

A QUANTUM CIRCUIT SIMULATOR

BASED ON DECISION DIAGRAMS

Approved by:

 Dr. Mitchell A. Thornton
 Committee Chair

 Dr. Hesham El-Rewini

 Dr. V. S. Sukumaran Nair

A QUANTUM CIRCUIT SIMULATOR

BASED ON DECISION DIAGRAMS

A Thesis Presented to the Graduate Faculty of

The School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

with a

Major in Computer Engineering

by

David Goodman

B.S., Southern Methodist University

May 19, 2007

Copyright 2007

David Goodman

All Rights Reserved

 iv

Goodman, David B.S., Southern Methodist University, 2006

A Quantum Circuit Simulator
Based on Decision Diagrams

 Advisor: Dr. Mitchell A. Thornton

Master of Science conferred May, 19, 2007

Thesis completed April 18, 2007

 The advantages of quantum computing as compared to classical computing are

currently being researched; therefore, the ability to correctly simulate quantum circuits is

becoming increasingly more important. A Quantum Multiple-valued Decision Diagram,

or QMDD, is a structure which allows for an efficient implementation of a quantum

circuit simulator. This structure can be used to create a quantum circuit simulator that is

both computationally efficient as well as economic with memory usage.

 In this thesis, a background of quantum computing and analyzing quantum gates

and circuits is given. The concept of a QMDD is presented, and the relationship between

a QMDD and a quantum circuit simulator is discussed. In addition to these topics, the

basic theory behind creating a quantum circuit simulator is discussed.

 This thesis proposes two different approaches for creating a quantum circuit

simulator and analyzes the results generated from both approaches. The first approach

utilizes explicit matrix-vector multiplication using QMDD representations of the

quantum circuit as well as the input vector. The second approach utilizes implicit matrix-

vector multiplication where a QMDD structure representing the quantum circuit

undergoes a guided traversal based on the input vector. Both of these approaches are

 v

compared to explicit multiplication using matrices and vectors instead of the QMDD

structure. Finally, results are discussed, and the effectiveness of the two circuit

simulation methods is analyzed and compared with an existing quantum circuit simulator.

 vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xi

Chapter

 1. INTRODUCTION 1

 2. QUANTUM LOGIC 4

 2.1. Quantum Gates 4

 2.2. Matrix Representations 10

 2.3. Quantum Circuits 11

 3. THE QMDD STRUCTURE 16

 3.1. Motivation 16

 3.2. Design of the QMDD Structure 17

 3.2.1. Characteristics of a QMDD 19

 3.2.2. Building a QMDD Structure 23

 3.2.3. Variable Labels 26

 3.3. Implementation of a QMDD Package 28

 3.3.1. Node Storage 28

 3.3.2. Complex Numbers 29

 3.3.3. Operation Tables 30

 3.3.4. Computed Table 30

 3.3.5. Zero and Identity Matrices 30

 vii

 3.4. Conclusion 31

 4. QUANTUM CIRCUIT SIMULATOR 32

 4.1. Quantum Circuit Netlist Formulas 32

 4.2. Input Vector Formation 34

 4.3. Circuit Simulation Methods 35

 4.3.1. Linear Algebra Approach 36

 4.3.2. Output Conversion 36

 4.3.3. QuIDDPro Quantum Circuit Simulator 40

 4.3.4. Explicit Multiplication Based Simulator 41

 4.3.5. Implicit Multiplication Based Simulator 46

 5. RESULTS AND CONCLUSIONS 52

 5.1. Results of Building QMDD Structures 52

 5.1.1. Description of Results for QMDD Structure Building 54

 5.1.2. Observations on Building QMDD Structures 55

 5.2. Quantum Circuit Simulation Results 56

 5.2.1. Discussion of Quantum Circuit Simulation Results 56

 5.3. Comparison with QuIDDPro 58

 5.4. Conclusions 60

 5.5. Future Work 60

REFERENCES 62

 viii

LIST OF TABLES

Table Page

 5.1. Experimental Results for Building QMDD Structure 53

 5.2. Simulation Results Using QMDD Structures 56

 5.3. Comparison of QMDD and QuIDDPro Simulators 59

 ix

LIST OF FIGURES

Figure Page

 2.1. Quantum CNOT Gate 7

 2.2. 3-qubit Toffoli Gate 8

 2.3. Controlled-V Gate 9

 2.4. Controlled-V† Gate 9

 2.5. Matrix Representation of a Toffoli Gate 10

 2.6. Quantum Full-Adder Circuit (rd32) 11

 3.1. Binary Decision Tree Structure 18

 3.2. Binary Decision Diagram 19

 3.3. Sample QMDD Structure 21

 3.4. Sample Quantum Circuit 24

 3.5. QMDD Structure for Variables Below the Target 25

 3.6. Complete QMDD Structure 27

 3.7. Complete QMDD Structure with Redundancy Removed 28

 4.1. rd32.qasm 33

 4.2. rd32.tfc 34

 4.3. Pseudocode for Formatting Output 37

 4.4. Sample Quantum Circuit for Simulation 38

 x

 4.5. QMDD Structures for |0> and |1> 42

 4.6. QMDD Representing Input Vector |101> 44

 4.7. QMDD Representing Quantum Circuit 45

 4.8. Result QMDD 46

 4.9. Traversal Algorithm 47

 4.10. Result After First Step 49

 4.11. Result After Second Step 50

 4.12. Result After Final Step 51

 xi

ACKNOWLEDGEMENTS

 There are many people I have to thank for supporting me and influencing my

work while at Southern Methodist University. First of all, I would like to thank Dr.

Mitchell A. Thornton, my thesis advisor, for his guidance throughout my years as his

research assistant. I owe many thanks to him for the opportunities he has given me. I

appreciate the trust he has put in me even at the times I did not necessarily deserve it. I

greatly value the knowledge I have acquired while working with Dr. Thornton, and I will

always remember the lessons I have learned from him.

 I would like to express my thanks to the other members of my thesis committee,

Dr. Hesham El-Rewini, and Dr. V. S. Sukumaran Nair. I sincerely appreciate not only

the time they have dedicated to review my thesis, but also the lessons I have learned from

both throughout my undergraduate years at SMU. I greatly respect the work both

professors do for the university, and I hope that many future students will be touched by

their teaching as I have.

 I have greatly enjoyed working with the students in the CAD methods research

group. I have learned much from my colleagues: Lun Li, Mahsan Amoui, Poramate

Ongsakorn, Jason Moore, Laura Spenner, David Feinstein, and Kelly Hawkins. I have

often relied on them for assistance with my research, and I appreciate all of the help they

have given me. Additionally, I would like to thank some of my other classmates,

 xii

particularly Chris Christensen, James Kang, Paul Hartin, and Samantha Oleksy, for their

assistance with UPE and Tau Beta Pi. Without their help, I would have never been able

to accomplish what I have this year. Also, I would like to give thanks to the School of

Engineering staff, particularly Debra McDowell, Beth Minton, and Jim Dees, for all of

their help in achieving my goals.

 I owe much gratitude to my family for their support not only this year, but

throughout the course of my education. My family has always been there to support me

throughout my entire life, and I am grateful for their love and guidance. My family’s

support is important to me, and I hope this work and my work in the future will continue

to make them proud.

 I wish to thank my friends as well for their understanding. I know that my work

has consumed me for the past year, and I look forward to some well-needed catching up.

I look forward to some good times with some of the best people I have ever known.

 Finally, I must express my greatest thanks to my girlfriend, Rachel. This entire

year, we have shared in the ups and downs of my research. She has been there for me

during the joyous times as well as the painful times. Without her love and support, I

would have never been able to endure the late nights, lack of sleep and immense stress

that has been a part of my life this year. She is someone that I share my dreams and

worries with, and I know that I can always count on her to be there for me. I look

forward to our future together with great anticipation. I know that the completion of this

thesis means as much to her as it does to me, and I cannot thank her enough for the love

that she gives me every single day. A big part of this thesis belongs to her, and I can only

repay her by giving her all of my love. She is my everything. Thank you!

 1

Chapter 1

INTRODUCTION

 Recently, there has been much interest in the concept of quantum computing since

many problems that are intractable with classical computers can be solved by quantum

computers in polynomial time. For example, both Shor’s factorization algorithm [1] and

Grover’s search algorithm [2] are intractable problems in the realm of classical

computing; however, these problems are able to be solved in polynomial time with the

use of quantum computations. In addition to the ability to solve complex problems,

quantum logic operations are reversible [19]. For this reason, there is additional interest

in these types of circuits because only reversible circuits can approach the theoretical

limit of no heat dissipation [13] [14]; therefore, there is significant interest in developing

practical quantum logic circuits because of the prospect of very low power dissipation.

