

Performance Characteristics of Two Blockchain Consensus
Algorithms in a VMware Hypervisor
John M. Medellin*, Ph.D., C.P.A. and Mitchell A. Thornton, Ph.D., P.E.
Research Associate Professor and Cecil H. Green Chair in Engineering
Darwin Deason Institute for Cybersecurity, Lyle School of Engineering,

Southern Methodist University, Dallas, Texas 75275, USA
johnmedellin@verizon.net, mitch@lyle.smu.edu

Abstract— Two fundamental components of the
Blockchain architecture are the encryption and the
consensus algorithm. As blocks are appended to the chain
they are encrypted with prior information to ensure all the
chain’s history is included when appending another block
transaction. Once a transaction is added to the chain,
other participants in the network must agree with the
encryption and by default with the transaction. At some
point in time, if enough participants have validated the
transaction it becomes part of the permanently encrypted
record of transactions in the chain. We selected the
Byzantine Generals Problem and the RAFT consensus
algorithms in order to test for scalability in VMware.
These differ from the traditional “Nakamoto” proof of
work consensus approach in that they assume that a
majority of the participants are trusted sources as would
be the case for a private blockchain application. These
algorithms are suitable for use in processes that are
focused on trust-based transaction validation for
documents such as loan applications or cargo manifestos.
Our experiments simulate the trusted network and the two
algorithms mentioned above. The initial results indicate
that both algorithms have better throughput performance
when scaled and virtualized. We also scale the volume of
blocks appended in each one and find that the RAFT
algorithm significantly out-performs the Byzantine
Generals’ Problem both in raw metal and in private Cloud
settings.

Keywords— Cloud Scalability, Blockchain
Consensus, Byzantine Generals Problem, RAFT.

I. INTRODUCTION

The well-known cryptocurrency publication authored by
Satoshi Nakamoto gave much needed exposure to the
Blockchain design pattern as a viable structure for ensuring
transactions were verified and logged in a robust structure;
the blockchain. Some key attributed of the blockchain
include the avoidance of reliance upon a single “trusted”
third party while also providing an anonymous and

unregulated means of validation [11]. A common
application of this structure is to support the exchange of
value between peers; also known as a “crypto-currency”
exchange. Since the Nakamoto paper was published, many
hundreds of cryptocurrencies have been invented with the
most well-known being Bitcoin. The objective of these
public exchanges of value is to disintermediate traditional
financial channels based upon controlling third parties in
favor of peer-to-peer exchanges that can occur in an
anonymous manner while also maintaining a high degree of
security. The security of these currency exchanges is
provided by a crowd-sourced validation task wherein the
validation is centered upon solving a cryptographic hash [4].
The crowd-sourcing aspect is due to the fact that the first
member of the public who successfully solves the hash
problem is rewarded with some amount of cryptocurrency; a
process commonly referred to as “mining.” Members of the
public are thus incentivized to be the first in solving the
cryptographic hash problem and the side effect is that new
transactions are quickly verified in an anonymous and
secure manner.

The Blockchain design pattern has two significant
requirements a) solid cryptography that includes aspects of
prior hashing as a means of validating both the current
transaction as well as the cumulative transaction chain and,
b) use of a consensus algorithm for participants to agree and
commit a particular transaction to the global tamper-
resistant ledger [10]. The combination of these two
attributes provides a degree of confidence that the
transaction is authentic without relying upon some central
authority. Furthermore, the cumulative nature of the
cryptographic hash problem to be solved enhances the
resiliency of the ledger because it becomes significantly
more difficult to break as more cycles are added to the
computed hashes. This is a computationally heavy process
and one that would be described as a “resource-intensive”
workload [7].

Private and public Blockchain implementations have
different objectives. In a public Blockchain implementation,
the identity of the participants are not generally known (as
in the case of Bitcoin) and the only requirement for
transaction participation is mathematical proof of execution.
The objectives for private Blockchains respond to the needs

of providing a tamper-resistant method for safeguarding a
ledger of transactions, documents, or events [14]. In this
case, the participants know of each other’s identity and trust
one another by definition. However, as is the case with
public blockchains, the majority of the trusted participants
must agree on the authenticity of a particular transaction in
order to add it to the chain. The most common reason this
process is implemented within a private chain comprised of
trusted parties is to ensure that imposters or a”man-in-the-
middle” attack is not occurring. In this case, the proof of
computation (Nakamoto style [11]) may not be the most
efficient way to agree on the validity of a block.

