postulates of quantum 

mechanics that requires a closed system for the reversibility of the quantum state time 

evolution, as discussed in Chapter 2.  Therefore, QCA testing is different than reversible 

QC testing.  QCA have been successfully implemented, thus designers are concerned 

with real defect issues similar to those encountered in CMOS testing.   

Tahoori et al. [TJML04] compared QCA testing with conventional CMOS-based 

designs.  They developed a testing technique that requires only a constant number of 
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test vectors to achieve 100% fault coverage.  They further explored a design-for-test 

technique which generates a reduced test set with excellent coverage. 

Gupta et al. [GJL06] discovered that the stuck-at fault test set of a QCA circuit is not 

guaranteed to detect all implementation related defects.  They generate additional test 

vectors to target bridging faults in QCA interconnects.  They include a comprehensive 

analysis of their framework on MCNC benchmark circuits that use majority gates as 

primitives.  

 

5.4. Partially Redundant Reversible and Irreversible Logic Detection 

A gate or segment of logic is redundant if it can be removed from a circuit 

without affecting the functionality of the circuit.  A gate or segment of logic is partially 

redundant if it can be modified without affecting the functionality of the circuit.  

Detection of partially redundant logic within any design, reversible or irreversible, has 

ramifications for logic synthesis, for design verification, and for design for test (DFT) 

issues.  In this section we contrast the ability of reversible logic and irreversible 

classical logic verification tools to detect partial redundancies by circuit modifications 

[FTM08].  Generally, one would expect that a given circuit would not be equivalent 

with a version of itself having undergone some structural modification.  And yet, it is 

well known that for irreversible (classical) logic circuits, partially redundant logic or 

internal don’t-care cones allow for such structural modifications to be undetected since 

such replacements do not affect overall functionality due to internal don’t-care 
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conditions.  We were motivated to investigate whether similar partially redundant logic 

instances are likely to be found with emerging quantum and reversible logic 

technologies.  

In logic synthesis, partially redundant logic may use valuable circuit resources 

and its removal can provide more efficient circuits.  While in irreversible logic, don’t-

cares are often exploited by synthesis tools to reduce the circuit time/size complexity. 

This partially redundant logic can also inhibit the effectiveness of structural verification 

of the design, or even mask some potential design flaws.  For DFT, partially redundant 

logic can create numerous observability and controllability obstacles.  

While several researchers have recently dealt with the testability issues of 

reversible logic, to the best of our knowledge, this work is the first investigation of 

reversible logic verification for structural modification detection using equivalence 

checking.  To facilitate our research, we have developed similar symbolic equivalence 

checking programs for irreversible classical logic (CMBtest) and reversible logic 

(DQMMceq) that automatically compare a benchmark file with a controlled modified 

version.  This topic is very important with respect to the development of synthesis 

optimization tools, test–set generators, and the understanding of functional equivalence 

tools. 

5.4.1. Partially Redundant Logic in Irreversible Logic  

Partial redundancy in irreversible logic arises from don’t-care conditions 

internal to the circuit.  Simulation based functional validation uses a set of vectors that 

are applied to the design and compared to the expected results.  Since a design 
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containing partially redundant logic may respond correctly to a set of test vectors, 

various approaches have been suggested that use verification tools to pinpoint and 

remove such logic.  Ratchev et al. use the technique of forced error detection which is 

based on allowing the synthesis tool to invert one randomly selected logic signal in the 

netlist [RHBA03].  They found that while not all the single injected errors are detected, 

the probability of error detection increases with the number of such insertions.  Huang 

et al. developed a tool that can detect don’t-care logic while performing static property 

checking using ATPG and binary decision diagram (BDD) techniques [HYTC00].  

They demonstrated that their don’t-care cases result from user-defined don’t-care 

assignments, over/under flow in variable index assignments of an array construct, and 

the default section of a Verilog case statement.  While don’t-care assignments often 

result in reduced circuit size during synthesis, it may create redundant logic that cannot 

be tested and wastes circuit resources.  

5.4.2. Partially Redundant Logic in Reversible Logic  

Definition 5.2 The trivial identity gate is a reversible gate that implements the 

identity transformation matrix I (a diagonal matrix with all non-zero entries equal 1).  

Any reversible gate with a transformation matrix that differs from the identity matrix is 

a non-trivial gate.   

