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Abstract— Two fundamental components of the 
Blockchain architecture are the encryption and the 
consensus algorithm. As blocks are appended to the chain 
they are encrypted with prior information to ensure all the 
chain’s history is included when appending another block 
transaction. Once a transaction is added to the chain, 
other participants in the network must agree with the 
encryption and by default with the transaction. At some 
point in time, if enough participants have validated the 
transaction it becomes part of the permanently encrypted 
record of transactions in the chain. We selected the 
Byzantine Generals Problem and the RAFT consensus 
algorithms in order to test for scalability in VMware. 
These differ from the traditional “Nakamoto” proof of 
work consensus approach in that they assume that a 
majority of the participants are trusted sources as would 
be the case for a private blockchain application. These 
algorithms are suitable for use in processes that are 
focused on trust-based transaction validation for 
documents such as loan applications or cargo manifestos.  
Our experiments simulate the trusted network and the two 
algorithms mentioned above. The initial results indicate 
that both algorithms have better throughput performance 
when scaled and virtualized. We also scale the volume of 
blocks appended in each one and find that the RAFT 
algorithm significantly out-performs the Byzantine 
Generals’ Problem both in raw metal and in private Cloud 
settings. 
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I. INTRODUCTION  
 

The well-known cryptocurrency publication authored by 
Satoshi Nakamoto gave much needed exposure to the 
Blockchain design pattern as a viable structure for ensuring 
transactions were verified and logged in a robust structure; 
the blockchain.  Some key attributed of the blockchain 
include the avoidance of reliance upon a single “trusted” 
third party while also providing an anonymous and 

unregulated means of validation [11]. A common 
application of this structure is to support the exchange of 
value between peers; also known as a “crypto-currency” 
exchange. Since the Nakamoto paper was published, many 
hundreds of cryptocurrencies have been invented with the 
most well-known being Bitcoin. The objective of these 
public exchanges of value is to disintermediate traditional 
financial channels based upon controlling third parties in 
favor of peer-to-peer exchanges that can occur in an 
anonymous manner while also maintaining a high degree of 
security. The security of these currency exchanges is 
provided by a crowd-sourced validation task wherein the 
validation is centered upon solving a cryptographic hash [4].  
The crowd-sourcing aspect is due to the fact that the first 
member of the public who successfully solves the hash 
problem is rewarded with some amount of cryptocurrency; a 
process commonly referred to as “mining.”  Members of the 
public are thus incentivized to be the first in solving the 
cryptographic hash problem and the side effect is that new 
transactions are quickly verified in an anonymous and 
secure manner.   

The Blockchain design pattern has two significant 
requirements a) solid cryptography that includes aspects of 
prior hashing as a means of validating both the current 
transaction as well as the cumulative transaction chain and, 
b) use of a consensus algorithm for participants to agree and 
commit a particular transaction to the global tamper-
resistant ledger [10]. The combination of these two 
attributes provides a degree of confidence that the 
transaction is authentic without relying upon some central 
authority.  Furthermore, the cumulative nature of the 
cryptographic hash problem to be solved enhances the 
resiliency of the ledger because it becomes significantly 
more difficult to break as more cycles are added to the 
computed hashes. This is a computationally heavy process 
and one that would be described as a “resource-intensive” 
workload [7]. 

Private and public Blockchain implementations have 
different objectives. In a public Blockchain implementation, 
the identity of the participants are not generally known (as 
in the case of Bitcoin) and the only requirement for 
transaction participation is mathematical proof of execution. 
The objectives for private Blockchains respond to the needs 



 

 

of providing a tamper-resistant method for safeguarding a 
ledger of transactions, documents, or events [14]. In this 
case, the participants know of each other’s identity and trust 
one another by definition.  However, as is the case with 
public blockchains, the majority of the trusted participants 
must agree on the authenticity of a particular transaction in 
order to add it to the chain. The most common reason this 
process is implemented within a private chain comprised of 
trusted parties is to ensure that imposters or a”man-in-the-
middle” attack is not occurring.  In this case, the proof of 
computation (Nakamoto style [11]) may not be the most 
efficient way to agree on the validity of a block. 

