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 Model-Driven Architecture (MDA) is a software development approach that 

involves creating high-level models that are used for automated system implementation.  

The objective of this research is to expand the applicability of MDA to hardware 

development.  When automation is supported for both hardware and software, MDA has 

many applications in modern-day design practices, especially relating to embedded 

system design and the necessity of optimally dividing system functionality between 

hardware and software.   

 This project uses Unified Modeling Language (UML) diagrams to define a system 

at a high-level.  While many tools exist that automatically generate software code in 

various languages directly from the UML description, we focus on the generation of low-

level hardware description language (HDL) code for use in the design of application-

specific hardware, typically implemented in programmable logic devices such as CPLDs 

and FPGAs.    

 Our implementation leverages existing tools for formatted text conversion to 

generate HDL code for the necessary datapath and control elements of a state-based 

system.  Additionally, we incorporate industry-leading off-the-shelf software for logic 



iv 

synthesis and FPGA design flow in order to create a "one-click" conversion tool that 

takes a UML system description and converts it directly to a binary file that can be used 

to configure programmable hardware. 
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Chapter 1 

INTRODUCTION 

 

As hardware implementation technology grows continually smaller in scale and 

greater in computing power and complexity, embedded system designers are forced to 

reevaluate their traditional assumptions regarding the dividing line between software and 

hardware utility.  As Jerraya and Wolf [1] point out, functions that have been generally 

implemented in software can now be realized in hardware with little to no design impact.  

Such changes may even result in an increase in design performance.  Hardware-

implemented functionality is now required to interface with higher levels of software.  

Designers are faced with new choices regarding which functions will be implemented in 

software and which will be implemented in hardware. 

As the traditional lines of hardware-software separation are blurred, implementation-

related design decisions become increasingly critical.  In the past, implementation 

choices have been made relatively early in the design cycle.  Consequently, separate 

specifications were created for each design partition, leading to separate design cycles 

and implementation strategies.  The traditional assumption that hardware redesign is 

more costly and time consuming than software modification has led most embedded 

design solutions to be software intensive, as executable code absorbs the majority of late-

coming design revisions and modifications.  Such design strategies and assumptions 
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commonly result in disorganized design documentation, complex design verification 

processes, sub-optimal design performance, and delayed design release [2].  

The field of hardware-software co-design focuses on creating optimal embedded 

designs by postponing the actual partitioning of implementation until late in the design 

cycle.  One proposed methodology is to leverage the concept of Model-Driven 

Architecture (MDA) in order to maintain implementation independence throughout most 

of the design phase.  The MDA design approach specifies the use of high-level modeling 

languages, such as UML, to define system requirements, structure, and behavior [3].  

Design implementation can then be automated using software conversion processes that 

generate low-level code [2].  By designing with an abstract model of various system 

parameters, embedded system developers can maintain a single repository of design 

documentation, including requirements, design strategies, and, of course, the structural 

and behavioral details of the system.  Changes in design scope or individual requirements 

can be absorbed by high-level models with greater efficiency and less cost than with 

previous design paradigms since costly low-level implementation redesign is avoided. 

Though MDA was originally conceived as a software design approach, its concept of 

implementation independence makes it easily adaptable to hardware-software co-design.  

Much work has been done toward defining methods for hardware specification in an 

abstract modeling environment [1], including approaches based on the abstraction of 

predefined hardware IP components [4] or the use of UML extensions for embedded 

hardware [5].  Technological advances in programmable logic devices reduce hardware 

time-to-realization and allow for a level of design flexibility that approaches that of 
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software implementations.  Therefore, implementation partitioning can now reasonably 

be deferred until immediately prior to design implementation. 

Due to the software-centric origins of MDA, there are no formal tools extending 

support for automated low-level implementation into the field of hardware design.  

Reyneri proposes a possible approach to MDA embedded design whereby UML 

modeling constructs can be converted to hardware description language (HDL) 

representations by mapping them into MATLAB’s Simulink tool [6].  Bjarklund and 

Lilius propose a similar mapping conversion using an intermediary language, SMDL [7].  

McUmber and Cheng have also proposed a UML mapping to HDL [5].  In each case, the 

proposed implementation process stops with an HDL model. 

This Thesis presents the framework for a complete MDA-based hardware realization 

methodology in the form of a “proof-of-concept” implementation, UML-to-FPGA.  The 

UML-to-FPGA tool leverages the functionality of industry-leading off-the-shelf software 

packages and common scripting languages to produce a design automation application 

that not only converts UML design models into HDL code, but also generates a binary 

image file which can be used to configure a programmable logic device, thus creating a 

fully functional hardware realization of the original design.  This work also presents a 

new XML schema, Design Automation XML (DAXML), designed specifically to be a 

repository for all the information necessary to fully realize a complex sequential circuit 

design in hardware.  

It should be emphasized that the framework of this automation tool is intended to be 

independent of vendor selection for both the target hardware and the third-party tools 
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used in the automation process, in keeping with the ideals of the MDA design approach.  

It is assumed that design tool preferences and support for certain packages will vary from 

designer to designer and from company to company, so no one design package or 

language used in the UML-to-FPGA tool is singularly critical to the successful 

completion of the conversion process.  Instead, the research presented is intended to show 

the general practicality of hardware implementation within the MDA design paradigm, in 

that once a design is properly modeled, a fully operational hardware implementation need 

only be one “click” away. 

Chapter 2 of this Thesis covers background material that may be helpful for 

understanding the various design methodologies, languages, and technologies that are 

mentioned throughout this work.  It will cover the reasoning behind Model-driven 

Architecture, and the fundamentals of the Unified Modeling Language (UML) and the 

Extensible Markup Language (XML).  In addition, there will be an overview of hardware 

design using programmable logic and hardware description languages, as well as an 

introduction to the basics of sequential circuit design. 

Chapter 3 presents a high-level overview of the UML-to-FPGA tool architecture.  

Included is a brief description of the operations carried out during each of the five 

conversion stages that make up the UML-to-FPGA tool.  This overview is followed by a 

discussion of the various scripting languages and external tools used in this 

implementation and the reasoning behind their selection. 

Chapter 4 covers the specific design implementation details that dictate the behavior 

of each stage of the UML-to-FPGA tool.  This discussion includes detailed information 
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related to design capture conventions, model conversion and synthesis processes, data 

formatting, and the usage and invocation of third-party tools.  Details of the new 

DAXML schema are also presented in this chapter. 

Chapter 5 discusses the sample designs used during the development of the UML-to-

FPGA tool and presents a testing methodology for these sample cases.  Experimental 

results and design synthesis statistics are presented as a supplement to a real-time 

demonstration of the tool’s operation. 

Chapter 6 concludes the Thesis by presenting several suggestions for areas of future 

research into the development and expansion of the UML-to-FPGA tool.  The chapter 

closes with a summary of the tool implementation covered in this work and its potential 

applications for hardware development in a high-level, model-driven design environment.   
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Chapter 2 

BACKGROUND 

 

This chapter provides background information on several topics that are referenced 

frequently throughout this document.  The material covered includes a discussion of 

Model Driven Architecture (MDA), as well as the languages most directly related to its 

implementation:  UML and XML.  Also included is material covering programmable 

logic implementation and sequential circuit design. 

  

2.1 Model Driven Architecture 

Model Driven Architecture, or MDA, is a concept originally intended as a method to 

develop software using modeling languages as programming languages [8].  Under this 

design approach, high-level graphical models defining the desired software system are 

created, and an MDA-based implementation tool is used to automate the generation of the 

actual software code that will be compiled and executed [2].  In theory, a systems 

engineer should be able to design and implement an entire software system without 

knowledge of the underlying code.  Such development practices have been used by 

industry leaders including IBM, Oracle, Unisys, and IONA to create real-time and 

embedded software applications [8]. 
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The modeling languages in an MDA design environment are used to generate 

platform-independent models (PIMs) of a system.  PIMs are designed to describe the 

behavior and functionality of an application without using technology-specific code or 

structure [3].  By compiling all design information into one model, MDA strives to 

facilitate an organized, incremental development process where all design contributions 

are integrated into a single entity.  It is the goal of MDA that the design could be 

implemented on any of a large number of software platforms using only the information 

contained within the PIM [2].  Among MDA-supported implementation platforms are 

Web Services, XML/SOAP, .NET, CORBA, and J2EE [3]. 

Object Management Group (OMG), the software consortium driving MDA 

development, has defined the MetaObject Facility (MOF) to standardize the basic 

structure for modeling design structure, behavior, and data, so that a graphical model of 

an application may be appropriately parsed and converted to a structured text format for 

transmission over a network.  Examples of MOF-compliant languages include the 

Unified Modeling Language (UML) and Common Warehouse MetaModel (CWM) [3].   

Though originally conceived as a software implementation paradigm, the platform 

independence implied in an MDA design model can lend itself to any type of 

implementation method.  The structure, behavior, and requirements of a design are totally 

defined in a PIM, providing source material that is just as sufficient for describing a 

hardware system as it is a software application.  By including hardware realization as 

another available implementation technology, MDA expands into the world of hardware-
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software co-design and becomes an even more powerful tool for embedded systems 

development. 

 

2.2 Unified Modeling Language (UML) 

The Unified Modeling Language (UML) was developed by OMG as a tool to specify, 

visualize, and document the structure and design of software systems.  Software 

modeling is intended to be used prior to program coding as a method for “blueprinting” 

the application design.  Modeling helps designers ensure that application functionality is 

complete, correct, and in accordance with end-user requirements, so that the most critical 

design decisions can be made using a higher level of abstraction before coding 

implementation begins and further modifications become increasingly expensive and 

time-consuming.  Alternatively, an MDA design approach might be used to link 

modeling directly to the implementation process [9].   