 The novel concept behind quantum computing is directly related to the smallest

unit of data available. In classical computing, the smallest unit of data is the bit. This

unit of data either holds a “one” or a “zero”. These small units of data can be stored in

memory, transported through logic gates, and stored in memory again. Conversely, in

quantum computation, the smallest unit of data is the qubit. Just like a bit, a qubit can

hold a value of “one” or “zero”; however, the thing that makes a qubit different is that it

 2

can also hold a superposition of one and zero. In a quantum computer, these qubits

(which are stored in registers) undergo evolutions in time or space. Each of these

evolutions represents a quantum gate operation.

 As a part of the development of quantum computing, it is necessary to find

efficient ways to design the quantum circuits. A quantum logic circuit represents

transformations of the state of one or more qubits over time or space. These circuits are

modeled as a cascade of one or more quantum logic gates. A quantum logic gate can be

represented by a unitary transformation matrix (as discussed in Chapter 2). Due to this

property of quantum circuits, the transformation of a number of qubits from their initial

state into a final state can be computed through the use of matrix-vector multiplication

[13]. The downfall of this method is the fact that for an n-qubit circuit, the

transformation matrix is of size 2n×2n and the vector representing the initial state of the

set of qubits is of size 2n. Due to these extreme sizes, the simulation of quantum logic

circuits using a matrix-vector multiplication method is only useful for circuits with a very

small number of qubits.

 This thesis presents two different methods for simulating quantum circuits. Both

methods utilize a structure called a Quantum Multiple-valued Decision Diagram, or

QMDD. These methods eliminate the problem of exponential growth of the size of

representational matrices so that very large quantum circuits can be simulated in a

relatively short amount of time.

 The remainder of this thesis is organized as follows. Chapter 2 provides an

overview of quantum logic, including quantum gates and matrix representations of

quantum gates. Chapter 3 discusses the QMDD structure in detail. Chapter 4 details the

 3

quantum circuit simulator that has been developed as a direct result of this research.

Finally, Chapter 5 presents the computational results of the quantum circuit simulator

discussed in Chapter 4 and compares these results with those of another quantum logic

circuit simulator, QuIDDPro [11] [12].

 4

Chapter 2

QUANTUM LOGIC

 Quantum logic, which is analogous to digital logic in classical computing, defines

the way in which quantum bits, or qubits, are transformed according to certain functions.

As stated in the introduction, a special property of quantum gates and circuits is their

reversibility. The reversibility of these logic gates allows for their representation by

unitary matrices [21]. The work in [3] provides a very detailed background of quantum

logic. Here, the basics of quantum gates and circuits are discussed.

2.1. Quantum Gates

 In classical computing, a logic gate is described as a piece of hardware that

performs a logical operation on one or more logical inputs to produce a single logical

output. Quantum gates are analogous to digital logic gates, but there are a number of

differences. Classical computing circuits consist of wires and logic gates. The wires

carry information around the circuit, and the logic gates perform operations on that

information. Additionally, memory may be included as part of a circuit to store the

values of various bits. In order to understand the functionality of a quantum gate, some

examples are introduced.

 5

 First, some background on quantum physics is provided to clarify the material to

follow. The notation used to describe a quantum state is called “braket” notation. This

name is used since this notation represents the inner product of two states denoted by a

bracket, <φ|ψ>. The left part, <φ|, is termed the “bra”, while the right part, |ψ>, is called

the “ket”. In quantum physics, the state of a physical system is identified by a point in

the Hilbert space of the system (an abstract vector space in which distances and angles

can be measured) [15]. The ket is used to represent a quantum state. In the case of

quantum logic, there are two distinct quantum states, one and zero. These are represented

by |1> and |0>. For the remainder of this thesis, the quantum state |ψ> will be used to

represent

α|0> + β|1>

which is a superposition of the two distinct quantum states. In this case α and β represent

the probability of each of the quantum states. Since the Hilbert space is a vector space, a

quantum state can also be expressed in vector notation. For example, in the equation

|ψ> = α|0> + β|1>

|ψ> could also be expressed as the vector

⎥
⎦

⎤
⎢
⎣

⎡
β
α

The use of the “braket” notation is common because of the work of Dirac in quantum

mechanics.

 For example, consider the only single input, single output, classical logic gate, the

NOT gate. The NOT gate simply takes a logic input and provides the negation of this

input as the output of the circuit. In other words, the gate interchanges the 0 and 1 states

 6

of classical bits. A good place to start is to show how a quantum NOT gate is

constructed. Recall that quantum bits can represent the zero state (|0>), the one state

(|1>), or any superposition of states in between. These states can also be expressed in

vector notation. The following definitions describe how the zero and one states are

expressed in vector notation.

|0> = ⎥
⎦

⎤
⎢
⎣

⎡
0
1

 and |1> = ⎥
⎦

⎤
⎢
⎣

⎡
1
0

In order to perform a quantum NOT, a gate is needed that will reverse the probabilities of

each quantum state. Since quantum gates can be represented as unitary matrices, the

quantum NOT gate can be represented by the following matrix:

⎥
⎦

⎤
⎢
⎣

⎡
01
10

 In order to verify the functional operation of this gate, the following example is

presented. The quantum state α|0> + β|1> written in vector notation is

⎥
⎦

⎤
⎢
⎣

⎡
β
α

.

To compute the output of the quantum gate, a matrix-vector product is generated. For

example if α=0 and β=1, it can be seen that

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

01
10

.

Thus, the quantum NOT gate has been realized. It is also important to notice that this

quantum gate (along with all other quantum gates) is completely reversible. If the output

of the previous equation were to be substituted for the input, the original quantum vector

would be the result.

 7

 As an example, another commonly used quantum gate is the controlled-NOT gate,

or CNOT gate. This gate operates on two qubits (as opposed to one with the NOT gate).

One qubit is designated the “control” while the other is designated the “target”. The

operation of the CNOT gate is defined as follows: when the control qubit has a value of

|1> the target qubit is reversed, otherwise, the target qubit remains unchanged. In both

cases, the control qubit is unchanged by the CNOT gate.

Figure 2.1. Quantum CNOT Gate

Just like logic gates, quantum gates can be represented in a diagram form. Figure 2.1

shows a graphical representation of the quantum CNOT gate. The smaller, closed circle

indicates the control qubit while the larger, open circle indicates the target qubit.

 Figure 2.2 shows the graphical representation of another commonly used quantum

gate, the controlled-controlled-NOT or Toffoli gate.

 8

Figure 2.2. 3-qubit Toffoli Gate

 The Toffoli gate is a quantum logic gate that involves three qubits. The function

of the Toffoli gate is based on the two qubits designated “controls”. Analogous to the

functionality of the CNOT gate, the Toffoli gate will invert the “target” qubit if, and only

if, both of the “control” qubits are set to |1>. Another version of the Toffoli gate is the

generalized Toffoli gate. This gate utilized three or more qubits as “control” qubits. In

the case of a generalized Toffoli involving n qubits, n-1 qubits are controls and the

remaining qubit is the target. The gate will reverse the target qubit if, and only if, all of

the control qubits have a state of |1>.

 The other quantum gates that are used in this thesis are the Controlled-V and

Controlled-V† gates. (Although a small set of gates are used for the examples presented

in this thesis, the QMDD structure is easily extended to use other common quantum

gates.) The Controlled-V gate is often referred to as the square root of NOT gate, since a

cascade of two such gates produces the same transformation as a quantum NOT gate.

The Controlled-V gate operates in a similar manner to the CNOT gate in that the

transformation is applied to the target qubit if, and only if, the control qubit is set. In the

 9

event that the control qubit is set, the Controlled-V gate applies the transformation, given

by the following matrix, to the target qubit:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
=

1
1

2
1

i
iiV

Similarly, the Controlled-V† applies the following transformation if the control qubit is

set to |1>:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

1
1

2
1 V†

i
ii

This transformation is actually equivalent to the inverse of the V transformation matrix.

The symbols for these gates are shown in Figures 2.3 and 2.4.

Figure 2.3. Controlled-V Gate

Figure 2.4. Controlled-V†
 Gate

 10

2.2. Matrix Representations

 A special property of quantum gates is their ability to be represented by a

transformation matrix. A quantum gate that operates on n qubits can be represented by a

2n×2n unitary matrix. As an example, Figure 2.5(a) shows the matrix representation of

the 3-qubit Toffoli gate shown in Figure 2.5(b). In this example, the qubits labeled x0 and

x2 are the control qubits, while the qubit marked x1 is the target. This particular gate is

denoted T(x2, x0; x1) because x2 represents the most significant qubit. All gates

mentioned in this thesis are denoted in a similar fashion.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(a) (b)

Figure 2.5. Matrix Representation of a Toffoli Gate

 The ability to represent a quantum gate with a unitary matrix allows for many

complex operations to be performed through linear algebraic methods. For example, by

using matrix-vector multiplication, it is possible to produce the output vector from a

specific input vector representing the quantum states of the qubits provided as inputs to a

quantum gate.