Identity gates are trivial in the sense that they do not change the circuit 

transformation matrix and can be ignored in a functional sense.  We consider only non-

trivial gates when discussing reversible cascades.  
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5.4.3. Circuit Modification Strategy  

We have developed two tools for detecting partially redundant logic.  The 

“QMDDceq” for reversible logic uses a QMDD-based simulation tool, while the 

“CMBtest” tool for irreversible logic is based on the well-known CUDD package 

[Some95]. 

Both tools are used to perform repeated equivalence checking between a 

benchmark circuit and a copy of the circuit with controlled circuit modifications.  

Exhaustive structural tests that scan all the gates of the benchmark circuit are possible 

only for small circuits.  Larger circuits require random selection approaches.  Fig. 5.2 

shows the operational flow of our tools.  

The gate modifications are quite different for irreversible and reversible logic 

gates and will be described separately. 

 

Figure 5.2.  Detection of Partially Redundant Logic 
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5.4.4. Gate Modification for Irreversible Logic 

The ISCAS85 combinational benchmark circuits are comprised of a non-

homogeneous mixture of AND, NAND, OR, NOR, XOR, XNOR, BUFF, and NOT 

gates of various input sizes.  The program first constructs BDD representing the 

benchmark circuit using the CUDD package.  Next, a copy of the benchmark circuit 

with only one of the gates modified in accordance with the user selected replacement 

categories of Table 5.1 is created. 

 

Table 5.1.  Gate Replacements for Irreversible Logic 

Replacement 
category 

Allowed gate type changes 

Negation AND↔NAND; OR↔NOR; XOR↔XNOR. 
Moderate1 AND→NOR; NAND→XOR;OR→NAND; 

NOR→XNOR; XOR→OR;  XNOR→AND. 
Moderate2 AND→OR; NAND→NOR; OR→XOR; NOR→AND; 

XOR→NAND; NOR→NOR. 
 

The number of inputs remains fixed when a gate type is replaced.  Clearly, the 

negation replacements are the most severe and negated gates tend to be more easily 

detected by the equivalence checking tools.  Therefore, such hidden replacements in the 

benchmark circuits cannot exist unless they are buried inside a partially redundant logic 

cone.  
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5.4.5. Gate Replacement for Reversible Logic 

We now prove several lemmas that illustrate the major differences between 

reversible and irreversible circuits. 

Lemma 5.1: Two reversible circuits (cascades) that are different by exactly one 

(non-trivial) gate cannot be equivalent.  

Proof: Let us assume that the two cascades C1 and C2 each consist of n gates, 

represented by the transformation matrices G1,G2,…,Gk,..,Gn and G1,G2,…,G’k,..,Gn 

respectively.  Let Gk ≠ G’k be the only different gates in these circuits.  Then by (2.34),  

121111 ...... GGGGGGGC kkknn ××××××××= −+−                                 (5.3) 

and 

121112 ...... GGGGGGGC kkknn ××××′××××= −+−                                  (5.4) 

and the inequality C1≠C2 follows from the associative rule of matrix multiplication.    � 

Lemma 5.1 immediately illustrates a major difference between reversible logic 

and irreversible logic since modifying a single gate is guaranteed to be detected. This 

requires the QMDDceq to modify two or more gates during each iteration to create 

partially redundant logic. 

Lemma 5.2: The removal of a single gate from one cascade of a pair of 

identical reversible cascades ensures their non-equivalence.  

Proof: The proof follows directly from Lemma 5.1 by substituting the removed 

gate with the identity gate.                                                                                                � 
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Lemma 5.3: If a pair of equivalent cascades C1 and C2 remain equivalent after 

the removal of a contiguous set of l gates from C2, then the removed set comprises a 

cascade representing the identity matrix.   

Proof: It is easy to see that after removing l gates from C2, the remaining 

equivalence condition C1=C2, namely  

211111 ............... CGGGGGGGGC lkknlkkn =×××××=××××××= −++−
                (5.5) 

can be satisfied only if   

I=××× +−− 11 ... lkkk GGG                                                    (5.6) 

due to the properties of matrix multiplication.                                                                  � 

The synthesis tools for reversible logic often employ template matching for 

circuit reductions [IKY02, MMD03].  Obviously, the condition of Lemma 5.3 should be 

easily detected and removed from the benchmark circuits by the synthesis tool. 