The latest version of the UML standard defines thirteen diagram types that can be 

used for system modeling.  These thirteen types can be divided into three basic 

categories: Structure Diagrams, Behavior Diagrams, and Interaction Diagrams.  Diagrams 

in the Structure category include the Class Diagram, the Object Diagram, the Component 

Diagram, the Composite Structure Diagram, the Package Diagram, and the Deployment 

Diagram.  The Behavior Diagram category includes the Use Case Diagram, the Activity 

Diagram, and the State Machine Diagram.  Diagrams in the Interaction category include 

the Sequence Diagram, the Communication Diagram, the Timing Diagram, and the 

Interaction Overview Diagram [9]. 
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Though originally designed to be a unifying notation for object-oriented software 

design, UML can be used for any modeling task where high-level abstraction is 

beneficial.  There are applications in the business world and, as described in this Thesis, 

in the world of hardware development [9].  UML is supported by several tools, including 

IBM’s Rational Rose suite [10] and Telelogic’s Rhapsody software [11].  UML models 

can be passed between tools, users, or storage media using a XML-based format known 

as XML Metadata Interchange (XMI) [9].  The existence of this machine readable XML 

structure is critical to the hardware implementation conversion process described in this 

Thesis. 

 

2.3 XML and XSLT 

Extensible Markup Language (XML) is a flexible text format commonly used for data 

transfer across a wide variety of media [12].  Like HTML, XML is a markup language, 

where structural tags (textual delimiters encompassed by the “<” and “>” symbols) are 

used to identify specific structural elements within a document.  However, while HTML 

uses a strictly defined set of tags, XML tags are not predefined.  Instead, XML allows a 

user to define his or her own set of tags, based on the data stored in the document and 

how it is intended to be processed.  Predefined sets of XML tags do exist, however.  

These formats are known as Document Type Definitions (DTDs), or schemas, and are 

used to create standardized data transfer and/or representation formats.  The focus of 

XML is to define a structured method for data storage that allows for simple and explicit 

description of the stored information.  Because XML is not dependent on any one 



10 

hardware platform or software application, it is an ideal format for use in applications 

requiring data portability and transport [13]. 

While XML is flexible in terms of the types of structures and tags that can be defined, 

its syntax rules are very strict.  For instance, all data elements stored in an XML 

document must have an opening and closing tag.  Other examples of syntax requirements 

include rules for describing the proper methods for nesting elements and rules for 

formatting element attributes.  An XML document that obeys all the specified syntax 

rules is said to be “Well Formed” [13]. 

The structured syntax of XML allows documents to be processed and parsed quickly 

and easily.  Extensible Stylesheet Language Transformations (XSLT) take advantage of 

this structure in order to convert existing Well Formed XML documents into new XML 

documents, HTML documents, or any form of plain text format that is desired.  The 

XSLT language is used to define sets of rules that govern the transformation process [14]. 

An XSLT rules file is made up of a set of template rules.  Each template rule defines 

a pattern to be matched within an XML document and a sequence constructor that defines 

processing behavior when the match pattern is found in the input XML file.  The match 

pattern defines an element or set of elements within an XML document.  Each time such 

an element is found within the original XML document, information relative to that node 

is processed based on the actions defined in the sequence constructor, generating material 

for the new document being created by the transformation.  The parent-child relationship 

of tags within an XML document creates a tree-like structure that XSLT must traverse in 

order to perform its pattern matching functions.  It accomplishes this task with the help of 



11 

its companion technology, XML Path Language (XPath), which defines a method to 

identify and find nodes in an XML document [14].  For example, to help XSLT find the 

attribute “name” of the <UML:Model> element that is the child of the 

<XMI.content> element, that is in turn, a child of the <XMI> root element of an 

XML document, XPath would use the string “/XMI/XMI.content/UML:Model/@name”. 

 

2.4 Programmable Logic and Hardware Description Languages 

The invention of the silicon integrated circuit (IC) revolutionized computing 

hardware design in the second half of the 20th century, enabling the creation of 

increasingly complex digital circuit implementations.  Today, most digital hardware falls 

into one of two categories:  general purpose processors or application specific integrated 

circuits (ASICs).  General purpose processors are designed to execute a wide variety of 

computing functions directed by a set of instructions stored in memory (i.e. software).  

ASICs are typically optimized to execute one or a small set of functions for one specific 

purpose. 

Design cycles for such complex ICs are very costly and time consuming.  Once an 

original design is completed, it can take weeks or even months to be fabricated, and any 

design errors that exist will require another long delay while the corrected silicon is 

created.  Programmable logic devices (PLDs) provide a solution to such lengthy design 

cycles by providing large amounts of logic circuitry with a configurable structure [15].  

Modern PLDs can be configured to implement any manner of application-specific digital 

circuitry, with the programming process taking a matter of seconds, instead of weeks or 
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months of turnaround time.  Thus PLDs provide an excellent medium for development in 

an ASIC design cycle, where design turnaround for debugging can happen in as little as 

one minute and only the finalized, debugged design is implemented as a fixed-silicon 

ASIC [2].  However, it is increasingly common in current digital design practices to use 

PLDs as the end-case implementation technology, as they provide “permanent” hardware 

design flexibility and allow for “in-the-field” functionality upgrades. 

Early PLDs were implemented using arrays of fixed-function logic gates and 

configurable interconnections.  These programmable logic arrays (PLAs) used 

combinations of AND and OR logic gates to implement a wide variety of logic functions.  

The first PLA designs were severely limited by the number of logic gates and the 

predefined interconnecting wire architecture.  Improving the flexibility of these 

programmable devices involved adding more logic gates and interconnecting wires.  

Today’s complex programmable logic devices (CPLDs) include many blocks of fixed-

function logic gates that are individually configurable and that are interconnected by a 

large matrix of interconnecting wires.  The increased amount of logic and interconnection 

capability allows for the implementation of larger and more complex designs.  Even so, 

large CPLDs may not be able to support designs requiring more than the equivalent of 

20,000 logic gates [15]. 

Field-programmable gate array (FPGA) technology supports much more logic density 

in a single programmable IC.  Unlike the fixed-function logic arrays found in CPLDs, an 

FPGA provides programmable logic blocks in addition to configurable interconnecting 

wires and configurable I/O ports.  Typically implemented using SRAM-based look-up 
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tables, multiplexers, and optional memory storage, these logic blocks are arranged in 

two-dimensional arrays throughout the IC and are interconnected using rows and 

columns of interconnecting wires called “routing channels”.  The use of look-up tables 

lends additional design flexibility, while the SRAM technology allows for increased logic 

density within the FPGA [15]. 

Programming a CPLD or FPGA involves “downloading” a stream of information into 

the device that interacts with internal device structures and configures the various 

programmable elements according to the predefined design.  This design, for most 

programmable devices, is defined using a hardware description language (HDL).  An 

HDL can be used to express a text-based model of the physical structure and/or temporal 

behavior of a digital hardware design [2].  A logic synthesis software tool is then used to 

process the HDL model of a design, mapping the described structural and behavioral 

design elements to virtual constructs representing the configurable logic elements within 

a programmable device [16][17].  Additional software tools, typically issued by the 

vendor of a particular FPGA or CPLD, are required to convert this virtual design into a 

stream of data that will configure the programmable device to create a physical 

implementation of the circuit [18][19]. 

Though HDLs are used as a means for describing the operation of a digital system, 

they are not programming languages.  The ability of an HDL to describe a digital system 

in terms of its physical structure separates it from high-level languages like C or C++.  

Even when used to describe system behavior, an HDL uses descriptions at the register 
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transfer level (RTL), where actions are based on logic levels of physical design elements 

instead of virtual “variable” constructs stored in memory banks [17]. 

Today, there are two commonly used hardware description languages in industry:  

Verilog HDL and VHSIC HDL (VHDL).  VHDL was initially developed as a language 

for documenting the structure and behavior of ICs originally designed using other 

methods, but is now an IEEE standardized HDL used for logic design.  Verilog HDL 

evolved from a proprietary design language, but is also now an IEEE standardized 

language in the public domain.  Though both VHDL and Verilog are commonly used for 

commercial applications, the flexibility and extensibility of Verilog will most likely make 

it the HDL of choice in the future [17].  Consequently, Verilog HDL has been chosen as 

the language of implementation for the UML-to-FPGA tool described in this document. 

 

2.5 Sequential Circuit Design 

Digital circuit implementations may be divided into two distinct categories:  

combinational designs and sequential designs.  A combinational design is one in which 

circuit behavior depends only on the present values of circuit input signals.  Sequential 

designs are slightly different in that they depend on circuit input signals as well as the 

value of some internally stored state information, implying the need for internal memory 

elements within the design.  The most common form of sequential circuitry utilizes a 

global periodic latching signal, or clock, that triggers memory elements to store the 

values present on their input ports.  Since the clock signal is synchronizing memory state 

transitions, implementations using a periodic signal are referred to as synchronous 
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sequential designs [17].  The complexity of most modern digital designs necessitates the 

use of some type of internal state machine, so it is important to understand the basic ideas 

behind synchronous sequential circuit design. 

Any synchronous sequential design can theoretically be decomposed into two parts:  

the datapath and the controller.  The datapath portion of the design is responsible for 

transforming input data into output data, while the controller is responsible for governing 

the behavior of the datapath.  It is the responsibility of the controller to maintain the 

internal state of the circuit, and therefore the controller must contain memory elements to 

store this information.  As shown in Figure 2.1, the controller governs behavior in the 

datapath by supplying control signals (e.g. device resets, mux select lines, and register 

load and clear signals), but it also accepts feedback signals from the data processing 

elements that help determine the next value of the internal state machine [17]. 