 11

2.3. Quantum Circuits

 A quantum circuit is simply a circuit comprised of one or more quantum gates.

Multiple quantum gates may be cascaded together to form a quantum circuit. Quantum

circuits such as the one presented in Figure 2.6 represent a transformation through time or

space. The transformation is generally read from left to right; however, since all quantum

gates are reversible, the transformation may also be read in the opposite direction.

Figure 2.6. Quantum Full-Adder Circuit (rd32)

 As an example, the circuit in Figure 2.6 is a quantum full-adder circuit [9]. In this

particular circuit, the third qubit output represents the sum and the fourth qubit output

represents the carry.

 Individual quantum gates have the special property that they can be represented

by a single unitary matrix. Similarly, a quantum circuit can be represented by a single

unitary matrix. This property of quantum circuits is used extensively when designing a

quantum circuit simulator. It is shown in Chapter 4 that representing an entire quantum

circuit with a single matrix allows the circuit simulation to be performed using matrix

 12

multiplication. Additionally, Chapter 4 demonstrates how the QMDD structure can be

used to perform the same simulations without the use of matrix multiplication.

 This example illustrates how a unitary matrix representing an entire quantum

circuit is built. The circuit shown in Figure 2.6 will be utilized for this example. The

first step in generating the representational matrix is to build the unitary matrix for each

individual gate. Since the rightmost Controlled-NOT gate involves two qubits, the

representational matrix will be of size 22×22, or 4×4. Since this example is considering

only the |0> and |1> states, the matrix can be thought of as a permutation matrix. The

matrix below is the representational matrix for this gate.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0100
1000
0010
0001

However, this matrix cannot be used to build the matrix representing the entire circuit.

Since the entire circuit has four qubits, it is necessary to “extend” this matrix to the size

of 24×24. To perform the extension, the Kronecker operation is used. The Kronecker

operation is defined in [8] as the following:

11 1

1

n

m mn

a B a B
A B

a B a B

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

 In order to properly extend the matrix, a Kronecker operation is performed on the

representational matrix with an identity matrix. If the unused qubit lies above the target

qubit, the identity matrix is placed on the right side of the representational matrix,

otherwise it is place on the left. For example, to extend the matrix mentioned before, a

 13

Kronecker operation is performed on the left and right sides of the representational

matrix.

⎥
⎦

⎤
⎢
⎣

⎡
⊗

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
10
01

01000000
10000000
00100000
00010000
00000100
00001000
00000010
00000001

10
01

0100
1000
0010
0001

10
01

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0010000000000000
0001000000000000
1000000000000000
0100000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

This process can be continued until all four gates have individual representational

matrices. Finally, in order to generate the representational matrix for the entire circuit,

the matrices are multiplied together using traditional matrix multiplication. The matrices

for the gates in the circuit in Figure 2.6 can be seen below.

 14

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100000000000000
1000000000000000
0001000000000000
0010000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000010000000
0000000001000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

1G

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000100000000000
0000010000000000
0000001000000000
0000000100000000
1000000000000000
0100000000000000
0010000000000000
0001000000000000
0000000010000000
0000000001000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

2G

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100000000000000
1000000000000000
0010000000000000
0001000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000001000000
0000000010000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

3G

 15

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0010000000000000
0001000000000000
1000000000000000
0100000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

4G

Now the matrices can be multiplied together to obtain the following product.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×××

0000010000000000
0000100000000000
0000000100000000
0000001000000000
0001000000000000
0010000000000000
1000000000000000
0100000000000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

4321 GGGG

This matrix is the representational matrix for the entire quantum circuit. This same

procedure can be used to build the representational matrices for any quantum circuit.

 16

Chapter 3

THE QMDD STRUCTURE

 The Quantum Multiple-valued Decision Diagram structure is first introduced in

[4] as a means of representing a quantum or reversible circuit with a structure based on

decision diagrams. The idea of storing and manipulating matrices with decision diagram

structures has been previously introduced in [22].

3.1. Motivation

 The main motivation for the innovation of the QMDD structure is the regular

structure of the matrices that represent quantum gates and circuits. For a binary circuit,

the dimensions of the representative matrices are always powers of 2; therefore, the

matrices can always be partitioned into four quadrants. For example, the 2n×2n matrix M

can be partitioned as

M =
M0 M1

M2 M3

⎡

⎣
⎢

⎤

⎦
⎥

where each of the partitions has dimensions 2n-1×2n-1. Furthermore, each of the

remaining partitions can be subdivided into four smaller matrices. This process can

recursively continue until only single values remain. Eventually, these single values

represent the weights of the four outgoing edges from a node of the decision diagram. A

quality that arises in many quantum and reversible circuits is repetition within the

 17

representational matrix. For example, in the matrix shown below, the partition of the

upper-left quadrant can be further partitioned into four matrices; however, the two pairs

of the newly partitioned matrices are identical.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00100000
01000000
10000000
00010000
00001000
00000100
00000010
00000001

The characteristic repetition within the representational matrices makes representing a

quantum circuit as a decision diagram compact. Due to the repetitiveness, many of the

repeated submatrices do not need to be stored more than once. This is a great help in

reducing the amount of memory necessary to simulate a quantum or reversible circuit.

3.2. Design of the QMDD Structure

 Many of the specific details of the Quantum Multiple-valued Decision Diagram

structure are discussed in [4] and [7], but some of the important relevant aspects are

summarized here. A binary decision diagram is a data structure that can be utilized to

represent a Boolean function. A binary decision diagram is defined as a rooted, directed,

acyclic graph consisting of decision nodes and two terminal nodes called 0-terminal and

1-terminal. In a binary decision diagram, each decision node is labeled by a Boolean

variable and has two child nodes. The edge from a decision node to a child node

represents an assignment of the Boolean variable to either 0 or 1. A binary decision

 18

diagram is also referred to as “ordered” if different variables always appear in the same

order on all paths from the root. Further details on binary decision diagrams can be

found in [6] and [23].

 As an example, Figure 3.1 shows a binary decision tree structure.

x1

x2 x2

0 1

x3 x3 x3x3
0 01 1

1 1 1 10 0 0 0
0 0 0 01 1 1 1

Figure 3.1. Binary Decision Tree Structure

This decision tree represents the function

f=Σ(0,3,6,7)

The binary decision diagram structure for this same function is shown in Figure 3.2. All

of the redundant nodes have been removed.

 19

x1

x2 x2

01

x3 x3

0 1

10

01 1

10

0

Figure 3.2. Binary Decision Diagram

 Similar to a binary decision diagram, a Quantum Multiple-valued Decision

Diagram is a compact structure used to represent quantum circuits. The details of such a

diagram are discussed in the following sections.

3.2.1. Characteristics of a QMDD

 Although the binary decision diagram is completely defined, it is necessary to

create another similar structure to use with quantum and reversible circuits; this is the

inspiration for the QMDD structure. There are significant differences between the

QMDD structure and the binary decision diagram. Some of the differences are discussed

below:

• There is only one terminal vertex. This vertex has an associated value of one

and has no outgoing edges.

 20

• Each non-terminal node has four outgoing edges (as opposed to two for a

traditional binary decision diagram).

• Each edge in the QMDD has a complex-valued weight associated with it.

Every edge with a weight of 0 points to the terminal node.

• No non-terminal vertex is redundant. This means that any vertices that have

four outgoing edges all with the same weights and all pointing to the same

vertices are only stored once to avoid repetition.

• All non-terminal vertices are normalized. This means that when looking at

the outgoing edges from left to right, the first edge with a non-zero weight

must have a weight of one. All edges to the left of this edge must have

weights of zero.

• Finally, all non-terminal vertices are unique. This ties in with the previously

stated fact that no non-terminal vertex is redundant.

 As an example, Figure 3.3 shows a QMDD structure representing a single Toffoli

gate with variables x0 and x2 as controls and x1 as the target.

 21

x2

x1x1

x0 x0 x0

1

1 1

0 0

1 1

0 0

1 0 0 1

1 1
11

1 0 0 0 0 0 0 1

Figure 3.3. Sample QMDD Structure

This QMDD structure encompasses many of the characteristics presented in the list

above. For example, there is only one terminal node, which is labeled with a 1. Also,

each of the non-terminal nodes have four outgoing edges.