Theorem 5.1 can now be proven that sets the limit for partially redundant logic in 

reversible circuits. 

Theorem 5.1: A reversible logic cascade C of n non-trivial gates may contain 

redundant logic comprising 2 to n gates. 

Proof: By Lemma 5.1, redundant logic cannot be comprised of a single non-

trivial gate.  By Lemma 5.3, we can provide an example of a redundant logic section of 

arbitrary size.                                                                                                                     � 

It is the prime motivation of this portion of the research to find hidden 

replacements in reversible logic when non-contiguous sets of gates are modified. 
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We now consider various types of gate modifications for reversible logic 

circuits.  A severe gate modification is achieved when we replace the type of gate 

altogether (e.g. TOF(x0,x1;x2) ↔ V+(x0;x2)).  The deletion of a gate is essentially the 

replacement of the current gate type with the identity gate.  A more moderate gate 

modification is achieved when changing the structure of a controlled gate with multiple 

lines like the Toffoli gate.  We must take into account that changing the order of control 

lines does not change the gate.  For example, 

TOF(a,b,c;d) =TOF(a,c,b;d)                                        (5.7) 

since only the order of the control lines has been changed.  On the other hand,  

    TOF(a,b,c;d) ≠TOF(a,d,c;b)                                        (5.8) 

represents a change since the target line has been modified, as has one of the control 

lines.  Also, 

TOF(a,b,c;d)≠TOF(a,b;d)≠TOF(a,b,c,e;d)                            (5.9) 

since we are changing the number of control lines. 

5.4.6. Irreversible Benchmark Circuits Results 

We have run the various gate replacements on a number of ISCAS85 benchmark 

circuits as shown in Table 5.2.  The table lists how many hidden replacements were 

detected using the Negation, Moderate1 and Moderate2 replacement rules.  We found 

that only one negation replacement is hidden in the benchmark circuit C2670.   

On the other hand, there are many hidden replacements for the moderate gate 

replacements.  Some of these may indicate the presence of partially redundant logic.  

Other hidden replacements exist because the benchmark circuits implement a large 
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number of don’t-care logic cones.  These don’t-cares cones were conveniently 

implemented in NAND and OR gates, but, as is apparent in the results, XOR and 

XNOR would have performed as well.  

Files with the suffix “nr” denote a later revision of the previously published 

benchmark circuits with their redundancy removed.  We note that the hidden negation 

replacement in C2670 was identified and fixed in C2670nr.  We can see that the newer 

versions are smaller in size and that the overall number of hidden replacements is 

generally reduced.  In some cases, the percent reduction in hidden replacements is 

larger than the benchmark circuit size reduction. 

Table 5.2.  Hidden Replacements in Irreversible Logic  

Benchmark 

circuit 

gates/levels Using Negation Using  Moderate1  Using  Moderate2 

C432 159 / 7   0       24     18 

C432nr 156 / 7   0       24     18 

C880 382/ 12   0       57     20  

C1355 545/ 15   0       416     2 

C1355nr 545/ 15   0       416     2 

C1908 879 / 17   0       327     0 

C1908nr 877 / 17   0       326     0 

C2670 1192 / 15   1     271     84 

C2670nr 960 / 13   0     201     47 

C3540 1668 / 15   0     292     117 

C3540nr 1691 / 15   0     252     67 

C5315 2306 / 25   0     475     184 

C5315nr 2297 / 25   0     472     164 

C7552 3511 / 24   0     1059     244 

C7552nr 3396 / 24   0     955     186 
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5.4.7. Reversible Logic Benchmark Circuits Results 

Table 5.3 shows our results for a number of the reversible logic benchmark 

circuits from Maslov’s website [Masl05].  These circuits include quantum as well as 

classical reversible logic benchmark circuits of generally “well synthesized” circuits.  

As expected, all the gate changes were promptly detected by the QMDDceq program.  

For larger files, we were able to run only random gate replacement selections, as is 

shown in the 5th column.  For the smaller benchmark circuits, we were able to run 

exhaustive gate modifications for sets of 2 to 6 gates as shown in the 6th column.  As 

illustrated in the experimental results of [MFT07b], the time to parse the netlist into a 

QMDD data structure representation depends on the circuit’s structure.  Therefore, the 

exhaustive test for some smaller benchmark circuits requires a prohibitively long 

amount of runtime.  