Recently the application of the blockchain philosophy 
within private distributed systems has enjoyed widespread 
and diverse applications.  Thus, our focus in the research 
presented here is with regard to private block chain 
performance.  To this end, we have created custom software 
to test the scalability and performance of two consensus 
algorithms. We have selected the Byzantine Generals 
Problem described by Lamport, Shostak, and Pease [6] as 
one that has been used in the community for a long time as a 
benchmark for a variety of different studies. The second 
algorithm we consider is a variation of the method proposed 
by Ongaro and Ousterhout [12] that preserves many of the 
cyber-resilient attributes of the Byzantine Generals 
approach while significantly simplifying the computation 
due to the trust-election and usage of randomness for the 
valid time period of election. Our encryption algorithm is 
based on a SHA-256 workload according to the model in 
Stallings [13]. The specific architecture of the two 
consensus algorithms is discussed later in this document. 

Our analysis presents the initial work done on both the 
consensus algorithms and the aspects of scalability of heavy 
computational workloads. We next describe the software 
architectures of the two custom simulators built and the 
virtualized environment in the form of a private cloud that  
we have provisioned for this research. Finally, we conduct 
scalability experiments both in a single- and multi-core 
environment to detect and determine the benefits of moving 
from a bare metal implementation to a virtualized cloud. 

We believe the contribution of this investigation to the 
Cloud domain is to encourage private blockchain 
implementations for documents of trust to move into a 
virtualized environment for the greater efficiencies it can 
deliver.  

Currently we report on the results of our initial 
exploratory study into the nature of resource consumption of 
these consensus algorithms under very controlled 
conditions. However, our results are very encouraging and 
motivate us to pursue ongoing and more detailed research.  
To this end, further details on the limitations of this initial 
research are provided along with our plans for extending 
this work. 

II. RELATED WORK 
This research combines the domains of consensus 

algorithms and scalability in private cloud environments. 
We begin by describing the functional aspects of the 
Byzantine Generals Problem and RAFT that assist in 
arriving at a decision to append a block. Next, we describe 
the seminal work accomplished in the area of workload 
simulations and computational partitioning of algorithms on 
private hypervisors in preparation for measuring the two 
fundamental differences in the two models: ongoing voting 
versus using a trust election.  

A. The consensus algorithms. 
The Byzantine Generals problem was popularized due to 

its representation of a generic scheduling problem in the 
area of distributed systems processing.  The premise of the 
problem is that the Byzantine empire’s army is led by a 
plurality of Generals and that the army is tasked with the 
objective of conducting a siege upon a particular city.  For 
the siege to be successful, each division of the army, led by 
by different particular Generals, must all attack the city 
simultaneously.  Communication among the army divisions 
occurs via human messengers among the respective 
Generals.  It is assumed that the only way the Generals can 
communicate with one another is through the use of verbal 
messages from the messengers.  The interesting aspect of 
the Byzantine Generals problem is that some unknown 
minority of the Generals are traitors and they thus attempt to 
undermine the siege through sending false information 
concerning the planned time of attack to the loyal and 
honest Generals that represent the majority of the army 
divisions.  At some point in time in the future, all of the 
loyal Generals will eventually agree upon a time for the 
siege to occur after a sufficient number of messengers have 
been dispatched and their messages delivered.  The 
“solution” of the Byzantine Generals problem is then the 
determination of when the correct time for the siege to 
initiate has been received and agreed upon by a majority of 
the Generals leading the army.  This problem then 
characterizes a block chain consensus task wherein it is 
assumed that imposters or other bad actors are present 
within the private system. 

The Byzantine Generals Problem can be described in an 
enumerated fashion as follows: 
1. There are a number of Generals that are leading the 

Byzantine Empire’s army in a siege of a particular city. 
2. They must all attack together at a given time in order to 

conquer the city. 
3. They communicate through messengers that deliver 

information through verbal channels only. 
4. A minority of the Generals are traitors that will try to 

undermine the remaining majority of honest and loyal 
Generals by providing false information. 