 This QMDD structure completely represents the quantum circuit consisting of this

one Toffoli gate. In order to verify that this is true, it is possible to build the

representational matrix from the QMDD structure. This is done through a series of

reverse Kronecker operations. Since there are three qubits, the resulting matrix will be of

size 8×8. The first step in generating the matrix is to look at the initial node. Each of the

four edges “points to” one of the 4×4 submatrices of the representational matrix. If any

of these edges has a weight of zero, that entire submatrix is a zero matrix. For example,

 22

after examining the initial node, the matrix can be partially completed as the matrix

below shows.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000

0000
0000
0000
0000

Next, the nodes on the next level down are examined. Each of these nodes represents one

of the 4×4 matrices that is yet to be filled in. A similar method is used to fill in these

submatrices. Each of the edges of these nodes points to a 2×2 submatrix. The matrix

below shows the representation matrix after examining the nodes at the level of variable

x1.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000

000000
000000
000000
000000

Finally, when the lowest level of nodes is reached, the weights of the outgoing edges of

each of these nodes fill in the remaining 2×2 submatrices. The final representational

matrix is seen below.

 23

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00100000
01000000
10000000
00010000
00001000
00000100
00000010
00000001

3.2.2. Building a QMDD Structure

 This section describes how a QMDD structure is built from a circuit netlist. The

QMDD software package is described in detail in [4] and [7], but the process of building

a QMDD structure is presented here for continuity.

 In order for a QMDD structure that represents a quantum or reversible structure to

be built, it is necessary to first build a QMDD structure for each individual gate. The

variable order is as follows: the variables are labeled x0, x1, …, xn-1 from the terminal

node to the start node. Additionally, each quantum logic gate is specified by the base

transition matrix M. When the QMDD structure for a particular gate is being built, it is

actually built from the terminal vertex working its way up to the start vertex. The

procedure has three phases as described in [7] which are outlined here.

 First, structures are constructed for the variables that lie “below” the target

variable in the variable ordering (“below” referring to variables that are closer to the

terminal vertex in the variable ordering). For each of these variables, there are four

separate QMDD structures that are created. Out of these four QMDD structures, the (i ×

 24

2 + j)th QMDD structure has a path that follows the values required to activate the

controls to the terminal value Mi,j while all other paths lead to zero. As an example of

this, consider the simple quantum circuit presented in Figure 3.4.

Figure 3.4. Simple Quantum Circuit

This quantum circuit consists of just one quantum gate, a Toffoli gate.

Based on the description given above, the 2nd QMDD structure has a path following the

values required to activate the controls which then points to the terminal value in the

matrix. Such a QMDD structure is given in Figure 3.5.

 25

0

1

0 0

0

1 0 0

Figure 3.5. QMDD Structure for Variable Below the Target

Any variables that are not target or control variables (there are none in the above

example) are taken into account through the use of identity matrices. These matrices are

combined with the rest of the QMDD using Kronecker multiplication.

 After these QMDD structures have been created, a single structure is created for

the target variable. The source node of this QMDD structure is assigned the target

variable. The edges of this source node point to the QMDD structures that were created

in the previous step.

 Finally, there are additional steps for the variables that lie above the target

variable. Similar to those lying below the target, the upper part of the QMDD has a path

that follows the values required to activate the controls, and all of the other paths lead to

0. The non-control variables are accounted for through the use of identity matrices and

the Kronecker multiplication operation.

 The efficiency of the QMDD building process comes from the fact that the

structures are built in a single pass through the variables. The building begins from the

variable associated with the terminal node and continues up through the initial node with

 26

no backtracking. Once a QMDD structure has been created for each of the gates in the

QMDD circuit, the structures are combined through the QMDD-based multiplication

operation discussed in detail in [4].

3.2.3. Variable Labels

 Throughout the building process, attention is given to the variable labels. This is

an essential step because the variable names are important for simulation. The procedure

described in the previous section gives information about how the variable labeling is

performed.

 Proper node labeling is necessary for correct circuit simulation. It must be

ensured that when a QMDD structure is traversed from the initial node to the terminal

node, each variable is encountered at most one time. Of course, some traversal paths will

not include every variable. According to [16], this will only occur in the case when an

edge points directly to the terminal node and has a weight of zero.

 Figure 3.4 shows the complete QMDD structure for the quantum circuit in Figure

3.1.

 27

x2

x1 x1

1

x0 x0 x0

1

1 11

1 1
0

1

1 0 0 0 0 0 0 1

0 0

0

1

0 0 0 1

Figure 3.6. Complete QMDD Structure

In this particular quantum circuit, the QMDD structure that is built has a redundant node.

This node is denoted by the circle drawn with a dashed line. This means that two

different nodes have four edges with equivalent weights all pointing to the same nodes.

In these cases, the redundant node is only stored in memory once, and multiple edges

from a parent node point to this redundant node. An example of this can be seen in the

nodes labeled with variable x0 in Figure 3.6. Notice that the two nodes on the right side

have all four edges with the exact same weights that all point to the terminal node. In this

case, the node would only be stored one time. Figure 3.7 shows the QMDD structure

with the redundancy removed.

 28

x2

x1 x1

1

x0 x0

1

1 11

1 1
0

1

1 0 0 0 0 0 0 1

0 0

0
1

Figure 3.7. Complete QMDD Structure with Redundancy Removed

3.3. Implementation of a QMDD Package

 In [7], the details of the QMDD package used for this thesis are discussed. Some

important points are discussed here as they relate to results presented later in this thesis.

3.3.1 Node Storage

 An important aspect of the QMDD package is the way in which the nodes are

stored in memory. It is important that redundant nodes are not stored multiple times

since the structure of the QMDD leads to many redundant nodes.

 The choice for node storage in this particular package is the use of a unique table.

A unique table is used to store references to each of the nodes. Whenever a new node is

created for the QMDD structure, the unique table is first traversed to see if a redundant

node has already been defined. If the node already exists in the unique table, instead of

 29

creating a new node, the software refers to the unique table when using the node in the

QMDD structure. If the node does not yet exist, it is created and then added to the unique

table. By using this method, only the unique nodes are stored in memory, saving the

amount of memory necessary to store redundant nodes multiple times.

3.3.2. Complex Numbers

 In addition to saving memory by using a unique table, memory can also be saved

by using a complex number table. Each of the outgoing edges from a QMDD node has a

complex-valued weight associated with it. In order to reduce the amount of storage

necessary, a complex number table is created. This table is similar to the unique table

previously mentioned, except this table stores complex numbers as opposed to QMDD

nodes. The operation of the table is very similar to the unique table. When a new edge is

to be added, the complex number table is inspected to see if the weight of the edge has

already been stored in the complex number table. If that particular number has already

been stored in the table, there is no need to add it. If the number does not yet exist, it is

added to the complex number table.

 Additionally, to save more memory, instead of assigning the complex value to the

weight of each edge, an integer is assigned to each edge weight. This integer represents

an index in the complex number table. Therefore, instead of using enough memory to

store a complex number for each of the edges, only a single integer is stored.

 30

3.3.3. Operation Tables

 Another time saving addition to the QMDD package is operation tables. These

tables store the results of the addition, multiplication, or division of two complex

numbers. Since these complex computations are relatively expensive, having an

operation table can save additional computational time.

 Similar to the operation of the other tables recently discussed, the operation tables

are traversed any time a complex operation is performed. If the operation has not been

previously performed, it is added to the operation table. Additionally, the commutative

properties of complex addition and multiplication are accounted for so that no repetitive

operations are performed.

3.3.4. Computed Table

 Distinctly similar to an operation table, a computed table is a common feature of

decision diagram packages [6]. A computed table assures that no redundant

computations are performed. The computed table is used to keep track of any instances

of matrix addition, matrix multiplication, or Kronecker multiplication [8] performed on

two QMDD structures. Additionally, the operations themselves are recursive, so the

subcomputations are stored in the table and checked before performing any operation.

3.3.5. Zero and Identity Matrices

 Due to the nature of the QMDD, both zero and identity matrices occur very

frequently. Methods are in place to efficiently handle both of these cases. First of all, the

zero matrix case is handled where, any time a zero matrix is encountered, it is represented

 31

as an edge with a weight of zero pointing to the terminal node. Using this method, no

other precautions need to be taken for dealing with a zero matrix.

 To facilitate dealing with identity matrices, a flag associated with each vertex

indicates if the vertex and its descendants represent an identity matrix. If the vertex

represents an identity matrix, many of the matrix operations can be simplified. For

example, when performing matrix multiplication, if one of the matrices is the identity

matrix, the operation becomes much simpler. The equations below demonstrate how the

multiplication becomes simpler.