 

 

Figure 2.1:  Synchronous Sequential Circuit Design Elements 

 

By using memory elements that define a finite set of states in which the controller 

may exist, the controller portion of a sequential circuit design is often referred to as a 
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finite state machine (FSM).  The controller FSM uses combinational logic to process its 

inputs (i.e. top-level design input signals and feedback from datapath elements), along 

with the current state information stored in controller memory, and to generate the set of 

binary signals that determine its next state of operation.  This “next state” value is fed 

into controller memory elements, thereby allowing state transitions to occur on the active 

edge of the clock signal [17]. 

 

 

Figure 2.2:  Example of a Moore Machine 

 

There are two architectures for synchronous FSMs.  In a Moore machine, shown in 

Figure 2.2, FSM outputs are dependent only on the current state of the controller [20].  In 

a Mealy machine, shown in Figure 2.3, FSM outputs are dependent on the current state of 

the controller and at least one of the circuit input signals [21].   

 

 

Figure 2.3:  Example of a Mealy Machine 
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Chapter 3 

UML-TO-FPGA TOOL ARCHITECTURE 

 

UML-to-FPGA is an automated synthesis tool used for hardware development in an 

MDA-based design flow.  It processes system-level design descriptions in UML, and, 

through a series of conversion stages, generates Verilog HDL source code for the design 

and a binary programming file that can be used to configure a programmable logic 

device, such as a CPLD or FPGA, to implement the design.  Currently implemented as a 

command-line script, UML-to-FPGA is a Perl-based tool that integrates design flows 

from various state-of-the-art text processing and hardware synthesis software packages to 

provide a seamless conversion process with a single command. 

 

3.1 Conversion Process Flow 

The entire conversion process can be divided into five stages, as shown in Figure 3.1, 

below.  Once the complete design, including all necessary datapath and control elements, 

has been captured using UML modeling software (see Section 3.2 for more information 

on the software selected for this implementation), conversion can begin. 
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Figure 3.1:  UML-to-FPGA Conversion Process Flow 

 

First, the graphical UML design description must be converted to a text-based format.  

Because XML-based transforms are used for text processing in later conversion stages, 

we export the UML design data to an XML formatted text file.  The UML software 

provides an export feature that generates a text file containing all design information 

formatted as an XML Metadata Interchange (XMI) model.  Since the UML-to-FPGA tool 

cannot directly process (or invoke the processing of) the graphical UML data, this 

conversion stage is actually executed prior to the invocation of the tool. 

In the second conversion stage, the verbose XMI document produced by the UML 

software is trimmed down and reformatted into another XML schema, which we call 

Design Automation XML (DAXML).  This XML schema retains only the information 

necessary for hardware design synthesis, and thus contains fewer elements and simpler 

tag descriptions (see Section 4.2.1 for a further discussion of this schema).  The 

information retained in the DAXML design file is ideal for Verilog HDL code synthesis 

and greatly reduces the complexity of the next conversion stage.  Use of XML-formatted 

text files to store the design allows the XMI-to-DAXML conversion to be accomplished 

via XSLT.  XSLT processes the XML input (in this case, our design-generated XMI 

model) according to rules specified by the UML-to-FPGA tool and generates formatted 
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data as output [14].  In this conversion stage, the output format is configured to be 

DAXML. 

In the third conversion stage, Verilog HDL source code is generated from the 

DAXML model of the design.  Since DAXML is a valid XML format, XSLT is used 

again, invoked with a different set of rules designed to produce synthesizable Verilog 

HDL. 

Once a synthesizable Verilog HDL model is produced, the design can be 

implemented in hardware via logic synthesis.  In the fourth conversion stage, off-the-

shelf hardware synthesis software is invoked to convert the HDL code to a structural 

hardware model, a gate- or register-level description of design components accompanied 

by a netlist defining their interconnection.  The UML-to-FPGA tool offers the designer 

the option of using one of several available logic synthesis software packages. 

In the fifth and final conversion stage, the synthesized logic elements, still described 

in a text-based netlist format, are mapped onto programmable logic elements specific to 

the selected target device in order to generate a configuration file for the programmable 

logic elements it contains.  It is therefore necessary at this point in the conversion process 

to use the proprietary design software of the chosen IC vendor in order to produce a valid 

configuration file for the targeted programmable device.  The UML-to-FPGA tool 

currently supports targeting Xilinx and Altera devices, and will invoke the correct design 

software based on target device selection.  Regardless of the selected IC vendor, the fifth 

conversion stage contains several steps.  First, the hardware components described in the 

synthesized netlist are mapped to actual physical components within the selected 
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programmable device.  Next, these mapped components are virtually placed and 

interconnected in specific locations on the target device.  This virtual layout information 

is compiled into a vendor-proprietary bit stream that can be downloaded into the target 

device in order to configure its internal logic.  Once the bit stream is downloaded into the 

programmable IC, the designer has a physical implementation of the original UML 

design. 

 

3.2 Design Tool Selection 

While a detailed description of the UML-to-FPGA tool implementation is presented 

in Chapter 4, the following paragraphs will provide an overview of the specific software 

tools and languages used in the conversion process described in the previous section.  

This overview will include a discussion of the reasoning behind the selection of the tools 

in question, as well as the presentation of possible alternative selections for future 

implementations. 

Developed in the mid-1980s by Larry Wall, Perl is a commonly used scripting 

language that bridges the gap between low-level programming languages like C or C++ 

and high-level programming languages used for shell programming.  Originally 

developed for Unix-like environments, Perl now has the flexibility to execute both high- 

and low-level system tasks in a variety of commonly used operating systems [22].  It 

enables the programmer to invoke any third-party software routines from the command 

line, as well as to perform the simple file and directory manipulation needed for the 

implementation of this conversion tool.  Though many scripting languages could have 
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been used, Perl was selected for its simplicity of implementation and its widespread 

reference documentation.  In addition, Perl provides a powerful text manipulation 

command set, which proved invaluable in the file processing tasks required for this 

project.  Most of the Perl development for this project was done on a Windows-based PC 

running the UNIX emulation terminal, Cygwin.  The final tool is designed to run in this 

emulation terminal environment or on a true UNIX or Unix-like platform. 

IBM’s Rational Rose is the UML modeling software package that was selected for 

this implementation.  The software provides a GUI environment for creating diagrams 

using libraries of standardized constructs for the various UML views it supports [10].  Of 

particular interest in this project implementation were the Logical and Component Views 

supported by the Rose Enterprise Edition, version 7.0.0.0, used to support the capture of 

control and datapath elements, respectively.  In addition to the basic Rose Enterprise 

package, a plug-in is required to add XMI-format export functionality.  A wide variety of 

UML modeling and development packages exist, including Rational Rose [10] and 

Rhapsody from I-Logix/Telelogic [11].  IBM software was selected for this 

implementation due to its use in previous incarnations of UML-to-HDL conversion tools 

developed by the SMU Hardware-Software Co-Design team [2][23]. 

XSLT transformations utilized in UML-to-FPGA were implemented using Java-based 

Apache Xalan software.  Xalan supports full-featured XSLT functionality in a free 

package distribution [24].  Xalan is highly portable due to its basis in Java.  The 

command-line program can run on any OS platform that can support a Java run-time 

environment.  Many commercially available XML development tools now support XSLT 
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functionality and debugging, but Xalan provided the necessary functionality and 

portability at zero cost.  However, selection of this tool was based primarily on its use in 

previous SMU Co-Design team efforts [2][23]. 

Synplicity’s Synplify Pro is the industry-leading logic synthesis tool supported as an 

optional processing step in the UML-to-FPGA implementation.  Synplify uses advanced 

synthesis algorithms to maximize logic performance and minimize resource usage in 

programmable devices [16].  Widely used in industry, this tool provides support for 

synthesis optimizations based on specific programmable logic structures used by leading 

CPLD and FPGA vendors like Altera and Xilinx.  Consequently, it can be used to 

maintain commonality in the logic synthesis process without having to select a specific 

programmable logic vendor, and in most cases, Synplify can match the performance of 

vendor-provided synthesis tools in terms of design optimization.  The package provides a 

powerful GUI interface with a wide variety of design development tools; however for the 

purposes of UML-to-FPGA implementation, Synplify’s command-line interface is used.  

The command-line interface is based on the Tcl (Tool Command Language) scripting 

language [25] and requires very basic project definition files and execution formats that 

are quite easily generated by the UML-to-FPGA tool’s Perl framework.  While it 

provides very powerful functionality, Synplify Pro is typically very expensive to 

purchase and support.  It is an optional feature in the UML-to-FPGA conversion process 

because similar functionality is supported in vendor-specific programmable logic design 

tools. 
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Before the final stage of the UML-to-FPGA conversion process, a specific 

programmable logic vendor must be selected for the design.  This project was designed to 

support the targeting of devices manufactured by Altera and Xilinx.  Each vendor 

supplies its own proprietary design software that includes logic synthesis, logic mapping, 

place-and-route, and configuration file generation functionality.  The design tools 

typically provide an entire suite of analysis tools for design creation and constraint 

analysis, as well as software and drivers that can be used to physically configure actual 

programmable devices.  The Altera design tool is known as Quartus-II [18], while the 

Xilinx equivalent is called ISE [19]. 

Altera Quartus-II 6.1 Web Edition design software is typically run using its GUI 

interface, which provides design and constraint capture, logic synthesis, and analysis 

tools to the user.  However, it also supports a Tcl-based command-line interface with 

separate executables for each design tool.  Design and constraint information is defined in 

a Tcl script file, which is then used to generate a project environment that supports the 

remainder of the design flow.  The command line executables used by the UML-to-FPGA 

tool are:  quartus_map (Altera’s proprietary logic synthesis and mapping tool), 

quartus_fit (Altera’s place-and-route tool), and quartus_asm (Altera’s configuration file 

generation tool) [26]. 