5. At some point in time, all the loyal Generals will agree 
on a time and when the majority of them agree the time 



 

 

for attack is set.  Determining when this time occurs is 
the “solution” to the problem. 
 

The RAFT approach is based upon the premise that the 
private network utilizing a blockchain for trusted 
maintenance of a shared transaction log is comprised of 
some number of computational nodes where each node is an 
independent participant in validating and updating the 
overall log.  Within this model time is considered in 
discretized intervals or epochs.  Furthermore, the epoch 
lengths are non-uniform and modeled as a sequence of 
random variables.  At the beginning of each discrete epoch, 
the individual computation nodes each casts a vote for one 
of their peers and the votes are all tallied to determine which 
of the collection of computational nodes receives the 
majority of votes.  The RAFT approach also contains 
provisions for handling tie votes.  For the purpose of 
simplicity, we can assume that the voting and tallying 
process is repeated with some element of randomness added 
until a majority vote is achieved.  The eventual winner of 
the vote is then the computational node that is trusted by all 
others and whom has the responsibility of issuing the 
duration of the next time interval or epoch.  This process is 
referred to as a “trust-election”.  In the context of a provate 
blockchain, the winner of the trust-election is the 
computational node whose copy of the global blockchain is 
assumed to be the correct and validated version that is then 
shared and copied by all other nodes in the network.  This 
process of holding trust-elections and updating blockchain 
copies the repeats for the processing lifetime of the private 
network. 

The RAFT consensus model can be described as an 
enumerated set of steps within a method as follows: 
1. There are a number of nodes in a network that can carry 

out computations and will participate in placing their 
blocks on the blockchain. 

2. Time is partitioned into epochs (our term; meaning 
intervals of time) and each epoch’s duration is chosen 
at random. 

3. Before an epoch begins, each of the nodes votes for a 
node (presumably through a mathematically sound way 
of selecting who to vote for), the one node with 
majority of votes wins. 

4. If there is a tie then another election begins 
immediately (please note that the original document has 
5 nodes participating to minimize chances of a tied-
vote). 

5. The winner issues the epoch’s duration and a secret that 
is used by all nodes in encryption of transactions during 
the epoch. 

6. As an epoch ends, another trust-election begins and so 
the process continues. 
 
Finally, for sake of baseline comparison, the original 

Nakamoto proof-of-work algorithm as originally intended to 

support public blockchains for cryptocurrency transactions 
or exchanges is described as follows in an enumerated form: 
1. Participants purchase an entitlement that allows them to 

transact with others in the network for some 
predetermined amount of cryptocurrency. 

2. When a new currency exchange or transaction occurs, 
there is a need to record it in a ledger that is 
accomplished by appending it to the other blocks in the 
chain.   

3. The transacting node recomputes the cryptographic 
hash result of previous transactions that are not yet 
committed and derives an encryption hash value of its 
own. 

4. If the assumptions of the blockchain encryption are still 
valid (e.g. another node has not appended their 
transaction to the ledger while the encryption 
computations were being executed) then the node 
reports the transaction to the rest of the nodes as a valid 
addition and reports the computation power it has spent 
doing work. This number accounts for a percentage of 
the total computation power (which is known by all). 

5. More nodes add their encrypted transaction blocks and 
when a transaction block yields an accumulated load of 
51% or more since the original transaction block was 
appended this will cause the original one to be deemed 
finalized and it will be committed to permanency.  In 
this manner consensus regarding the ledger to be 
accepted as valid is achieved by a majority of the 
participating nodes in the public system. 
   