A × I = I × A = A

3.4. Conclusion

 There are many other optimization details included in the implementation of the

QMDD package [4] [7]. The result is a software package that represents quantum and

reversible circuits efficiently. The QMDD structure and the software representing it are

both integral parts of the remainder of the work discussed.

 32

Chapter 4

QUANTUM CIRCUIT SIMULATOR

 Without the ability to simulate quantum circuits, the states of qubits in quantum

circuits would have to be determined by hand or through a physical quantum circuit. In

order to fully utilize all that quantum circuits have to offer, it is necessary to design a

circuit simulator that is both efficient and accurate. The background for some methods of

quantum circuit simulation is provided in [11] and [12], specifically, a quantum circuit

simulator called QuIDDPro. This chapter first presents the method the QuIDDPro

approach uses for quantum circuit simulation, and then explores a variety of different

options for simulating quantum circuits that are implemented in this work. Finally, the

options are compared to QuIDDPro and to each other based on the results of a number of

simulations.

4.1. Quantum Circuit Netlist Formulas

 When working with quantum and reversible circuits, there are number of different

ways that the circuits can be described. In previous versions of the QMDD package, a

particular format has been used. This format (tfc files) is the same that is used by

Maslov in his benchmark circuit set [9].

 33

 Another common format used to describe quantum and reversible circuits is the

QASM format. The QASM format is a text-format language used to describe quantum

circuits. More information on the QASM format can be found in [10].

In order to make this quantum circuit simulator a useful tool for those working in

the area of quantum and reversible circuits, the simulator is compatible with both tfc

formatted circuits as well as QASM formatted circuits. Since the software previously

developed is compatible with the tfc format, a simple program has been written to

translate a QASM specification into the tfc format. Once the translation is complete,

the resulting file can be used with the existing software.

 To demonstrate the differences in the file formatting, Figures 4.1 and 4.2 show

examples of a file in tfc format and QASM format respectively.

#rd32.qasm

qubit a
qubit b
qubit c
qubit d

toffoli a,b,d
cnot a,b
toffoli b,c,d
cnot b,c

Figure 4.1. rd32.qasm

.v a,b,c,d

 34

.i a,b,c

.o d,c

.c 0

BEGIN
t3 a,b,d
t2 a,b
t3 b,c,d
t2 b,c
END

Figure 4.2. rd32.tfc

These two files represent the exact same quantum circuit (rd32, or the full-adder) in both

formats.

4.2. Input Vector Formation

 For the purposes of these simulators, it is assumed that the input vectors are

represented by an n-qubit register with all qubits initialized to basis or eigenstate values

of |0> or |1>. In order to perform matrix-vector multiplication for simulation, the first

step is that the register of eigenstate values must be transformed from Dirac notation into

a vector of appropriate values. This vector is formed through the use of the Kronecker

product. This operation is used to transform the Dirac-ket notation, defined in Chapter 2,

into the proper column vector format [3].

One property of the Kronecker operation is that it is not commutative; it is, in

fact, associative. In order to account for the lack of a commutative Kronecker product, in

the simulators described in this thesis, the Kronecker operation is evaluated as a series of

Kronecker products evaluated from right to left.

 35

 As an example, consider the original register values of |100>. The column vector

associated with these original eigenstates is formed as shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
>=

0
0
0
1
0
0
0
0

0
0
0
1

1
0

0
1

0
1

1
0

100|

The column vector that is the result of these operations is the “input vector” for the

quantum circuit. The input vector is used by the simulator to calculate the proper output

for the circuit.

4.3. Circuit Simulation Methods

 This section will discuss several different simulation methods that have been

implemented. This thesis will focus on two primary methods for circuit simulation. First

is the explicit multiplication based simulator. This method is compared with the other

method developed in this project, the implicit multiplication based simulator. In addition

to the implementation of these methods, the naïve linear algebraic approach involving

matrix-vector multiplication is also implemented for comparison purposes. Finally, we

describe an existing method described in [11] [12] and [20] that is also considered here

for comparison purposes.

 36

4.3.1. Linear Algebra Approach

 The linear algebra approach is implemented as a part of the development of the

quantum circuit simulator. The matrix-vector multiplication that occurs is actually a

representation of what happens when the QMDD structures are used for quantum circuit

simulation. This approach is implemented for two reasons: to check simulation outputs

during development of the quantum circuit simulator and as a basis for comparison to the

QMDD-based simulation methods. This approach is implemented as a matrix-vector

explicit multiplication.

4.3.2. Output Conversion

 With the linear algebra approach as well as the other simulation methods, a

conversion of the output vector is necessary so that the results may be presented to the

user in Dirac-ket notation. To handle this task, an algorithm is implemented to convert

an output vector back to Dirac-ket notation. Figure 4.3 gives the pseudocode for this

algorithm.

 37

for(i=number of elements in output vector; i>1; i=i/2)
{
 Search the first half of the vector for a ‘1’
 If ‘1’ is found
 {
 Store ‘0’ in last available position of Dirac-ket vector
 }
 Else
 {
 Store ‘1’ in last available position of Dirac-ket vector
 Copy second half of output vector into first half
 }
}

Figure 4.3. Pseudocode for Formatting Output

 In general, this conversion process can be difficult since it would mathematically

require formulating a Kronecker product factorization. However, in the case of this

simulator it is assumed that all outputs will be given in eigenstate form. Due to this fact,

the algorithm described above is sufficient to perform this translation.

 A full example of this method is given here. For simplicity, a circuit consisting of

a single quantum gate will be simulated. Assume that the circuit consists of a single

Toffoli gate as shown in Figure 4.4.

 38

Figure 4.4. Sample Quantum Circuit for Simulation

In this case, the matrix representing the quantum circuit is given below:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Following the same methods as before, assume that the input vector is given by the

eigenstates |101>. This can be translated into the proper input vector format through

Kronecker multiplication as shown below.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡

0
0
1
0
0
0
0
0

1
0

0
1

1
0

 39

Once this is complete, the matrix vector multiplication is performed.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0

00100000
01000000
10000000
00010000
00001000
00000100
00000010
00000001

As a final step, the algorithm to translate the output vector back to Dirac-ket notation is

invoked, yielding |111>. The final step actually performs the factorization seen below.

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
0

1
0

1
0

1
0
0
0
0
0
0
0

The quantum circuit verifies that this is the proper output.

 Utilizing matrices and vectors is a very inefficient way to perform circuit

simulation. In fact, using matrices and vectors will only work for very small circuits.

For any circuits larger than approximately seven qubits, the matrix and vectors become so

large that there is not enough memory to handle the multiplication. This is the inspiration

for using the QMDD structure to perform quantum circuit simulation. Sections 4.3.4 and

4.3.5 discuss the two methods proposed for quantum circuit simulation using the QMDD

 40

structure, but first, the QuIDDPro simulation mechanism is introduced for comparison

purposes.

4.3.3. QuIDDPro Quantum Circuit Simulator

The main structure in the QuIDDPro software package is the QuIDD, or Quantum

Information Decision Diagram. QuIDDPro makes use of the decision diagram package

CUDD, developed by Somenzi [17]. The decision diagrams implemented in CUDD as

well as QuIDDPro are algebraic decision diagrams. More details on algebraic decision

diagrams are presented in [18] and [22].

The QuIDDPro software begins simulation by creating a QuIDD for each of the

gates in the quantum circuit. Next, these QuIDD structures are multiplied together to

create a single QuIDD which represents the entire quantum circuit. A QuIDD structure is

now created to represent the input vector. Finally, the QuIDD representing the quantum

circuit is multiplied by the QuIDD representing the input vector. After the multiplication

is complete, measurement functions designed specifically for QuIDDPro extract the

output values.

 This thesis presents alternate methods for quantum circuit simulation using the

QMDD structure. The two main methods that are used in this research are described in

the next two sections.

 41

4.3.4. Explicit Multiplication Based Simulator

 The first QMDD method for circuit simulation is the explicit multiplication based

simulator. This simulator relies on the same basic concept as the linear algebra approach,

but the use of the QMDD structure allows for an improvement in execution time.

A problem with the linear algebra approach for quantum circuit simulation is the

size of the matrices. For an n-qubit circuit, the size of the representative matrix is 2n×2n.

The sizes of these matrices grow exponentially. For example, assume the circuit to be

simulated has 10 qubits. This results in a representative matrix with 220 elements. If the

assumption is made that the matrix is storing short integers (1 byte each), this results in a

matrix needing 1MB of storage. As compared to some of the benchmark circuits

commonly used for quantum circuit simulation, this quantum circuit has a small number

of qubits. This shows that even quantum and reversible circuits with few qubits require

an excessive amount of memory to store the representational matrix.