Recently the application of the blockchain philosophy
within private distributed systems has enjoyed widespread
and diverse applications. Thus, our focus in the research
presented here is with regard to private block chain
performance. To this end, we have created custom software
to test the scalability and performance of two consensus
algorithms. We have selected the Byzantine Generals
Problem described by Lamport, Shostak, and Pease [6] as
one that has been used in the community for a long time as a
benchmark for a variety of different studies. The second
algorithm we consider is a variation of the method proposed
by Ongaro and Ousterhout [12] that preserves many of the
cyber-resilient attributes of the Byzantine Generals
approach while significantly simplifying the computation
due to the trust-election and usage of randomness for the
valid time period of election. Our encryption algorithm is
based on a SHA-256 workload according to the model in
Stallings [13]. The specific architecture of the two
consensus algorithms is discussed later in this document.

Our analysis presents the initial work done on both the
consensus algorithms and the aspects of scalability of heavy
computational workloads. We next describe the software
architectures of the two custom simulators built and the
virtualized environment in the form of a private cloud that
we have provisioned for this research. Finally, we conduct
scalability experiments both in a single- and multi-core
environment to detect and determine the benefits of moving
from a bare metal implementation to a virtualized cloud.

We believe the contribution of this investigation to the
Cloud domain is to encourage private blockchain
implementations for documents of trust to move into a
virtualized environment for the greater efficiencies it can
deliver.

Currently we report on the results of our initial
exploratory study into the nature of resource consumption of
these consensus algorithms under very controlled
conditions. However, our results are very encouraging and
motivate us to pursue ongoing and more detailed research.
To this end, further details on the limitations of this initial
research are provided along with our plans for extending
this work.

II. RELATED WORK
This research combines the domains of consensus

algorithms and scalability in private cloud environments.
We begin by describing the functional aspects of the
Byzantine Generals Problem and RAFT that assist in
arriving at a decision to append a block. Next, we describe
the seminal work accomplished in the area of workload
simulations and computational partitioning of algorithms on
private hypervisors in preparation for measuring the two
fundamental differences in the two models: ongoing voting
versus using a trust election.

A. The consensus algorithms.
The Byzantine Generals problem was popularized due to

its representation of a generic scheduling problem in the
area of distributed systems processing. The premise of the
problem is that the Byzantine empire’s army is led by a
plurality of Generals and that the army is tasked with the
objective of conducting a siege upon a particular city. For
the siege to be successful, each division of the army, led by
by different particular Generals, must all attack the city
simultaneously. Communication among the army divisions
occurs via human messengers among the respective
Generals. It is assumed that the only way the Generals can
communicate with one another is through the use of verbal
messages from the messengers. The interesting aspect of
the Byzantine Generals problem is that some unknown
minority of the Generals are traitors and they thus attempt to
undermine the siege through sending false information
concerning the planned time of attack to the loyal and
honest Generals that represent the majority of the army
divisions. At some point in time in the future, all of the
loyal Generals will eventually agree upon a time for the
siege to occur after a sufficient number of messengers have
been dispatched and their messages delivered. The
“solution” of the Byzantine Generals problem is then the
determination of when the correct time for the siege to
initiate has been received and agreed upon by a majority of
the Generals leading the army. This problem then
characterizes a block chain consensus task wherein it is
assumed that imposters or other bad actors are present
within the private system.

The Byzantine Generals Problem can be described in an
enumerated fashion as follows:
1. There are a number of Generals that are leading the

Byzantine Empire’s army in a siege of a particular city.
2. They must all attack together at a given time in order to

conquer the city.
3. They communicate through messengers that deliver

information through verbal channels only.
4. A minority of the Generals are traitors that will try to

undermine the remaining majority of honest and loyal
Generals by providing false information.

5. At some point in time, all the loyal Generals will agree
on a time and when the majority of them agree the time

for attack is set. Determining when this time occurs is
the “solution” to the problem.