B. Workload Partitioning and Simulation in 
Cloud Environments. 

Additional challenges take place when a program is re-
deployed to run in a Cloud environment. In these situations, 
the system is translated from a physical (raw metal) 
implementation to a virtualized (logical) environment and 
additional performance penalties are incurred to support 
virtualization [8]. An additional penalty or “virtualization 
overhead” that can range from 40 to 80% initially is 
incurred simply for translation from the logical to the 
physical implementation. As the algorithm scales, the initial 
penalty reduces while the “true” work, the “workload,” 
reflects the behavior of the application objectives being 
accomplished [9]. Most workloads will exhibit additional 
consumption characteristics and some will be markedly 
more inefficient in the key items such as time and CPU 
usage. 

Generally speaking, any interrupts associated with the 
code being executed in the Cloud environment will be much 
more expensive than on raw metal due to the significant 
interrupt serving penalties that occur in a virtualized system 
[7]. Specifically interrupts such as multithread discipline 
through mutex critical regions and condition codes tend to 
be more expensive than single-threaded algorithms. In 
addition, the synchronization of multiple cores within the 



 

 

threads cause for the threaded resources to continue 
consuming resources although in an idle mode (in a critical 
region). The combination of the above additional penalties 
are the reasons why we have executed the experiments 
described below. 

III. EXPERIMENT DESIGN 
We designed our experiments to simulate the scaled 

execution of the previously described algorithms in a private 
cloud. Custom software was generated in C and is described 
below by using diagrams similar to those proposed by 
Booch in RUP [1] and Larman in UML [5]. The posix 
paradigm coding was similar to that referenced in Butenhof 
[2] both for mutual exclusion through mutexes and also 
using thread-specific data partitioning. We note that the 
software implemented for these experiements is available 
through Github [3]. 
 

Byzantine Generals Problem Architecture 
 

 The Byzantine pseudocode is as follows (please refer to 
the Activity diagram immediatelly after): 

-------------------------------------------------------------------------- 

<begin> 

<receive transaction and encrypt> 

<if transaction ok for next, append & increment vote count> 

<else recompute> 

<if votes=majority, commit transaction> 

<loop to begin> 

---------------------------------------------------------------------------------- 

Figure 1: Byzantine Activity Diagram  

 

 

RAFT Architecture 
 

 The RAFT pseudocode follows and an activity diagram 
for the code is given.  

-------------------------------------------------------------------------- 

<begin> 

<vote> 

<if majority; designate node, issue secret & epoch duration> 

<encrypt> 

<if transaction ok for next, append > 

<else recompute> 

<if epoch over, loop to begin> 

---------------------------------------------------------------------------------- 

Figure 2: RAFT Activity Diagram  

 
Infrastructure Architecture 

 The infrastructure used to execute these trials was as 
follows: 

 

Hardware Infrastructure 

• Apple MacIntosh MacBook Pro  

• Intel Itanium 5 Quad Core CPU; 3.1Ghz 

• 8GB RAM/1TB SSD 

 

Software Infrastructure – Bare Metal 

• UBUNTU Linux v 16.03 

• GCC/pthreads package 

 

 



 

 

Software Infrastructure – Hypervisor 

• VMware Workstation Pro 14 

• UBUNTU Linux v 16.03 guest Operating System 

•  GCC/pthreads package 

 The baseline trials were conducted on bare metal and 
scaled at 1, 2 and 3 Million blocks to be generated. The 
private cloud trials were executed under the same volumes 
and varying the number of cores assigned to the virtual 
machine. The results are included in section IV and the 
discussion of results in section V of this document. 

IV. EXPERIMENT RESULTS 
 

We began by running the algorithms coded in C on “bare 
metal;” directly on the machine without using VMware to 
obtain a baseline for the purpose of performance 
comparisons. The bare metal machine has a quad-core 
processor that was used to support four independent threads.  
Furthermore, the machine is also equipped with a hyper-
threading feature that allows for eight independently-
addressable threads. Our baseline results are reported in 
Table 1 where CPU utilization and actual measured and 
corresponding runtimes are given. 