In an effort to create a method for quantum circuit simulation that is not as

memory intensive, a new method is created for circuit simulation. The QMDD structure

is what allows the creation of such a method. Because of the ability of a QMDD

structure to represent an entire quantum circuit without a very large representational

matrix, a much larger circuit can be represented in a much smaller memory space.

In order for this method to work, the QMDDmultiply function written for the

QMDD software package is used. This function is described in detail in [7], but the main

idea behind it is the ability to multiply two QMDD structures and to return a QMDD

structure as a result. This is equivalent to multiplying the matrices that each QMDD

 42

represents, but by using the QMDD multiplication function, the memory storage for the

matrices is not necessary.

In order to perform the necessary QMDD multiplication operations, it is first

necessary to represent the column vectors representing |0> and |1> as QMDD structures.

Since the column vectors for each of these eigenstates only utilize two matrix elements,

only the 0- and 2-edges of a QMDD vertex are utilized. The other two edges of the

QMDD vertex are set to point at NULL in order to conserve more memory. These

structures are shown in Figure 4.5.

|0> ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

 |1> ⎥
⎦

⎤
⎢
⎣

⎡
1
0

1 0 0 0 0 0

Figure 4.5. QMDD Structures for |0> and |1>

 In addition to the QMDDmultiply function, there is also another function in the

QMDD software package which represents a Kronecker multiplication of two QMDD

structures. This function is used to combine multiple QMDD structures into a single

 43

QMDD representing the input vector. After each of the qubits is represented as a QMDD

structure, the structures are combined through Kronecker multiplication in a way similar

to that mentioned in Section 4.2 of this thesis. The result of the Kronecker operations is a

single QMDD structure representing the input vector.

 After the QMDD representing the input vector has been formed, it is necessary to

create the QMDD that represents the entire quantum circuit. A call to a function within

the QMDD software package is sufficient to perform this task. At this point, there are

two separate QMDD structures: one to represent the input vector and one to represent the

quantum or reversible circuit.

 The next step is to perform the actual multiplication of the QMDD structures.

This represents the same procedure as multiplying the matrices that each of the QMDD

structures represent. The actual multiplication is carried out by a function in the QMDD

software package [7].

 The result of this operation is another QMDD structure. This structure represents

the resulting matrix after the matrix multiplication has been performed. As described

above, some of the edges of the QMDD structures representing the input vector are

pointing at NULL. Because of this, the resulting QMDD will represent a matrix that has

some invalid values. The only part that is used for output in the resulting matrix is the

first column. A function already exists in the QMDD software package that traverses a

QMDD structure and builds the representational matrix. For the purposes of this

simulator, this function has been modified such that it traverses the QMDD structure in a

way that only the first column of the representational matrix is extracted. By only

extracting the first column of the result matrix, it is not necessary to utilize storage for the

 44

entire 2n×2n matrix. It is wasteful to extract the entire matrix since it consumes great

quantities of memory space.

 The final step of the simulation is similar to that of the matrix multiplication

method. The output vector represents the result of the multiplication, but it is necessary

to convert this result back to Dirac-ket notation so it is understandable to the user. The

same algorithm which was used before is used to perform this conversion. The results

may then be presented to the user.

 The explicit multiplication based simulator is exemplified below. For simplicity,

the same circuit that was used as an example for the matrix multiplication method will be

used as an example here (Figure 4.4). The first step to be performed is to convert the

input vector into a QMDD structure. The QMDD structure representing the eigenstate

|101> is given in Figure 4.6 below:

Figure 4.6. QMDD Representing Input Vector |101>

 45

 Additionally, it is necessary to build the QMDD structure which represents the

entire quantum or reversible circuit. In terms of this example, the QMDD structure

which represents the circuit is given in Figure 4.7 below:

x2

x0x0x0

x1x1

1

1

0 0

1

1
0 0

1

1 0 0 1

1

1 1

1

1 0 0 0 0 0 0 1

Figure 4.7. QMDD Representing Quantum Circuit

 The next step is to multiply the two structures together using the function that has

been previously written for the QMDD software package. In this particular case, the

multiplication gives the following resulting QMDD:

 46

x2

x0

x1

1
0 0

1

0

0 0

1

0

0 0 1 0

Figure 4.8. Result QMDD

 Finally, the first column of the result matrix is extracted from the QMDD. This

column is then translated to Dirac-ket notation, giving the resulting eigenstate of |111>,

which is the same result achieved from the example computation given in section 4.3.2.

4.3.5. Implicit Multiplication Based Simulator

 The other QMDD method of circuit simulation that is presented in this thesis is

one that performs an implicit multiplication of QMDD structures. This method does not

perform an actual multiplication, but rather it traverses the QMDD structure guided by

the values of the initial state of the n-qubit register.

 The first step of this simulation method is identical to the first step of the explicit

multiplication method in that a QMDD structure which represents the entire quantum or

reversible circuit is constructed. After this structure has been built, it is traversed in a

 47

guided manner based on the input vector component values. The components of the

output vector are computed during the traversal. The specific manner in which the

QMDD structure is traversed is discussed next.

As an example, let e designate an edge which is pointing to a QMDD structure

which describes a quantum circuit. Additionally, let vector represent an array consisting

of the initial eigenstates of the qubits. Also, T(e) represents a function that returns a

Boolean value. The function returns true if and only if the edge e points to the terminal

node in the QMDD structure, otherwise it returns false. The recursive traversal function

is described in the pseudocode below:

1. If T(e) is true, then the weight of e is stored in the ith position of the output vector.

2. If T(e) is false, then if the value in vector corresponding to the variable of the current
 vertex = 0, the following procedure is followed:

 a. Call the recursive function with the 0th edge of the current vertex.
 b. Call the recursive function with the 2nd edge of the current vertex.
 Otherwise,
 c. Call the recursive function with the 1st edge of the current vertex.
 d. Call the recursive function with the 3rd edge of the current vertex.

Figure 4.9. Traversal Algorithm

 Using either the 0 edge and the 2 edge or the 1 edge and the 3 edge is due to the

structure of the matrices and the form of the resulting product of the matrices with

vectors representing |0> and |1>. A square matrix with dimensions that are powers of

two can be partitioned into four equal parts. When this square matrix is multiplied by a

vector representing either a zero or one qubit, only half of the matrix is represented in the

 48

resulting vector. The example below shows how the particular edges are selected based

on matrix multiplication.

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

3

1

32

10

1
0

M
M

MM
MM

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

2

0

32

10

0
1

M
M

MM
MM

 The example below shows in detail how the matrix traversal is performed. For

simplicity, the same quantum circuit will be used as that in Figure 4.4. Once again, the

QMDD representing the quantum circuit must be created. Since the same quantum

circuit is used as in the previous example, the QMDD in Figure 4.7 applies to this

example as well.

 The input qubits will be the same as those used in the previous example (|101>).

The algorithm given in Figure 4.9 is used here to traverse the QMDD structure. The first

node that is traversed is not a terminal node. Therefore, step 2 of the algorithm is

followed. The first qubit in the input is |1>, thus the 1 and 3 edges of the vertex are

traversed. Figure 4.10 shows the first traversal as well as the output vector after this first

step.

 49

x2

x0x0x0

x1x1

1

1

0 0

1

1
0 0

1
1 0 0 1

1

1 1

1

1 0 0 0 0 0 0 1

0 0 0 0

Figure 4.10. Result After First Step

 After the first step of the algorithm, the first edge which is traced points straight to

the terminal node. This means that the first half of the output vector is set to the weight

of that particular edge. Since that edge has a weight of 0, the first four elements of the

output vector are set to 0. The other edge which is traversed points to a non-terminal

node. The algorithm is recursively applied to that node now. Figure 4.11 shows the

results.

 50

x2

x0x0x0

x1x1

1

1

0 0

1

1
0 0

1
1 0 0 1

1

1 1

1

1 0 0 0 0 0 0 1

0 0 0 0

Figure 4.11. Result After Second Step

 With this particular step in the algorithm, the edges leading from the vertex are

non-terminal, so no new values are filled into the output vector. The input qubit for this

variable is |0>, so the 0 and 2 edges are traversed. The final step is shown in Figure 4.12.

 51

x2

x0x0x0

x1x1

1

1

0 0

1

1
0 0

1
1 0 0 1

1

1 1

1

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

Figure 4.12. Result After Final Step

 In the final step of the algorithm, the 1 and 3 edges of each of the nodes are

traversed since the input qubit is |1>. Each of the edges coming out of these nodes are

terminal edges, so their values are recorded in the output vector. It can be seen that the

weights of these edges (from left to right) are 0, 0, 0, and 1. Thus, the output vector has

all of its entries completed. Now, the output vector may be condensed into Dirac-ket

notation, and the simulation is complete. This simulation method does not actually

perform a multiplication (using QMDD structures or matrices); instead, traversals of the

QMDD structure create the same result as the other methods.