Xilinx ISE WebPACK 8.1i design software provides a GUI design environment 

similar to that produced by Altera.  However, instead of a Tcl-based scripting interface, 

ISE uses its own command-line design flow, called XFLOW.  XFLOW uses several 

process flow template files to define the execution order and option usage for the tools in 
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the ISE design flow.  Like Altera’s Quartus-II software, Xilinx ISE uses individual 

executable files for each of its design tools:  xst (the Xilinx synthesis tool), ngdbuild 

(Xilinx’s tool for building its proprietary circuit descriptions), map (Xilinx’s mapping 

tool), par (Xilinx’s place-and-route tool), and bitgen (Xilinx’s configuration file 

generation tool) [27].  

The selection of the design tools used in the final stage of the UML-to-FPGA 

conversion process was based solely on the availability of the hardware development 

boards from a particular vendor.  At various points during development of this tool, 

access was limited to either a Xilinx development board or an Altera development board, 

but not both.  Consequently, the tool evolved to support design flows for both vendors. 
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Chapter 4 

DESIGN IMPLEMENTATION 

 

The previous chapter presented a high-level overview of the operation of the UML-

to-FPGA tool, as well as a list of the tools used for its implementation.  Now, we follow 

with a detailed, stage-by-stage description of the design methodologies and specifics of 

implementation used to create the final tool. 

   

4.1 Stage 1 – UML Design Capture and XMI Export 

The function of the first conversion stage in the UML-to-FPGA tool is to export a 

graphical system design description, formatted using constructs and rules defined by the 

UML standard, to an XML-based textual format so that the design may be processed 

correctly in subsequent stages of the conversion.  While Rational Rose is responsible for 

the actual exporting process, it is important that the design is captured in the correct 

format using the proper conventions to produce an XMI output file that will yield a 

realized circuit at the end of the conversion process.  This section will describe the UML 

conventions for valid UML-to-FPGA design capture, as well as the implementation 

instructions for the XMI export process. 

For the purposes of this Thesis, we will assume that we are dealing with a sequential 

design, requiring both datapath and controller elements.  Each of these elements will 
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be defined using a different diagram type from among the many defined by the UML 

standard.  The description of datapath elements and interconnectivity is captured using a 

UML Component Diagram.  The controller description, in the form of a state machine, is 

captured with a UML Statechart Diagram.  The following paragraphs will first address 

datapath capture then controller state diagram capture.  For the purposes of clarity in this 

section, complete names of the design elements defined for the UML-to-FPGA tool will 

be CAPITALIZED.  Standard UML elements will be shown in “quotes” with the first 

letter capitalized. 

 

4.1.1 Datapath Design Capture Conventions 

Rational Rose supports the UML Component Diagram under the “Component View” 

section of a defined UML model.  Each datapath component in the design, which will 

eventually be converted into a Verilog module instantiated in the top-level design, is 

defined using a UML “Component” element.  The naming of each such COMPONENT is 

critical, as the name will be used to produce the correct HDL source code for the desired 

design module during later conversion stages.   

Interconnectivity between design components in the datapath is captured using UML 

“Dependency” elements, with the DEPENDENCY arrow pointing in the direction of data 

flow, which henceforth shall be referred to as “downstream”.  Since Rational Rose UML 

does not support definition of uniquely named “Dependencies” from a single 

“Component” to multiple downstream “Components”, as would be required with any 

multi-port datapath module, each main COMPONENT in the captured design must be 
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accompanied by PORT subcomponents.  A PORT is also defined using a UML 

“Component” element and is named using the following convention:  

“PORT.componentname.portname[widthdescription=value]”, where componentname is 

the parent COMPONENT, portname is the name for the module I/O port being described, 

and widthdescription is one of several keywords used to define the width (in bits) of the 

PORT.  These keywords for width description will be discussed later in this section.  The 

names for PORTs with a width of one bit should omit the “[widthdescription=value]” 

portion of the name.  Each PORT is associated with its parent COMPONENT using 

unnamed DEPENDENCY elements.  These DEPENDENCY elements flow from PORT 

to parent COMPONENT element when specifying an input to a design element and from 

parent COMPONENT to PORT element when specifying an output from a design 

element.  Interconnecting nets between COMPONENTs must be routed to these PORT 

elements, and not to the COMPONENT itself.  An example of a fully defined “dflipflop” 

COMPONENT element for UML-to-FPGA is shown in Figure 4.1, below: 

 

 

Figure 4.1:  A UML-to-FPGA COMPONENT 
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Special care must be taken when describing multiple instances of the same 

COMPONENT with the same datapath design.  Rational Rose will not export multiple 

copies of the same element correctly in XMI, so each COMPONENT must have a unique 

name.  The UML-to-FPGA convention is to use the proper name for the Verilog module, 

followed by the “#” symbol and a number.  For example, the second instance of 

“dflipflop” within a design would be named “dflipflop#2”.  The unique naming 

convention must also be applied to the componentname field included in the name of any 

PORT elements of the COMPONENT. 

UML-to-FPGA also supports dynamic port width definition for certain components.  

This feature will be discussed in detail in Section 4.3.3, but it should be noted here that 

each unique instance of a COMPONENT such as a flip-flop or multiplier may be defined 

with a different set of PORT widths.  This is true for defined design elements with 

functionality that is not dependent on a particular buswidth.  The names of the 

COMPONENTs must still be numbered to be unique, but the base name of the functional 

module does not have to be changed in such cases. 

Input and output ports for the top-level datapath design are also defined using UML 

“Component” elements.  A top-level design input element, or IN, is named using the 

following convention:  “IN:inputportname”.  A top-level design output element, or OUT, 

is named using a similar convention:  “OUT:outputportname”.  IN and OUT elements 

may be tied directly to the PORT elements of internal design COMPONENTs. 
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Connectivity between datapath design COMPONENTs is accomplished using 

uniquely named UML “Dependency” elements that will be known as NETs.  The arrow 

for each NET “Dependency” will point in the direction of data flow.  NETs are named 

using UML “Note” and “Anchor” elements.  The unique name should be included in the 

“Note” box and associated with a NET using an “Anchor” element, as shown in Figure 

4.2.  It should be noted that all NETs must have a name and that net widths are not 

included in the NET name.  NETs connecting IN or OUT elements to internal PORT 

elements assume the name of the top-level I/O port and should not be named using a 

UML “Note”.   

 

 

Figure 4.2:  UML-to-FPGA NET Naming 

 

Buswidth information for NET, IN, and OUT elements is defined in a separate UML 

“Note” element known as a DATARANGE element.  An example is shown in Figure 4.3.  

The element contains text, starting with the word “DATARANGE” followed by a colon 

and then a listing of buswidths for NETs in the design, separated by semicolons.  Each 

buswidth definition should be of the form: “netname.widthdescription=value”.  Any NET 
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with a name not included in the DATARANGE element is assumed to have a width of 

one bit.  A DATARANGE element is also utilized in the Statechart Diagram used for 

Controller design capture. 

 

 

Figure 4.3:  A UML-to-FPGA DATARANGE Element 

 

Ideally, high-level design descriptions such as those intended for use with the UML-

to-FPGA tool would not require such explicit parameter definitions.  However, it can be 

assumed that the information contained within the DATARANGE element might be 

imported and/or derived from other UML models within the system design, particularly 

those used to define system requirements.  In an effort to demonstrate some of the 

requirement interpretation “intelligence” that is built into the UML-to-FPGA tool, three 

keywords have been defined to describe the width of busses within the design.  First, we 

define the explicit width definition keyword, “width”.  A NET or PORT with the width 

description “width=X” will have a buswidth of X bits in the implemented design.  This 

description method would typically be used to describe widths of fixed or standardized 

values, like those of a processor databus.  Second, we define the maximum value 

definition keyword, “max”.  A NET or PORT with the width description “max=X” will 

have a buswidth of CEIL[log2X] bits in the implemented design.  This keyword might be 
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used to specify a maximum required counter value or the numeric limit of some stored 

value, without having to explicitly define the required number of bits.  The third keyword 

is “list”, where the width description “list={value1,value2,…}” enumerates the name of 

each possible value for the bus.  The buswidth in this case would be equal to 

CEIL[log2(number of distinct values separated by commas within the braces)].  The “list” 

keyword is useful when values or states for a specific NET, IN, or OUT element are 

specifically named, rather than numbered. 

 

4.1.2 Controller Design Capture Conventions 

Conventions for design capture of controller elements in the UML-to-FPGA tool 

were actually defined as part of prior research done to create a tool for automatically 

generating synthesizable controller code, as well as design verification assertions, in 

SystemVerilog [23].  Since UML-to-FPGA focuses only on creating synthesizable 

Verilog, the tool makes use of the subset of these UML capture conventions relating to 

the creation of synthesizable HDL.  These conventions are described below. 

Rational Rose supports the UML Statechart Diagram under the “Logical View – 

State/Activity Model” section of a defined UML project model.  UML-to-FPGA defines 

its sequential controller modules in terms of state machines, so the basic element of UML 

controller design capture is the UML “State” element.  Each STATE in the controller 

design must be given a unique name.  Figure 4.4 shows a typical STATE element used by 

the UML-to-FPGA tool. 
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Figure 4.4:  A UML-to-FPGA STATE Element 

 

 

Figure 4.5:  State Specification Dialog Box 

 

Behaviors of control signals dictated within any state are known as state ACTIONs 

and are listed in the text contained within a STATE element.  The ACTIONs can be 

defined as behavior “on entry” to the STATE or as behavior “done during” the STATE.  