Although no partially redundant logic was detected in these benchmark circuits, 

we should stress that the random gate selections tackle only a small portion of the 

search space.  We cannot guarantee that some other gate selection changes will not 

reveal partially redundant logic in these benchmark circuits.  Yet it is clear from 

comparing Table 5.3 and Table 5.2 that redundant logic in reversible circuits is less 

likely to occur than in irreversible classical logic.  
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 Table 5.3.  No Hidden Replacements in Reversible Logic 

name type lines gates random exhaustive 

hwb4 qc 4 21 none 2,3,4,5,6 

c410184 qc 14 74 none 2 

c2 qc 35 305 none  

ham3 nct 3 5 none 2,3,4 

c3-17 nct 3 6 none 2,3,4,5 

hwb4 nct 4 11 none 2,3,4,5,6 

5mod5 nct 6 17 none 2,3,4,5 

hwb7 nct 7 289 none  

hwb8 nct 8 614 none  

hwb9 nct 9 1541 none  

6symd2 nct 10 20 none 2,3 

hwb10 nct 10 3595 none  

hwb11 nct 11 9314 none  

9symd2 nct 12 28 none 2 

c410184 nct 14 46 none 2 

rd84d1 nct 15 28 none  

ham15 nct 15 132 none  

cyc17-3 nct 20 48 none 2 

c2 nct 35 116 none  

 

5.4.8. Results with Randomly Generated Reversible Circuits 

In Lemma 5.3 we have shown that a trivial set of reversible gates implementing 

the identity transformation matrix can create an arbitrarily large redundant logic 

sequence.  We were curious to determine if potential redundant logic in reversible 

circuits can appear in the form of non-continuous gates.  For that purpose, we have 

generated several random reversible logic circuits without using template matching (as 
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described in [MMD03]) to optimize our design.  Fig. 5.3 demonstrates one of our 

findings with a circuit called “random4”.  

 

Figure 5.3.  Results with File “random4”  

 

This reversible circuit (shown in Fig. 5.3 using Maslov’s RCviewer tool 

[Masl05]) of 11 gates captures hidden replacements using the exhaustive gate deletion.  

For exhaustive two gate deletion, we found several hidden replacements such as the pair 

{G4, G6}.  For exhaustive three gate deletion, we found a hidden replacement by 

deleting gates {G5, G8, G9}.  We note that the template matching techniques described 

in Section 4.3.3 were not used in the process shown in Fig 5.3.  It is obvious that in the 

latter case, the 4th and 5th remaining gates would also be deleted if template matching is 

employed (or with exhaustive deletion of five gates). 

Although the theoretical discussion indicates that redundant logic may appear in 

reversible logic, the experimental results demonstrate that it is very uncommon, as 
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reversible logic cascades are maximally connected.  In contrast, irreversible logic tends 

to contain don’t-care cones that are more prone to result in redundant logic.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 

This dissertation proposes several novel CAD tools for emerging quantum 

technologies.  We survey the fundamentals of reversible logic, quantum computing and 

quantum computation and described the state of the art in simulation, synthesis, and 

testing tools.  We combined in this research two emerging quantum technologies - QCA 

and general reversible quantum circuits.  While the main difference between QCA and 

reversible QC is that QCA is not reversible, both technologies must deal with the 

probabilistic nature of quantum effects at the nano-scale.  

6.1. Conclusions and Main Contributions 

We have developed a sift-like minimization as well as structure metric based 

minimization techniques for the recently introduced quantum multi-valued decision 

diagram (QMDD), thus making it more efficient for use in CAD applications.  Without 

such minimization, decision diagrams tend to grow exponentially, quickly exceeding 

the computer’s memory resources.  Our techniques, employed in the QMDDmet CAD 

tool, achieved size minimization of 20-93% on most benchmark circuits [MFT07, 

MFT07b, FTM08b]. 
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We have used the enhanced QMDD to efficiently simulate quantum circuits and 

quantum vectors [GTFM07].  The tools further provide symbolic equivalence checking 

between quantum circuits.  