 52

Chapter 5

RESULTS AND CONCLUSIONS

 In order to evaluate the performance of the quantum logic simulations, it is

necessary to examine the results generated during the experimentation and to compare

them with other simulation methods. This chapter compares the two QMDD methods

discussed in Chapter 4 to determine which is the best. Additionally, these methods are

also compared with the naïve linear algebra method and with the QuIDDPro simulator, a

previously developed quantum circuit simulator [20].

5.1. Results of Building QMDD Structures

 All of the results presented in this section have been generated using a Dell PE

2650 computer with a Dual Intel Xeon processor running at 3.2GHz with 4 GB of RAM

running a Linux operating system.

When examining the results of the tests performed on each method, there are a

number of observations that can be made. As mentioned in the description of the linear

algebra approach, this approach is inefficient in terms of memory. The size of the

representational matrix for a quantum or reversible circuit with n qubits is 2n×2n. Thus,

when the size of the circuit grows larger than approximately seven qubits, the memory

demand is too high, and the simulator simply cannot complete the simulation. Based on

 53

this, the linear algebra approach is not a valid method for quantum circuit simulation, but

it is used as a basis of comparison for the QMDD-based methods.

Other observations about the circuit simulation methods can be made by looking

at the results of the sample simulations. Before the simulation can be completed using a

QMDD-based approach, it is necessary to build the QMDD structure which represents

the quantum or reversible circuit. Table 5.1 details the experimental results generated

during the building of the QMDD structure.

GC on GC off GC on GC off
Ham3 3 5 50 50 <0.000 <0.000 10
3_17 3 6 53 53 <0.000 <0.000 10
rd32 4 4 52 52 <0.000 <0.000 9
mod5adders 6 21 303 303 <0.000 <0.000 38
5mod5tc 6 17 394 394 <0.000 <0.000 28
Hwb7 7 289 8746 8746 0.025 0.025 179
rd53rcmg 7 30 1220 1220 <0.000 <0.000 103
Hwb9-1541 9 1541 50000 128731 0.494 0.535 683
Hwb11 11 9314 50000 2205109 11.536 66.544 2639
0410184.nct 14 46 1156 1156 <0.000 <0.000 39
ham15a 15 132 50000 161493 0.496 0.475 26346
Cycle17_3 20 48 3040 3040 0.004 0.004 236
mod1048576
adder

40 210

Time to Build Circuit Resultant
QMDD Size

Circuit
Name

Number of
Qubits

Number of
Gates

Peak Node Count to
Build Circuit

Table 5.1. Experimental Results for Building QMDD Structure

5.1.1. Results of Building QMDD Structures

Table 5.1 gives the results for a number of quantum circuits taken from Maslov’s

quantum circuit benchmark website [9]. The first column of this table gives the name of

the quantum benchmark circuit. The second column of the table gives the number of

 54

qubits in the benchmark circuit. The circuits are listed such that the number of qubits is

given in ascending order. Next is the number of gates in the quantum circuit cascade.

This information is provided to give a general sense of the size of the circuit that is being

dealt with.

The next pair of columns detail the peak node count during the building of the

QMDD structure which represents the circuit. Two results are given; one column

represents when garbage collect is turned on and the other represents when garbage

collect is turned off. The garbage collect threshold is set at 50,000 nodes, so this explains

why circuits such as hwb11 have a peak node count of 50,000 when garbage collect is

turned on. In most cases, the garbage collect procedure is never activated which explains

why the peak node counts are the same regardless of whether or not garbage collect is

turned on. In the case of some of the largest circuits, the peak node count without

garbage collect is much larger than 50,000.

The next set of columns indicates the time taken to build the QMDD structure

representing the quantum circuit. These results are given both with garbage collection on

and off. It can be seen that for many of the circuits with a smaller number of gates, the

time to build the circuit is negligible. For larger circuits, the amount of time to build the

circuit generally increases as the number of quantum gates increases. (Throughout this

chapter, any operations that are not complete within a time period of one hour are listed

in the results tables as “timeout”.) Also, the difference when garbage collection is turned

on can be seen. In almost all cases, garbage collection reduces the amount of time

necessary to build the structure.

 55

Finally, the last column indicates the resultant size of the QMDD structure. This

value indicates the number of nodes in the QMDD structure after it has been completely

built. This value is not dependant on garbage collection. Notice that this value is

significantly smaller than the peak node count. This is due to the excessive number of

intermediary nodes that are created during the building of a QMDD structure.

5.1.2. Observations on Building QMDD Structures

 A number of observations can be made about the results presented in Table 5.1.

First of all, notice that garbage collection can actually have a significant impact on the

building of a QMDD structure. The high peak node counts of some of the QMDD

structures can make the building process very inefficient. Garbage collect helps to

alleviate some of the stress put on the software package by keeping the number of nodes

in the unique table relatively low.

 Additionally, observations can be made about the time required to build a QMDD

structure. When combined with the results in the next section, Table 5.1 demonstrates

that most of the time required to simulate a quantum circuit comes from the building of

the structure. Once the structure is built, the simulation takes less time as compared to

the building of the structure.

 56

5.2. Quantum Circuit Simulation Results

 In addition to the results already discussed, Table 5.2 presents the results of the

simulation (after the QMDD structure has already been built). The results presented here

focus mostly on the timing of the various simulation methods discussed.

Circuit
Name

Number of
Qubits

Number of
Gates

Number of
Input

Vectors

Average
CPU

Runtime for
Linear

Algebra
Approach

(sec)

Average CPU
Runtime for

QMDD Explicit
Multiplication
Approach (sec)

GC On

Average
Resultant

QMDD Size for
Explicit

Multiplication
Approach

Peak Node
Count During

Explicit
Multiplication

Approach

Average CPU
Runtime for

Implicit
Multiplication
Approach (sec)

GC On

Ham3 3 5 8 < 0.000 0.00004 11.000 20 0.00005
3_17 3 6 8 < 0.000 0.00007 12.000 21 0.00005
rd32 4 4 16 <0.000 0.00006 17.875 28 0.00006
mod5adders 6 21 64 <0.000 0.00007 45.844 51 0.00007

5mod5tc 6 17 64 <0.000 0.00006 38.000 52 0.00007
Hwb7 7 289 128 0.040 0.00014 219.500 309 0.00016
rd53rcmg 7 30 128 <0.000 0.00010 126.500 188 0.00008
Hwb9-1541 9 1541 512 timeout 0.00086 850.551 1176 0.00084

Hwb11 11 9314 2048 timeout 0.00988 3311.512 4557 0.01028
0410184.nct 14 46 16384 timeout 0.00009 74.752 105 0.00207

ham15a 15 132 328 timeout 1.00677 36617.000 49594 0.99800
Cycle17_3 20 48 1048 timeout 0.00026 255.000 277 0.12637
mod1048576
adder

40 210 timeout timeout timeout

Table 5.2. Simulation Results Using QMDD Structures

5.2.1. Discussion of Quantum Circuit Simulation Results

 For the results presented in Table 5.2, there are a number of observations that can

be made. The first three columns of the table are the same as those from Table 5.1. The

same quantum circuits are used so that comparisons may more easily be made. The next

column presents the number of input vectors used for simulation. For the circuits with 11

qubits or fewer, all of the possible test vectors are used. This means that every possible

set of inputs are simulated. The average of the simulation times for each simulation is

 57

presented in the table. For some of the larger circuits, only a subset of the possible input

vectors are used. For example, the circuit “cycle17_3” has 20 qubits. This means that

there are a total of 220 possible input vectors. In order to simulate all of the possible

vectors (over one million), it would take well over 36 hours. Due to this fact, a subset of

1048 vectors is used to represent all possible input vectors.

 The next column represents the average CPU runtime for the linear algebra

approach. For many of the small circuits, this method works in a reasonable amount of

time. However, for circuits with more than 7 qubits, the simulation using the linear

algebra method took over the threshold time of one hour, with most of the circuits never

completing. This is due to the fact that no linear algebra techniques to simplify matrix

multiplication are used. In this table, all simulations that did not complete in a time of

one hour were recorded as “timeout”. The results further the idea that the linear algebra

method is not an efficient method for quantum circuit simulations.