While this distinction is ignored by the tool, the semantics of this definition may be 

important for clarity from the perspective of the designer.  ACTIONs are defined using 

the “Actions” tab of the Rational Rose “State Specification” dialog box, shown in Figure 
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4.5.  It should be noted that UML-to-FPGA only supports the creation of Moore machine 

controllers. 

 

 

Figure 4.6:  Action Specification Dialog Box 

 

Inserting a new ACTION brings up an “Action Specification” dialog box, as shown in 

Figure 4.6, where the type, signals, values, and target of the ACTION are defined.  The 

“When:” input parameter selects between “Do” and “On Entry” ACTIONs.  The “Type:” 

parameter must always be “Send Event”.  The ACTION “Name:” is the name of the 

control signal to which the ACTION applies.  This name must correspond to the name of 

an output PORT of the controller COMPONENT defined in the datapath design in order 

for proper connectivity to be maintained.  The “Send arguments:” parameter lists the 

value at which the control signal will be set during the current STATE.  The signal value 
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is typically defined using one of the elements from a list of possible control signal values 

present in the controller model’s DATARANGE element.  Finally, the “Send target:” 

parameter is used to declare the target COMPONENT for the control signal. 

Transitions between states are defined using UML “State Transition” elements.  

Arrows for these elements point in the direction of control flow, and the flow can be 

defined as conditional or unconditional.  An unconditional TRANSITION is defined 

using an unnamed “State Transition” element, indicating that the STATE from which the 

TRANSITION flows is active for only one clock cycle.  Conditional TRANSITIONs are 

named using the condition required for state transition.  Sample TRANSITION names 

might be “roadSensor=Cleared”, “timeout”, or “roadSensor(@timeOut)=Triggered”.  In 

the first example, we see a condition where a specific controller input (which must 

correspond to an input PORT on the controller COMPONENT) is tested against a value 

defined in the DATARANGE element.  In the second example, the transition will occur if 

the defined input signal is logically “true” or “active”.  In the third example, a transition 

occurs when the first signal condition is true (roadSensor=Triggered) at the same time as 

the second condition (timeOut) is active.  This transition condition represents a logical 

AND.  A transition that can be defined as a logical OR is represented using two separate 

TRANSITION arrows flowing to the next STATE.  Multiple TRANSITION elements 

may also be present if different input behavior determines transitions to different 

STATEs.  Figure 4.7 shows an example of a state machine using some of the state 

transition types described above. 
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Figure 4.7:  UML-to-FPGA State Chart with Transitions 

 

The state to be entered upon initialization of the machine is defined in two ways.  

First a UML “Start State” element is inserted with an unconditional TRANSITION 

pointing to the default STATE, as shown in Figure 4.7.  The second required method is to 
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create a UML “Note” element including the text “INITIALSTATE:” followed by the 

name of the appropriate default STATE. 

The UML-to-FPGA tool supports one-hot state encoding, but in order to support 

future functionality expansion, the state encoding method must also be defined in the 

controller model.  This is done using an UML “Note” element including the text 

“CODINGSTYLE:onehot”.  Encoding style names such as “binary” or “graycode” would 

theoretically replace “onehot” in the element text. 

As mentioned in the previous section, a DATARANGE element is included in the 

controller description model.  Formatting for this element follows the rules described in 

Section 4.1.1.  The DATARANGE element provides for signal value enumeration for 

ACTION definition, as well as for PORT width definition for the controller module. 

 

4.1.3 Exporting XMI 

Once design capture is complete for both the datapath and controller elements of the 

design, the conversion process can begin.  The Rational Rose “UML 1.3 Export” Add-In 

is used to convert the completed UML model to a text file using the XML Metadata 

Interchange (XMI) format.  One of the primary reasons for the development of the XMI 

schema was to define a format for representing the structure of a UML model using XML 

tags [9].   
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Figure 4.8:  Excerpt from an XMI File 

 

However, differences in the internal structure of the various UML software packages 

that support XMI export prevent a completely rigid formatting standard.  Consequently, 

XMI generated from a UML model captured in Rational Rose may not have the same 

structure as XMI generated by Rhapsody.  In order to support multiple UML input tools 

in the future, UML-to-FPGA would need to use different rules to process different XMI 

formats.  XMI also utilizes an extremely verbose set of tag elements and structures and 

possibly includes information about diagrams, views, and parameters that are not 

necessary for design synthesis (Figure 4.8 shows an example excerpt from an XMI file).  

For these reasons, it is convenient to have a two-stage XSLT process for translating the 
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XMI design model to Verilog HDL.  The first of these two stages is described in the 

following section. 

 

4.2 Stage 2 – XMI-to-DAXML Transform 

The second conversion stage of the UML-to-FPGA tool uses XSLT to process the 

XMI-formatted model of the design in order to produce a trimmed down XML model 

containing only the essential design information needed for Verilog HDL synthesis.  

Splitting the XML translation process into two steps allows much simpler 

transformations to be used in each step by separating the task of parsing the verbose XMI 

structure from that of generating Verilog HDL.  The intermediary XML schema is 

adapted from an existing schema known as State Chart XML (SCXML).  Developed by 

the Voice Browser Working Group, SCXML was designed to provide a generic state-

machine-based notation for use in an XML processing environment [28].  Additions to 

the state-machine notation were made to add support for describing datapath structures 

and connectivity within the same schema.  The modified schema used by the UML-to-

FPGA tool is called Design Automation XML (DAXML).  This section describes the 

basic elements of the DAXML schema, followed by a detailed discussion of the XSLT 

conversion process used in this stage of the UML-to-FPGA tool.  The complete XSLT 

Rules file for the Stage 2 transform can be found in Appendix B. 
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4.2.1 The DAXML Schema 

The main structural tag for the Design Automation XML schema is <daxml>.  All 

other design description elements used by this schema are children of this master 

element.  The <daxml> parent element has four types of child elements:  <Model>, 

<comments>, <state>, and <components>.  This section will discuss the contents 

and structure of each of these child elements. 

Each design contains a single <Model> element.  The <Model> element has no 

children and contains no value.  Instead it possesses a single attribute called “name”.  The 

“name” attribute stores the name of what will become the top-level design module. 

The <comments> element is defined to contain three child elements: 

<CODINGSTYLE>, <INITIALSTATE>, and <DATARANGE>.  The first two of these 

child elements, <CODINGSTYLE> and <INITIALSTATE>, have no children and 

contain the values for the state encoding style parameter and the initial state name, 

respectively.  The <DATARANGE> element has a child element called 

<comments.DATARANGE> for each set of unique parameters originally defined in the 

DATARANGE box of the UML controller model.  Each such element has a “name” and 

“maxvalue” attribute corresponding to a controller I/O port.  If names are listed for the 

values the I/O port can assume, these are included in an attribute called “list”.  Figure 4.9 

shows an example of a complete <comments> element. 
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Figure 4.9:  DAXML <comments> Structure 

 

Within the DAXML schema, there is a <state> element for each defined controller 

state.  The <state> element has an attribute “id” that contains the name of the state.  

There are three defined child elements: <transition>, <assign>, and 

<onentry>.  Each defined state transition produces a <transition> element that 

contains, at a minimum, an “event” attribute containing the name of the signal upon 

which the transition depends.  The optional attribute “value” is included if the signal 

value that triggers a transition is explicitly defined in the UML model.  If there is an 

additional condition required for the transition to take place, it is included in the attribute 

“cond”.  Each <transition> element has a single child element, <target>, which 

contains the attribute “next”.  The “next” attribute defines the state that will be active 

after the transition in question.  An <assign> element is produced for each “Do” action 

defined in the UML controller description for the current state.  An <assign> element 

has two attributes, “name” and “expr” which define the control signal name and its 

assigned value, respectively.  Each “On Entry” action defined in the UML state 

description is included as an <assign> element.  However, these “On Entry” 
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<assign> elements are included as children of the <onentry> element.  Figure 4.10 

shows an example of a complete <state> element. 

 

 

Figure 4.10:  DAXML <state> Element 

 

The datapath description of the design is almost entirely contained within the 

<components> element of the DAXML schema.  There are three types of child 

elements within the <components> element:  <ports>, <wires>, and 

<component>.  The <ports> element describes the top-level I/O ports in the design 

and contains <inputs> and <outputs> child elements.  The <inputs> element 

contains an <input> element for each top-level input port in the design.  Similarly, the 

<outputs> element contains an <output> element for each top-level output port.  

Within the <wires> element, there is a <wire> element for each unique internal net 

defined in the UML datapath model.  Buswidths for the ports and nets defined in 

<input>, <output>, or <wire> elements are included as part of the name of the port 

or net.  Figure 4.11 shows examples of complete <ports> and <wires> elements in a 

DAXML file.   
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Figure 4.11:  DAXML <ports> and <wires> Example 

 

Finally, the <components> element contains a <component> child element for 

each datapath module defined in the UML model.  Each <component> element has an 

attribute “module” that contains the name of the component being defined, as well as two 

child elements, <inputs> and <outputs>.  The <inputs> element contains an 

<input> element for each module input port, and the <outputs> element contains an 

<output> element for each module output port.  Each <input> or <output> 

element contains at least one attribute.  The “port” attribute contains the port name of the 

parent <input> or <output> element.  Additionally, if the defined port has a 
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buswidth greater than one bit, the element contains either a “width” attribute or a 

“maxval” attribute that describes this buswidth.  The value defined within an <input> 

or <output> element is the name of the internal net that is connected to the port being 

described.  Figure 4.12 shows an example of a <component> element in a DAXML 

file.   