We have investigated the problem of synthesizing QCA circuits.  We developed 

the QCAexor CAD tool that demonstrated significant improvements for many 

benchmark circuits [FT07].  We investigated reversible logic synthesis using two 

approaches.  We investigated a virtual implementation of reversible circuits that use a 

direct translation of complex binary functions into circuits composed of Fredkin 

reversible gates [FTN06].  While this approach does not result in cascades of gates, it 

provided some interesting insight into the area and time complexities of complex 

circuits.  In investigation reversible logic synthesis techniques, we explored the 

synthesis of reversible cascades of gates.  In this approach, we explored the use of 

QMDD minimization in the QMDDsyn CAD tool in lexicographical logic synthesis of 

quantum circuits, utilizing its ability to determine a good variable order [FTM08c].  

The QMDDceq CAD tool investigates partially redundant reversible logic 

[FTM08].  Detection of partially redundant logic within any design, reversible or 

irreversible, has ramifications for logic synthesis, for design verification, and for design 

for test (DFT) issues.  We have experimentally established that reversible logic is less 

likely to exhibit redundant logic than irreversible logic, since reversible logic cascades 

are maximally connected.  Yet our theoretical analysis shows that redundant logic may 

still appear in reversible logic.  
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 Overall, this dissertation contributed to the main disciplines of quantum 

computing CAD tools, including simulation, synthesis, and testing [FTM08e]. 

 

6.2. Areas of Future Research 

The nascent nature of QC virtually guarantees that every topic discussed in this 

dissertation is likely to require significantly more research and refinement.  In addition 

to the methods developed in this research, these research topics need a constant flow of 

new techniques in order to reach maturity.  In the following subsections we describe 

several ideas we plan to investigate in the near future. 

6.2.1 Limitations of Quantum Circuit Simulation on Classical Computers  

In chapter 3 we have shown how the QMDD package can simulate quantum 

circuits on classical computers.  We also surveyed recently proposed QC simulators by 

other researchers.  And yet, we have noted that quantum computing emerged when 

Feynman observed that some quantum mechanics phenomenon cannot be accurately 

and fully simulated on a classical computer.  Clearly, there are some fundamental 

limitations of classical computer-based simulators of QC which we have touched upon 

in our discussion of skipped variables in Section 3.2.  We see a great prospect for future 

research along similar lines that try to unravel such fundamental limitations in the 

simulation of quantum effects. 
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6.2.2 Other Quantum Circuit Simulators  

We plan to explore alternative methods for QC simulation that are based on 

decision diagrams or programming languages.  The motivation for this research is to 

achieve better synthesis tool and overcome fundamental simulation limitations with a 

different tradeoffs than those provided by our current simulation package. 

6.2.3 Direct Synthesis of Quantum Circuits from QMDD 

In Section 4.4 we have explored the use of QMDD variable reordering 

minimization to improve the lexicographic synthesis of reversible circuits.  A more 

profound challenge for our future research is to synthesize the circuit directly from the 

minimized QMDD data structure.  The goal is to create an initial rough, non-optimal but 

fast representation of the circuit in QMDD, and then translate the minimized QMDD 

directly into a near-optimal circuit.   

In classical BDDs the direct translation into a circuit can be readily done by 

replacing each vertex with a 2:1 multiplexer whose selector input takes the value of the 

variable represented by the vertex.  Since QMDD actually decompose the overall 

transformation matrix of the circuit, there is no equivalent quantum circuit element that 

can be used instead like BDD’s multiplexer for direct translation of the QMDD into a 

quantum circuit. An approach that works directly on the QMDD data structure by 

iteratively converting it into the representation of the identity matrix is one that warrants 

further investigation.  The iterative steps in this process will constitute the required 

circuit synthesis technique. 
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We plan to further investigate and pursue improvements of the other QC 

synthesis methods described in Section 4.3.  In particular we are interested in template 

based synthesis (Section 4.3.3) as well as symmetry based synthesis (Section 4.3.5).   

6.2.4 Testing of Quantum Circuits  

We are interested in further refinement of the unified fault model for quantum 

circuit testing.  In particular, we wish to investigate various models that distinguish 

between probabilistic and deterministic quantum testing. Additional research work may 

be required to further integrate the QMDDceq tool into a future design for test (DFT) 

paradigm for quantum circuits as well as for fault tolerant quantum circuit design. 

The QMDD simulation package can be used in QC testing for automatic random 

pattern generation (ATPG).  This can be accomplished by simulating multiple vectors 

with the target circuit and analyzing the resulting fault coverage.  We are also interested 

in future development of the built-in-self-test (BIST) paradigm for quantum circuits 

[FNT07]. 
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