 The next column shows the average runtimes for the explicit multiplication

method. As mentioned earlier, the majority of the simulation time is used building the

QMDD structure. These results support this assertion. For the majority of the circuits,

the simulation time is small. Coupled with these results, the next column shows the

average number of nodes in the resultant QMDD structure. This is the size of the QMDD

structure (including the original circuit QMDD) after the explicit multiplication has been

performed. Since each input vector generates a distinct QMDD structure after the

multiplication process, it makes sense to present this as an average. When this column

and the previous column are observed together, significant observations can be made. It

 58

can be seen that the time for simulation is directly proportional to the number of nodes in

the resultant QMDD structure.

 The next column indicates the peak node count during the explicit multiplication

process. The explicit multiplication process manipulates the QMDD structure, and

similar to when the structure is built, there are many intermediate nodes that are used

during the manipulation. The peak node count given in this column represents the peak

node count for all of the possible input vectors. This “peak, peak node count” is given

here because there is a less than 5% variance among the peak node counts for all of the

possible input vectors. This column, along with the previous column, demonstrates that

the manipulations involved in performing the explicit multiplication operation generate

intermediate nodes that are not a part of the final QMDD structure.

 Finally, the last column indicates the amount of time necessary for the simulation

using the implicit multiplication method. When these values are compared to the explicit

simulation method, it is clear that the times are very close to each other. These results

make deciding on a simulation method difficult. These results are discussed in the next

section.

5.3. Comparison with QuIDDPro

 The experimental results have been presented for the QMDD-based quantum

circuit simulation methods, but it is still desired to compare these results with the results

produced by QuIDDPro. Table 5.3 sums up the results of the QMDD-based methods

compared with QuIDDPro.

 59

Circuit
Name

Number of
Qubits

Number of
Gates

Number of
Input

Vectors

Average
CPU

Runtime for
QuIDDPro
Simulation

(sec)

Average CPU
Runtime for

QMDD Explicit
Multiplication
Approach (sec)

GC On

Average CPU
Runtime for

Implicit
Multiplication
Approach (sec)

GC On

Ham3 3 5 8 0.060004 0.00004 0.00005
3_17 3 6 8 0.064004 0.00007 0.00005
rd32 4 4 16 0.088006 0.00006 0.00006
mod5adders 6 21 64 0.136009 0.00007 0.00007
5mod5tc 6 17 64 0.340021 0.00006 0.00007
rd53rcmg 7 30 128 0.556034 0.00010 0.00008
0410184.nct 14 46 16384 3.040190 0.00009 0.00207
ham15a 15 132 328 4.628290 1.50277 1.49400
Cycle17_3 20 48 1048 0.812051 0.00426 0.13037

Table 5.3. Comparison of QMDD and QuIDDPro Simulators

 For comparison purposes, a subset of the benchmark circuits used in the previous

tables are included in this table. The first four columns are the same as those in Table

5.2. The next column shows the average runtime for the QuIDDPro quantum circuit

simulator. The remaining two columns show the average runtimes for these same

benchmark circuits using the two QMDD-based simulation approaches. These three

columns include the time used to read in the circuit file, build the structure representing

the circuit, and perform the quantum circuit simulation.

 When the last three columns are compared, it can be seen that the QuIDDPro

simulation takes longer than the simulation based on the QMDD structure. For each

benchmark circuit, the QMDD methods are at least three times faster. In some cases, the

improvement is as much as four orders of magnitude. In all cases, the QMDD based

methods prove to be quicker than the QuIDDPro methods.

 60

5.4. Conclusions

 A quantum circuit simulator is a critical tool for the development of quantum or

reversible circuits. The quantum circuit simulator presented in this thesis uses the

Quantum Multiple-valued Decision Diagram to expedite the simulation process. As

compared to other simulation processes such as QuIDDPro, this circuit simulator has

shown to have faster simulation times.

 Some important discoveries have been made during the development of this

simulator. It is still unclear which method is the most efficient for quantum and

reversible circuit simulation. As demonstrated in this thesis, the implicit and explicit

multiplication methods are similar in their execution times. There are only slight

differences in the result times that are produced. There is still much study that can be

done to determine which of these methods is more efficient, but it is shown in this

chapter that these two methods have distinct advantages over strictly using matrices to

represent the quantum circuit and input vector and over the QuIDDPro simulation.

5.5. Future Work

 The concept of quantum circuit simulation can still be scrutinized further in future

research. One particular area that is of interest for quantum circuit simulations is the idea

of dynamic variable reordering. For this thesis, all of the QMDD structures have a

variable ordering such that all variables appear in order from the terminal node to the

initial node. It has been shown in [24] that reordering the variables in a binary decision

diagram changes the number of nodes in the diagram. More recently in [25], it has been

shown that the same idea applied to the QMDD structure. Future work can be done in the

 61

area of variable sifting to determine a variable ordering for each quantum circuit that will

minimize the simulation time. When the idea of sifting is combined with quantum circuit

simulation, it could allow for the efficient simulation of quantum circuits with even more

qubits than those analyzed in this research.

 62

REFERENCES

[1] P. Shor, Polynomial-time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM Journal of Computing, vol. 26, 1997, pp.
1484-1509.

[2] L. Grover, A Fast Quantum Algorithm for Database Search, In Proceedings of the

ACM Symposium on Theory of Computing, 1996, pp. 212-219.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.

[4] D. M. Miller and M. A. Thornton, QMDD: A Decision Diagram Structure for

Reversible and Quantum Circuits, In Proceedings of the IEEE International
Symposium on Multiple-Valued Logic, 2006.

[5] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal Binary Decision

Diagrams: An Efficient Data Structure for Matrix Representation. Form. Methods
Syst. Des., 10(2-3): 149-169, 1997.

[6] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD

Package. In 27th Design Automation Conference, June 1990.

[7] D. M. Miller, M. A. Thornton, and D. Goodman, A Decision Diagram Package for

Reversible and Quantum Circuits, In Proceedings of the IEEE World Congress on
Computational Intelligence, 2006.

[8] R. Horn and C. Johnson, Topics in Matrix Analysis, Chapter 4, Cambridge

University Press, 1991.

[9] D. Maslov. Reversible Logic Synthesis Benchmarks Page.

http://www.cs.uvic.ca/~dmaslov, 2005.

[10] I. Chuang. Quantum Circuit Viewer: qasm2circ, Massachusetts Institute of

Technology, http://www.media.mit.edu/quanta/qasm2circ/.

 63

[11] G. F. Viamontes, I. L. Markov and J. P. Hayes, “Improving Gate-Level Simulation
of Quantum Circuits,” Quantum Information Processing vol. 2(5), October 2003, pp.
347-380.

[12] G. F. Viamontes, I. L. Markov and J. P. Hayes, “Gate-Level Simulation of Quantum

Circuits,” In Proc. of the Asia South Pacific Design Automation Conference, pp. 295-
301, January 2003.

[13] D. Goodman, M. A. Thornton, D. Y. Feinstein, D. M. Miller, “Quantum Logic

Circuit Simulation Based on the QMDD Data Structure,” Reed-Muller Workshop,
International Symposium on Multiple-Valued Logic, May 16, 2007.

[14] R. Landauer, Irreversibility and Heat Generation in the Computing Process, IBM

Journal of Research Development, vol. 5, 1961, 183.

[15] H. Weyl, The Theory of Groups and Quantum Mechanics. Dover Press, 1950.

[16] D. M. Miller, D. Y. Feinstein, and M. A. Thornton, “Variable Reordering and

Sifting for QMDD,” IEEE Symposium on Multiple Valued Logic (ISMVL), May 2007.

[17] F. Somenzi. CUDD: Cu decision diagram package – release 2.4.1.

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html, 2005.

[18] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F.

Somenzi. Algebraic decision diagrams and their applications. Form. Methods Syst.
Des., 10(2-3):171-206, 1997.

[19] T. Toffoli. Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for

Comp. Sci, 1980.

[20] G. F. Viamontes, I. L. Markov, and J. P. Hayes. QuIDDPro: High-performance

quantum circuit simulation. http://vlsicad.eecs.umich.edu/Quantum/qp/, 2005.

[21] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic circuits.

In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 25 issue 6, June 2006.

[22] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, Spectral

Transforms for Large Boolean Functions with Application to Technology Mapping,
In Proceedings of the Design Automation Conference, 1993, pp. 54-60.

[23] R. E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE

Transactions on Computers, Vol. 35, no. 8, 1986, pp. 677-691.

 64

[24] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams”, In
Proceedings of the International Conference on Computer-Aided Design, Santa
Clara, CA, Nov. 1993, pp. 42-47.

[25] D. M. Miller, D. Y. Feinstein, M. A. Thornton, Variable Reordering and Sifting for

QMDD, IEEE International Symposium on Multiple Valued Logic (ISMVL), May
14-16, 2007.