The RAFT approach is based upon the premise that the
private network utilizing a blockchain for trusted
maintenance of a shared transaction log is comprised of
some number of computational nodes where each node is an
independent participant in validating and updating the
overall log. Within this model time is considered in
discretized intervals or epochs. Furthermore, the epoch
lengths are non-uniform and modeled as a sequence of
random variables. At the beginning of each discrete epoch,
the individual computation nodes each casts a vote for one
of their peers and the votes are all tallied to determine which
of the collection of computational nodes receives the
majority of votes. The RAFT approach also contains
provisions for handling tie votes. For the purpose of
simplicity, we can assume that the voting and tallying
process is repeated with some element of randomness added
until a majority vote is achieved. The eventual winner of
the vote is then the computational node that is trusted by all
others and whom has the responsibility of issuing the
duration of the next time interval or epoch. This process is
referred to as a “trust-election”. In the context of a provate
blockchain, the winner of the trust-election is the
computational node whose copy of the global blockchain is
assumed to be the correct and validated version that is then
shared and copied by all other nodes in the network. This
process of holding trust-elections and updating blockchain
copies the repeats for the processing lifetime of the private
network.

The RAFT consensus model can be described as an
enumerated set of steps within a method as follows:
1. There are a number of nodes in a network that can carry

out computations and will participate in placing their
blocks on the blockchain.

2. Time is partitioned into epochs (our term; meaning
intervals of time) and each epoch’s duration is chosen
at random.

3. Before an epoch begins, each of the nodes votes for a
node (presumably through a mathematically sound way
of selecting who to vote for), the one node with
majority of votes wins.

4. If there is a tie then another election begins
immediately (please note that the original document has
5 nodes participating to minimize chances of a tied-
vote).

5. The winner issues the epoch’s duration and a secret that
is used by all nodes in encryption of transactions during
the epoch.

6. As an epoch ends, another trust-election begins and so
the process continues.

Finally, for sake of baseline comparison, the original

Nakamoto proof-of-work algorithm as originally intended to

support public blockchains for cryptocurrency transactions
or exchanges is described as follows in an enumerated form:
1. Participants purchase an entitlement that allows them to

transact with others in the network for some
predetermined amount of cryptocurrency.

2. When a new currency exchange or transaction occurs,
there is a need to record it in a ledger that is
accomplished by appending it to the other blocks in the
chain.

3. The transacting node recomputes the cryptographic
hash result of previous transactions that are not yet
committed and derives an encryption hash value of its
own.

4. If the assumptions of the blockchain encryption are still
valid (e.g. another node has not appended their
transaction to the ledger while the encryption
computations were being executed) then the node
reports the transaction to the rest of the nodes as a valid
addition and reports the computation power it has spent
doing work. This number accounts for a percentage of
the total computation power (which is known by all).

5. More nodes add their encrypted transaction blocks and
when a transaction block yields an accumulated load of
51% or more since the original transaction block was
appended this will cause the original one to be deemed
finalized and it will be committed to permanency. In
this manner consensus regarding the ledger to be
accepted as valid is achieved by a majority of the
participating nodes in the public system.

B. Workload Partitioning and Simulation in
Cloud Environments.

Additional challenges take place when a program is re-
deployed to run in a Cloud environment. In these situations,
the system is translated from a physical (raw metal)
implementation to a virtualized (logical) environment and
additional performance penalties are incurred to support
virtualization [8]. An additional penalty or “virtualization
overhead” that can range from 40 to 80% initially is
incurred simply for translation from the logical to the
physical implementation. As the algorithm scales, the initial
penalty reduces while the “true” work, the “workload,”
reflects the behavior of the application objectives being
accomplished [9]. Most workloads will exhibit additional
consumption characteristics and some will be markedly
more inefficient in the key items such as time and CPU
usage.

Generally speaking, any interrupts associated with the
code being executed in the Cloud environment will be much
more expensive than on raw metal due to the significant
interrupt serving penalties that occur in a virtualized system
[7]. Specifically interrupts such as multithread discipline
through mutex critical regions and condition codes tend to
be more expensive than single-threaded algorithms. In
addition, the synchronization of multiple cores within the

threads cause for the threaded resources to continue
consuming resources although in an idle mode (in a critical
region). The combination of the above additional penalties
are the reasons why we have executed the experiments
described below.