 

 

Figure 4.12:  DAXML <component> Example 

 

4.2.2 Controller Processing 

The first portion of the XSLT conversion from XMI to DAXML addresses the 

creation of the DAXML <Model> element, followed by the controller-related DAXML 

elements <comments> and <state>.  Table 4.1 lists DAXML controller-related 

elements and their respective XPath paths within the XMI input file. 

 The transformation uses XPath to find the top-level module name within the XMI 

input file and define the “name” attribute for the <Model> element.  Information used 

for the children of the DAXML <comments> element is found using the paths from 

Table 4.1.  XSLT <xsl:if> statements are used to determine if the matched text 
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contains the text “CODINGSTYLE”, “INITIALSTATE”, or “DATARANGE” in order to 

create the correct DAXML element in the output file.  Information found for the 

<comments.DATARANGE> elements must be tokenized based on the “;” character, and 

processed individually using the <xsl:for-each> loops. 

 

Table 4.1:  XMI Paths to DAXML Controller Elements 

Element XMI Path 
<Model> /XMI/XMI.content/UML:Model/@name 

<comments> 

/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML: 
Comment/@name 
and 
/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML: 
Comment/UML:ModelElement.name 

<state> 
/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML:State
Machine/UML:StateMachine.top/UML:CompositeState/UML:CompositeState. 
subvertex/UML:SimpleState/ 

<transition> /XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML:State
Machine/UML:StateMachine.transitions/UML:Transition/ 

@event /XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Signal
Event/ 

<onentry> 

/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML:State
Machine/UML:StateMachine.top/UML:CompositeState/UML:CompositeState. 
subvertex/UML:SimpleState/UML:State.entry/UML:ActionSequence/UML:Act
ionSequence.action/UML:SendAction/ 

<assign> 

/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/UML:State
Machine/UML:StateMachine.top/UML:CompositeState/UML:CompositeState. 
Subvertex/UML:SimpleState/UML:State.doActivity/UML:ActionSequence/UM
L:ActionSequence.action/UML:SendAction/ 

 

 

Each <state> element is found using an <xsl:for-each> loop along with the 

path listed in Table 4.1.  Within each iteration of this loop, the XSLT process first 

identifies all outgoing state transitions for the current state by examining the “outgoing” 

attribute of the <UML:SimpleState> element.  Transitions are defined in this 
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attribute using the numeric ID assigned by the Rational Rose XMI Export tool.  

Information specific to an individual state transition is stored elsewhere in the XMI tree 

structure, so the XSLT process must initiate a search along a different path to find the 

matching transition ID value.   

Once a matching ID value is found, the “target” attribute of the matching element 

identifies the XMI ID value for the target, or next, state.  In order to find the actual name 

of the target state to fully define the <target> child of the <transition> element, 

the XSLT process loops through all the XMI state elements to find the matching XMI ID.  

Similarly, the “target” attribute of the current transition identifies the XMI ID value for 

the signal upon which the transition is based.  The XSLT process must search through all 

the XMI signal events to find the matching ID, which will lead to the definition of the 

applicable “event”, “value”, and “cond” attributes for each DAXML <transition> 

element. 

Finally, the output control signals defined in the DAXML <onentry> and 

<assign> elements are found using the appropriate XMI paths shown in Table 4.1.  

The XSLT process loops through each matching instance of this path in order to create 

these DAXML elements.  Values of “name” and “expr” attributes for each <assign> 

element are defined in sub-trees of the currently matched path, so no additional loops to 

search for matching ID values are needed.  Once all <assign> elements are generated 

for a given state, the current <state> element is fully defined, and the transformation 

repeats the process for the next unique state defined in the input XMI file. 
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4.2.3 Datapath Processing 

There are three XMI elements that are used by the UML-to-FPGA tool to create the 

DAXML datapath elements described in Section 4.2.1.  For the purposes of describing 

the Stage 2 datapath transformation process, these XMI elements, <UML:Component>, 

<UML:Dependency>, and <UML:Comment>, will be referred to as “components”, 

“dependencies”, and “nets”, respectively.  The XMI paths for these elements are listed in 

Table 4.2.  Each of these XMI datapath elements contains XML attributes that are 

necessary for constructing the datapath portion of the DAXML model.  The applicable 

attributes for each element are discussed in the following paragraphs. 

 

Table 4.2:  XMI Paths to DAXML Datapath Elements 

DAXML Construct XMI Path 
component /XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/ 

UML:Subsystem/UML:Namespace.ownedElement/UML:Component/ 

dependency /XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/ 
UML:Subsystem/UML:Namespace.ownedElement/UML:Dependency/ 

net /XMI/XMI.content/UML:Model/UML:Namespace.ownedElement/ 
UML:Subsystem/UML:Namespace.ownedElement/UML:Comment/ 

 

 

Each XMI “component” element is assigned a unique alphanumeric XMI ID by the 

Rational Rose XMI Exporting process that is stored in the attribute “xmi.id” and that 

starts with the letter “S”.  The designer-assigned name of the “component” element is 

stored in the “name” attribute.  The XMI IDs for all incoming “dependency” elements are 

listed in the attribute “supplierDependency”, separated by spaces.  Similarly, XMI IDs 

for all outgoing “dependency” elements are listed in the attribute “clientDependency”, 
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separated by spaces.  An example of an XMI “component” element is shown in Figure 

4.13.  It should be noted that there are four varieties of “component” elements found in 

the XMI input file:  component modules, component ports (containing the text “PORT:” 

in the name), top-level input ports (containing the text “IN:” in the name), and top-level 

output ports (containing the text “OUT:” in the name). 

 

 

Figure 4.13:  XMI "Component" Element 

 

XMI “dependency” elements are assigned XMI IDs beginning with “G” and are 

stored in the “xmi.id” attribute.  These elements are not assigned a name, but contain 

critical connectivity information in the attributes “client” and “supplier”.  The “client” 

attribute stores the XMI ID of the upstream “component” element, and the “supplier” 

attribute stores the XMI ID of the downstream “component” element.  An example of a 

“dependency” element is shown in Figure 4.14. 

 

 

Figure 4.14:  XMI "Dependency" Element 
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XMI “net” elements are assigned XMI IDs beginning with “XX” and are typically 

used to store the names of the nets that connect internal datapath modules.  The actual net 

name is stored in the “name” attribute.  The XMI ID of the corresponding “dependency” 

element is stored in the “annotatedElement” attribute.  An example of a “net” element is 

shown Figure 4.15. 

 

 

Figure 4.15:  XMI "Net" Element 

 

The UML-to-FPGA tool begins DAXML datapath generation by defining the top-

level input and output ports.  The XSLT process loops through each XMI “component” 

element, searching for the text “IN:”.  On any such matches, a DAXML <input> 

element is created using the “name” attribute of the “component” element.  The transform 

then finds the XMI <UML:Comment> element containing the text “DATARANGE:”, 

and tries to match the port name against the width information stored in the 

DATARANGE element.  If a match is found, the buswidth is calculated based on the 

keyword associated with the port.  If the keyword is “width”, then the text “[buswidth:0]” 

is appended to the port name in the <input> element, where buswidth is equal to one 

less than the value specified in the DATARANGE information.  If the keyword 

associated with the port name in the DATARANGE block is “max”, then the value for 

buswidth is determined using a base-2 logarithm to calculate the maximum number of 
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bits required for the port, and “[buswidth:0]” is appended to the port name in the 

DAXML element.  If the port name is not listed in the DATARANGE block, the 

buswidth is assumed to be one bit, and no information is appended.  Once this process is 

completed for all input ports, it is repeated for all XMI “component” elements containing 

the text “OUT:” in order to generate DAXML <output> elements. 

The XSLT process next generates the <wires> element for the DAXML datapath 

description by looping through every XMI “net” element and creating a DAXML 

<wire> element for each one using XMI “name” attribute.  In a process identical to that 

described for the top-level ports, the transformation searches through the datapath 

DATARANGE element to find buswidth information for the net name, calculates this 

buswidth if a match is found, and appends the appropriate information as described in the 

previous paragraph. 

The Stage 2 XSLT conversion continues with the generation of the DAXML 

<component> elements.  The transformation process must first search through all the 

XMI “component” elements to find the datapath modules (i.e. those without “IN:”, 

“OUT:”, or “PORT:” prefixes in the element “name” attribute).  For each datapath 

module, a DAXML <component> element is created, and the XSLT process must 

generate its “module” attribute.  Any “#” symbols and subsequent numbers are removed 

from the module name to simplify naming conventions, since unique datapath modules 

can now be identified by differences in their external connections. 

The XSLT process must next define the <inputs> child for each DAXML 

<component> element, which requires that both port and associated net names must be 
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found within the XMI input model.  The process begins at the XMI “component” 

element, and gradually works its way outward, as shown in Figure 4.16.  First, the XSLT 

process searches through all the XMI “dependency” elements to find any with a 

“supplier” attribute containing the XMI ID of the current “component” element (Figure 

4.16, Step 1).  For each match, the transform generates a DAXML <input> element 

and enters a new recursive search stage using the current “dependency” element. 