Table 1: Resource Consumption, Bare Metal, 
4 Cores 

 
 

Next, we ported the software to a virtual machine 
implemented via the use of VMware with the following 
characteristics: 

• 1 GB Memory 
• 1 Core  
• 50 GB Secondary Storage 

 
The results for the virtualized implementations are 

included in Table 2. 
 

Table 2: Resource Consumption, VMW, 1 
Core Virtual Machine  

 
 
Next, we reran the algorithms in a new virtual 

configuration by reconfiguring the virtual machine to 
include four cores.  It is noted that we tested both VM 
configurations for increased RAM and found no impact in 
scaling it to 2GB. The results are reported in Table 3.  

 
Table 3: Resource Consumption, VMW, 4 

Core Virtual Machine 
 

 
 

V. RESULTS DISCUSSION AND FUTURE 
PLANS 

 
This is an initial experiment in comparing the scaling of 

private blockchain algorithms. Additional research is needed 
in varying the algorithms at the application level as well as 
tuning the other parts of the virtualized stack; host operating 
system, virtual machine allocations, guest operating systems 
and other such components. All of the stack components, 
both in the real and virtualized environments, were installed 

Raw	Metal
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 94% 2:37
RAFT 97% 1:06
2M Blocks
Byzantine 93% 6:33
RAFT 91% 2:11
3M Blocks
Byzantine 93% 9:52
RAFT 92% 3:18

Single	Core
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 91% 0:07
RAFT 80% 0:02
2M Blocks
Byzantine 91% 0:14
RAFT 80% 0:04
3M Blocks
Byzantine 91% 0:21
RAFT 80% 0:07

Four Cores
Volume CPU% Time
1M Blocks (min:sec)
Byzantine 95% 2:31
RAFT 87% 0:48
2M Blocks
Byzantine 95% 5:05
RAFT 94% 1:41
3M Blocks
Byzantine 95% 7:39
RAFT 96% 2:34



 

 

with the initial configuration or “out of the box” as 
suggested by the vendors.  

A. Results Discussion 
In the baseline case, CPU utilization appears to have 

little variation between all of the results; the Table 1 average 
was 94% rounded. However, we observe that the algorithms 
have radically different execution times with most 
executions of the RAFT method tending to finish in 
approximately one-third of the time as compared to that 
required by the Byzantine Generals problem solution 
approach. These results are congruent to those that have 
been obtained by Ongaro and Ousterhout [12] and confirm 
the generally accepted position regarding the efficiency of 
RAFT over Byzantine Generals. These conclusions then 
form the basis for our comparison to the virtualized 
environments that is the primary research result reported 
here. 

In the second experiment with results summarized in 
Table 2, we observe that the required execution time is 
radically improved by utilizing a single core. This case is 
similar to what is expected that the use of one validation 
machine would incur if used in the algorithms above. These 
results however can be extrapolated by multiplying them by 
four for comparison with the multiple cores instantiation. In 
the case of RAFT’s usage of CPU (80% consistent), this is 
because RAFT holds a trust election at a 500-block 
frequency and not all the threads are validating results all 
the time and the trust election is held using thread-specific 
data rather than mutex variables which is slightly more 
efficient in a single core machine [2]. 

In the final case, the results obtained are very similar to 
the results on bare metal. At the higher levels of scaling (1M 
and above) the typical behavior of virtual machine 
workloads will begin to approach the behavior under bare 
metal (the virtualization overhead is much smaller than the 
application workload itself) and is consistent with other 
results we have published in this area [9]. 

Therefore, we conclude that, based on these initial 
results, the algorithms consume nearly the same resources 
that they consume in the bare metal case even when scaled 
to significant volumes.  

B. Future Plans 
 As mentioned above, these results have not been 
optimized in all aspects of the application and virtualization 
stack. For example, CPU speeds and allocations need to be 
varied (virtualization stack) as well as the length of blocks 

before a new trust election occurs in RAFT.  For these intial 
results, trust-election repetitivity is fixed at 500; however, 
future efforts will determine what happens when the 
repetitivity is varied from lower or higher values. These 
additional efforts will be investigated and reported in 
successive experiments. 
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