III. EXPERIMENT DESIGN
We designed our experiments to simulate the scaled

execution of the previously described algorithms in a private
cloud. Custom software was generated in C and is described
below by using diagrams similar to those proposed by
Booch in RUP [1] and Larman in UML [5]. The posix
paradigm coding was similar to that referenced in Butenhof
[2] both for mutual exclusion through mutexes and also
using thread-specific data partitioning. We note that the
software implemented for these experiements is available
through Github [3].

Byzantine Generals Problem Architecture

 The Byzantine pseudocode is as follows (please refer to
the Activity diagram immediatelly after):

--

<begin>

<receive transaction and encrypt>

<if transaction ok for next, append & increment vote count>

<else recompute>

<if votes=majority, commit transaction>

<loop to begin>

--

Figure 1: Byzantine Activity Diagram

RAFT Architecture

 The RAFT pseudocode follows and an activity diagram
for the code is given.

--

<begin>

<vote>

<if majority; designate node, issue secret & epoch duration>

<encrypt>

<if transaction ok for next, append >

<else recompute>

<if epoch over, loop to begin>

--

Figure 2: RAFT Activity Diagram

Infrastructure Architecture

 The infrastructure used to execute these trials was as
follows:

Hardware Infrastructure

• Apple MacIntosh MacBook Pro

• Intel Itanium 5 Quad Core CPU; 3.1Ghz

• 8GB RAM/1TB SSD

Software Infrastructure – Bare Metal

• UBUNTU Linux v 16.03

• GCC/pthreads package

Software Infrastructure – Hypervisor

• VMware Workstation Pro 14

• UBUNTU Linux v 16.03 guest Operating System

• GCC/pthreads package

 The baseline trials were conducted on bare metal and
scaled at 1, 2 and 3 Million blocks to be generated. The
private cloud trials were executed under the same volumes
and varying the number of cores assigned to the virtual
machine. The results are included in section IV and the
discussion of results in section V of this document.

IV. EXPERIMENT RESULTS

We began by running the algorithms coded in C on “bare
metal;” directly on the machine without using VMware to
obtain a baseline for the purpose of performance
comparisons. The bare metal machine has a quad-core
processor that was used to support four independent threads.
Furthermore, the machine is also equipped with a hyper-
threading feature that allows for eight independently-
addressable threads. Our baseline results are reported in
Table 1 where CPU utilization and actual measured and
corresponding runtimes are given.

Table 1: Resource Consumption, Bare Metal,
4 Cores

Next, we ported the software to a virtual machine
implemented via the use of VMware with the following
characteristics:

• 1 GB Memory
• 1 Core
• 50 GB Secondary Storage

The results for the virtualized implementations are

included in Table 2.

Table 2: Resource Consumption, VMW, 1
Core Virtual Machine

Next, we reran the algorithms in a new virtual

configuration by reconfiguring the virtual machine to
include four cores. It is noted that we tested both VM
configurations for increased RAM and found no impact in
scaling it to 2GB. The results are reported in Table 3.

Table 3: Resource Consumption, VMW, 4

Core Virtual Machine

V. RESULTS DISCUSSION AND FUTURE
PLANS

This is an initial experiment in comparing the scaling of

private blockchain algorithms. Additional research is needed
in varying the algorithms at the application level as well as
tuning the other parts of the virtualized stack; host operating
system, virtual machine allocations, guest operating systems
and other such components. All of the stack components,
both in the real and virtualized environments, were installed

Raw	Metal
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 94% 2:37
RAFT 97% 1:06
2M Blocks
Byzantine 93% 6:33
RAFT 91% 2:11
3M Blocks
Byzantine 93% 9:52
RAFT 92% 3:18

Single	Core
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 91% 0:07
RAFT 80% 0:02
2M Blocks
Byzantine 91% 0:14
RAFT 80% 0:04
3M Blocks
Byzantine 91% 0:21
RAFT 80% 0:07

Four Cores
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 95% 2:31
RAFT 87% 0:48
2M Blocks
Byzantine 95% 5:05
RAFT 94% 1:41
3M Blocks
Byzantine 95% 7:39
RAFT 96% 2:34

with the initial configuration or “out of the box” as
suggested by the vendors.