@xmi.id=’S.111’

@xmi.id=’G.789’

@supplier=’S.111’@client=’S.222’
@clientDependency

=’G.789’
@supplierDependency

=’G.987’

@xmi.id=’S.222’
@name=’PORT:xxxxx’

@clientDependency
=’G.987’

@xmi.id=’S.333’
@name=’PORT:yyyyy’

@xmi.id=’G.987’

@supplier=’S.222’ @client=’S.333’

1

2

3

4

@xmi.id=’XX.123’
@name=’zzzzz’

@annotatedElement=’G.987’

5

@name=’wwww’

@supplierDependency
=’G.789’

 

Figure 4.16:  DAXML <input> Creation Process 

 

The current “dependency” reflects the association between a design module and its 

port component.  Using the XMI ID of this “dependency”, the XSLT transform searches 
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through the XMI “component” elements until it finds a matching ID listed in an 

element’s “clientDependency” attribute (Figure 4.16, Step 2).  This match links the port 

“component” with the current module “component”.  The XSLT process extracts the port 

name and width information from the “name” attribute of the port “component” and uses 

it to create “port” and “width” (or “maxval”) attributes for the current DAXML 

<input> element. 

The final piece of information needed for an <input> element is the name of the 

internal net connected to the module port.  The transformation process once again 

searches through all XMI “dependency” elements to find an XMI ID that matches the 

value contained in the “supplierDependency” attribute of the current port “component” 

(Figure 4.16, Step 3).  The “client” attribute of the matching XMI “dependency” element 

is used to determine the source element for the connecting net.  The value stored in the 

“client” attribute is compared against XMI IDs of all “component” elements (Figure 4.16, 

Step 4).  If the matching “component” is a top-level input port, its “name” attribute is 

parsed to determine the net name assigned to be the value contained in the DAXML 

<input> element.  If the matching “component” is the port of another design module, 

then the net name must be found in an XMI “net” element.  The XSLT process must 

search through the “annotatedElement” attributes of all “net” elements to find an XMI ID 

that matches that of the current net “dependency” (Figure 4.16, Step 5).  The “name” 

attribute for the  matching “net” element is then used to supply the value for the current 

DAXML <input> element. 
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Once all the child <input> elements of the DAXML <inputs> element are 

defined, the XSLT process executes a similar operation to define the <outputs> child 

of the DAXML <component> element.  Again, the process works its way outward 

from the XMI “component” element, as shown in Figure 4.17.  It starts by searching 

through all the XMI “dependency” elements to find any with “client” attributes that 

match the XMI ID of the “component” (Figure 4.17, Step 1).  A DAXML <output> 

element is created for each match, and a new recursive search stage begins using the 

current “dependency” element. 

@xmi.id=’S.111’

@xmi.id=’G.789’

@client=’S.111’ @supplier=’S.222’
@clientDependency

=’G.987’
@supplierDependency

=’G.789’

@xmi.id=’S.222’
@name=’PORT:xxxxx’

@supplierDependency
=’G.987’

@xmi.id=’S.333’
@name=’PORT:yyyyy’

@xmi.id=’G.987’

@client=’S.222’@supplier=’S.333’

1

2

3

4

@xmi.id=’XX.123’
@name=’zzzzz’

@annotatedElement=’G.987’

5

@name=’wwww’

@clientDependency
=’G.789’

 

Figure 4.17:  DAXML <output> Creation Process 
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The XSLT transform searches through all “component” elements, trying to find a 

“supplierDependency” attribute that matches the XMI ID of the current “dependency” 

element (Figure 4.17, Step 2).  When a match is found, the “component” is linked to one 

of its output ports.  The XSLT process extracts the port name and width information from 

the “name” attribute of the port “component” and uses it to create “port” and “width” (or 

“maxval”) attributes for the current DAXML <output> element. 

For the value of the <output> element, the transformation process must search 

through all the XMI “dependency” elements to find an XMI ID that matches one of the 

values contained in the “clientDependency” attribute of the current port “component” 

(Figure 4.17, Step 3).  The “supplier” attribute of the matching XMI “dependency” 

element is used to find a destination element for the connecting net.  The XMI ID stored 

in this attribute is compared to the XMI IDs of all “component” elements in the XMI 

model (Figure 4.17, Step 4).  If the matching “component” is a top-level output port, its 

“name” attribute is parsed to find the net name to be assigned to the value of the current 

DAXML <output> element.  If the matching “component” is the port of another 

internal module, then the net name must be found in an XMI “net” element, and the 

XSLT process must search for an “annotatedElement” attribute of a “net” element that 

contains the XMI ID of the current net “dependency” (Figure 4.17, Step 5).  The “name” 

attribute of the matching “net” element is then used to supply the value stored in the 

DAXML <output> element.  When all <output> elements have been defined, the 

creation of the current DAXML <component> element is complete.  The XSLT 

process continues to the next XMI module “component” element until there are none left 
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to be transformed.  When all <component> elements have been created, the DAXML 

model is complete, and Stage 2 of the UML-to-FPGA tool ends. 

 

4.3 Stage 3 – DAXML-to-Verilog Transform 

The third stage of the UML-to-FPGA tool uses XSLT to process the newly created 

DAXML model of the design in order to produce a Verilog HDL model of the original 

UML design.  XSLT <xsl:text> elements are used to generate any constant text 

values, such as Verilog keywords, semicolons, and values common to all generated 

designs.  The XSLT process in Stage 3 generates a single output file, called “output.v”, 

containing Verilog modules for each component defined in the original UML model.  

However, only the top-level and controller modules are complete at this point in the 

stage.  The datapath Verilog modules generated by the Stage 3 XSLT are “black boxes” 

with only external ports defined.  The UML-to-FPGA tool uses Perl processing 

subroutines to retrieve Verilog source code for each of these “black boxes”, insert the 

source code at the proper locations, and generate separate Verilog files for each unique 

functional module in the design.  This section describes the XSLT conversion process for 

the datapath and controller elements and gives an overview of the Perl processing 

subroutines that complete the Verilog HDL source code generation.  The complete XSLT 

Rules file for the Stage 3 transform can be found in Appendix C. 
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4.3.1 Datapath Verilog Generation 

The XSLT conversion from DAXML to Verilog begins with the creation of the top-

level Verilog module.  The “name” attribute of the DAXML <Model> element is used 

as the name of the top-level module.  Verilog requires that all module I/O ports be 

included in parentheses as part of the module declaration, so the XSLT process loops 

through all child elements from the “/daxml/components/ports/inputs” and 

“/daxml/components/ports/outputs” paths, and inserts the values it finds into the Verilog 

module declaration.  It should be noted that all buswidth information is removed from the 

port names before insertion in the module declaration. 

The Verilog top-level port definitions follow the module declaration.  The XSLT 

process loops through the same two paths used in the module declaration, inserting the 

appropriate keyword (“input” or “output”) and rearranging the buswidth and port name 

information to conform to Verilog syntax rules. 

Internal nets are listed next by looping through each child element from the 

“/daxml/components/wires” path.  Values from the DAXML <wire> elements are 

extracted, and the net names and width information are rearranged in the proper Verilog 

syntax along with the keyword “wire”.  Once the internal nets are defined, internal 

functional module instantiations are made. 

Modules are extracted by looping through all the <component> elements from the 

“/daxml/components” path.  The module instances are sorted alphabetically, and each is 

assigned a unique reference designator of the form “uX” when it is processed, where X is 

a unique numerical identifier.  Module instantiations in Verilog must include the module 
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name, the instance name, and port mapping information for each module I/O port.  The 

module name is extracted from the “module” attribute of each DAXML <component>.  

The instance name is created by appending the module name to the reference designator 

in the form “uX_modulename”.  Port mapping assignments are made by looping through 

each <input> and <output> element defined under the DAXML paths 

“/daxml/components/component/inputs” and “/daxml/components/component/outputs”, 

respectively.  Verilog port mapping declarations follow the format “.portname 

(netname)”, where portname is extracted from the “port” attribute of the element and 

netname is extracted from the value of the element.  This instantiation process is repeated 

for each <component> element in the DAXML input file. 

The top-level Verilog module is complete when all modules have been instantiated.  

The XSLT process closes the top-level module with the keyword “endmodule”, and 

generates a separator line to help with later parsing operations.  The next step for the 

Stage 3 transform is to generate “black box” Verilog modules for the individual 

component instances in the design.  The XSLT process once again loops through the 

DAXML <component> elements, generating a new “black box” module for each 

datapath module.  It should be noted that the “controller” module is ignored during this 

process. 

The first line for each datapath module is a commented line that lists the instance 

reference designator (derived using the same process as described above).  The module 

declaration uses the Verilog keyword “module” followed by the module name found in 

the “module” attribute of the <component> element.  The I/O ports are defined by 
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looping through the <input> and <output> elements within the <component> 

element and extracting the value of the “port” attribute from each.  The same loop is 

repeated to extract the port names for the module port declarations.  In addition to 

extracting the port name from the “port” attribute of the <input> or <output> 

element, the port width is extracted from either the “width” or “maxval” attribute.  If 

either attribute is present, the text “[buswidth:0]” is used in the port declaration.  If a 

“width” attribute is present,  buswidth is equal to one less than the value specified by the 

attribute value.  If a “maxval” attribute is present, buswidth is calculated by using a base-

2 logarithm to determine the maximum number of bits required to represent the value 

stored in the attribute and then subtracting one.  If neither “width” nor “maxval” 

attributes exist for the element, the buswidth is assumed to be one bit, and no information 

beyond the port name is required for the port declaration.  The Verilog keyword 

“endmodule” is appended after all input and output ports have been declared, and the 

Verilog “black box” is complete.  A sample “black box” module is shown in Figure 4.18.  

When all individual datapath “black boxes” have been created, the transformation begins 

generation of Verilog source code for the controller module. 