A. Results Discussion
In the baseline case, CPU utilization appears to have

little variation between all of the results; the Table 1 average
was 94% rounded. However, we observe that the algorithms
have radically different execution times with most
executions of the RAFT method tending to finish in
approximately one-third of the time as compared to that
required by the Byzantine Generals problem solution
approach. These results are congruent to those that have
been obtained by Ongaro and Ousterhout [12] and confirm
the generally accepted position regarding the efficiency of
RAFT over Byzantine Generals. These conclusions then
form the basis for our comparison to the virtualized
environments that is the primary research result reported
here.

In the second experiment with results summarized in
Table 2, we observe that the required execution time is
radically improved by utilizing a single core. This case is
similar to what is expected that the use of one validation
machine would incur if used in the algorithms above. These
results however can be extrapolated by multiplying them by
four for comparison with the multiple cores instantiation. In
the case of RAFT’s usage of CPU (80% consistent), this is
because RAFT holds a trust election at a 500-block
frequency and not all the threads are validating results all
the time and the trust election is held using thread-specific
data rather than mutex variables which is slightly more
efficient in a single core machine [2].

In the final case, the results obtained are very similar to
the results on bare metal. At the higher levels of scaling (1M
and above) the typical behavior of virtual machine
workloads will begin to approach the behavior under bare
metal (the virtualization overhead is much smaller than the
application workload itself) and is consistent with other
results we have published in this area [9].

Therefore, we conclude that, based on these initial
results, the algorithms consume nearly the same resources
that they consume in the bare metal case even when scaled
to significant volumes.

B. Future Plans
 As mentioned above, these results have not been
optimized in all aspects of the application and virtualization
stack. For example, CPU speeds and allocations need to be
varied (virtualization stack) as well as the length of blocks

before a new trust election occurs in RAFT. For these intial
results, trust-election repetitivity is fixed at 500; however,
future efforts will determine what happens when the
repetitivity is varied from lower or higher values. These
additional efforts will be investigated and reported in
successive experiments.

REFERENCES
[1] G. Booch; “Object-Oriented Analysis and Design with

Applications” c. Addison Wesley Longman, Inc. 1994,
Reading, Massachusets.

[2] D. Butenhof; “Programming with POSIX® Threads, The
Addison-Wesley Professional Computing Series” c. Addison-
Wesley 1997, Boston, Massachusets.

[3] www.github.com
[4] R. Johnsonbaugh; “Discrete Mathematics 8th edition” c. 2018

Pearson Education, Inc., New York, New York.
[5] C. Larman; “Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative
Development (3rd Edition)” c. Pearson Education, Inc. 2005,
Upper River, New Jersey.

[6] L. Lamport, R. Shostak, M. Pease; “The Byzantine Generals
Problem” ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 3, July 1982, p. 382-401.

[7] M. Liebowitz, C. Kusek, R. Spies; “VMware vSphere
Performance – Designing CPU, Memory, Storage, and
Networking for Performance-Intensive Workloads” c. John
Wiley & Sons, Inc. 2014, Indianapolis, Indiana.

[8] J. Medellin, O. Barack, Q. Zhang, L. Huang; “Enabling
Migration Decisions through Policy Services in SOA Mobile
Cloud Computing Systems” 2015 International Conference on
Grid, Cloud Computing & Applications “GCA’15” p. 23-30.

[9] J. Medellin, F. Lee, L. Budhi, S. Gennepally; “Measuring
SPECjbb2015 Virtualization Overhead and Application
Workloads in a Mircrosoft Hyper-V Cloud” 2017
International Conference on Grid, Cloud & Cluster
Computing “GCC’17” p. 3-10.

[10] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, C. Qinjun;
“A Review on Consensus Algorithm of Blockchain” 2017
IEEE International Conference on Systems, Man, and
Cybernetics (SMC) p. 2567 – 2572.

[11] S. Nakamoto; “Bitcoin: A Peer-to-Peer Electronic Cash
System” www.bitcoin.org.

[12] D. Ongaro and J. Ousterhout; “In Search of an
Understandable Consensus Algorithm” Proceedings ATC’14
USENIX Annual Technical Conference (2014), USENIX.

[13] W. Stallings; “Cryptography and Network Security, Principles
and Practice 7th edition”c. Pearson Education Limited 2018,
London, United Kingdom.

[14] X. Xu, I. Weber, M. Staples, L. Zhu et. al.; “A Taxonomy of
Blockchain-Based Systems for Architecture Design”
Proceedings 2017 IEEE International Conference on Software
Architecture, p. 243-252.