 

 

Figure 4.18:  Verilog Module "Black Box" 
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4.3.2 Controller Verilog Generation 

Controller module Verilog source code generation begins with constant declarations 

rather than the module declaration.  The Verilog constant declaration syntax is shown in 

Figure 4.19.  This process begins by encoding the state variables used by the controller 

state machine.  The XSLT process counts the number of unique <state> elements that 

exist in the DAXML model.  Because the UML-to-FPGA tool only supports “one-hot” 

encoding, each state variable is assigned the number of bits equivalent to the number of 

states in the state machine.  Verilog constant definitions also include any values 

contained in the “list” attribute of <comments.DATARANGE> elements in the DAXML 

model.  The values in each “list” are separated and individually written to the Verilog 

module, where each is assigned a constant numeric value.  Value numbering begins at 

“0” for each unique “list” attribute found during the XSLT process. 

 

 

Figure 4.19:  Verilog Constant Declarations 
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The XSLT process continues by creating the Verilog controller module declaration.  

This particular module is always named “controller”.  Names of the controller module 

ports are derived from the DAXML model in a manner slightly different from their 

datapath counterparts.  Input ports are defined using the “event” attribute of 

<transition> elements found within each DAXML <state> element.  Recall that 

the “event” attribute is used to define signals that affect state transitions in the controller 

and that such signals serve as inputs to the controller module.  The XSLT process lists in 

the module declaration the value of each unique, non-empty “event” attribute.  Output 

ports are defined using the unique “name” attributes of <assign> elements found as 

children of either <state> or <onentry> DAXML elements.  These “name” 

attributes define signals set by the controller and thus represent the output ports of the 

module.  The module declaration is completed by adding two more input ports present in 

any synchronous sequential controller design, “clk” and “reset”. 

The XSLT process continues by processing the port declarations for the module.  The 

“clk” and “reset” ports are automatically defined as inputs, followed by each unique 

value found among the “event” attributes of <transition> elements in the DAXML 

model.  As described in the previous paragraph, output ports are defined in the “name” 

attributes of DAXML <assign> elements.  The XSLT process also tries to match each 

output port name to a “name” attribute from a DAXML <comments.DATARANGE> 

element.  If a match is found, the “maxValue” attribute from this element is used to 

calculate the number of bits needed to represent all possible values for the output signal, 

and the information is included in the port declaration to define its buswidth.  Since all 
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controller output signals will be assigned using Verilog sequential “always” blocks, each 

signal is also declared as a Verilog signal entity of type “reg”. 

 

 

Figure 4.20:  Verilog Controller State Transition Block 

 

Internal state variables “pstate” and “nstate” are defined as “reg” signals with widths 

equal to the length of the constant state encoding values defined at the beginning of the 

controller module.  Next, the XSLT process generates the sequential “always” block that 

governs state transitions.  The format for this block is shown in Figure 4.20, with “####” 

representing the value found in the DAXML <INITIALSTATE> element. 

Finally, the XSLT process creates the sequential “always” block that governs state 

behavior.  The Verilog sensitivity list for the block contains controller inputs (except for 

“clk” and “reset”) and the internal “pstate” signal.  The block is built to contain one large 

Verilog “case” statement based on the value of “pstate”.  The conversion process loops 

through each <state> element defined in the DAXML model and defines a unique case 

for each controller state.  A sample state definition is shown in Figure 4.21. 
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Figure 4.21:  Verilog Controller State Behavior Definition 

 

For each <state> element, the XSLT process first uses the “id” attribute to provide 

the name of the state.  Next, any <onentry> or <assign> elements are found, and the 

“name” and “expr” attributes are used to generate the control signal assignments for the 

current state. Lastly, DAXML <transition> elements are used to define the next 

state for the controller.  If the <transition> element has an empty “event” attribute, 

then the next state is defined using the value found in the “next” attribute of the 

<target> element for the current transition.  If the “event” attribute is non-empty, then 

the “event”, “value”, and “cond” attributes are used to generate a Verilog “if” statement 

of the form “if(event == `value && (cond))”.  The “nstate” signal is assigned the value of 

the “next” attribute of the transition’s <target> element.  In the “else” branch, the 

“nstate” signal is assigned the value of the current controller state, so that the state 

machine will remain in the current state until the transition condition is true.  In the case 

in which a <state> element contains more than one <transition> child element, 

the XSLT process will generate an “if” statement for the first transition, and an “else if” 
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statement for any subsequent transitions, using the format for the conditional statements 

shown above.  Once again, the “else” branch assigns to “nstate” the value of the current 

state.  When all controller states have been defined in Verilog, the XSLT process closes 

the case structure with the keyword “endcase” and then closes the entire controller 

module with the keyword “endmodule”.  This concludes the XSLT portion of the UML-

to-FPGA Stage 3 conversion. 

 

4.3.3 Module Parsing, Code Retrieval, and File Separation 

The XSLT conversion produces a single output file containing complete Verilog code 

for the top-level design and controller modules, along with Verilog “black boxes” for the 

other datapath modules in the design.  The final functions of the Stage 3 conversion 

process serve to remove duplicate module definitions, separate each module into its own 

Verilog source file, and fill in the “black box” modules with Verilog code from the 

source repository file.  This section will explain each of these functions in detail. 

First, a Perl subroutine “Process_Source” is executed to parse the XSLT output file, 

“output.v”, in order to find and remove any duplicate module definitions.  The subroutine 

reads through the entire “output.v” file and creates an array of data structures, each of 

which contains the reference designator, module name, input port list, and output port list 

for one of the modules in the file.  Each data structure also includes two additional 

parameters: “dup”, which indicates whether the module is a duplicate, and “var”, which 

represents the module variation number.  The “dup” parameter is initialized to 0, and the 

“var” parameter is initialized to 1. 
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Once these data structures are created, the Perl subroutine processes the data within 

them, one array element at a time.  As each array element is addressed, the subroutine 

searches the following the elements (i.e. those with greater array index values) for 

matching values.  If the module name, input port list, and output port list match the 

current element exactly, then the matching “dup” parameter for the matching array 

element (not the current element) is set to 1.  In future loop iterations, elements with 

“dup” set to 1 are ignored.  If the module name matches, but either the input or output 

port list varies (this variation should indicate a difference in port width), then the “var” 

parameter of the matching array element is incremented to be the next variation of the 

module.  When the “var” parameter is updated, the module name for the matching array 

element must also be updated.  If the “var” parameter is not equal to 1, then a double 

underscore (“__”) is appended to the module name, followed by the value of the “var” 

parameter. 

When the processing of each element of the data structure array is complete, all 

duplicates will have been found and all variations will have been identified.  The 

information in the data structure is then used to update the “output.v” file.  In the top-

level module, instantiations for modules with “var” parameters greater than 1 are updated 

with new module names, as defined in the processed data structure array.  The individual 

Verilog “black box” modules are also updated with information from the processed data 

structure array.  Duplicate “black box” modules are removed, and module names are 

updated for those modules with “var” parameters greater than 1. 
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Figure 4.22:  "Source.src" Verilog Source Code Entry 

 

When the “Process_Source” subroutine is finished, the UML-to-FPGA tool runs the 

“File_Sep” subroutine.  This subroutine processes the “output.v” file, creating a new 

Verilog file, “modulename.v”, for each module.  It also uses the base module name (with 

the variation information removed) to locate appropriate Verilog source code for the 

“black box” modules.  All datapath module source code should be stored in a single 

Verilog Source Repository file, “source.src”.  A sample entry in “source.src” is shown in 

Figure 4.22.  The “File_Sep” subroutine tries to match the current “black box” base 

module name with the text between the “====” symbols in the first line of the code 

entry.  If no match is found, an error message is generated.  When a match is found, the 

information between the “====modulename====” and “==============” lines is 

inserted after the port declarations and before the “endmodule” keyword in the “black 

box” module, creating a fully defined Verilog datapath module.  When all module source 
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code has been filled in and modules have been saved as individual source files, Stage 3 of 

the UML-to-FPGA tool is complete. 

As mentioned in previous sections, the UML-to-FPGA tool supports variable 

buswidth declarations.  Using special characters within “source.src”, the “File_Sep” 

subroutine can be forced to fill in Verilog information based on port definitions in the 

“black box” module it is currently processing.  These “variable” parameters are indicated 

in “source.src” with the text string “###define(widthtype):portname###”, where 

widthtype defines the method for calculating the inserted value and portname indicates 

which port of the current module should be used to retrieve the width information.  If the 

widthtype is “width”, then the buswidth value used in the port declaration is incremented 

by one to indicate the true width of the port (i.e. the bus width “[6:0]” implies a 7-bit 

port).  If widthtype is “buswidth”, then the value found in the declaration for the given 

port is used directly.  The entire text string between and including the “###” end markers 

is then replaced in the Verilog source code by the appropriate buswidth value. 

 

4.4 Stage 4 – Logic Synthesis 

Stage 4 of the of the UML-to-FPGA tool converts the Verilog HDL source code 

created in Stage 3 to a netlist of synthesized logic elements.  The logic synthesis process 

can be invoked in three different ways, depending on which off-the-shelf vendor tool is 

selected in the command to begin the UML-to-FPGA conversion process.  The third 

argument of the UML-to-FPGA command selects between the use of the Synplify Pro 

synthesis tool (“-syn”) or the synthesis tool provided by the chosen programmable logic 
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vendor (“-ven”).  Since the vendor-specific synthesis processes are integrated into the 

design software for the programmable logic vendor of choice, details regarding the usage 

of these synthesis tools will be incorporated into Section 4.5 of this document.  

Therefore, this section will address the usage and invocation of logic synthesis using 

Synplicity’s Synplify Pro tool. 

 The Synplify Pro tool is designed to be used primarily with its GUI, but it also 

supports batch processes from the command line using the Tcl scripting language.  To 

use the command line interface, all the information needed for logic synthesis must be 

included in a script file that defines parameters and execution guidelines for the Synplify 

tool.  The UML-to-FPGA Perl code automatically generates the file “modulename-

syn.tcl” for this purpose, where modulename is the name of the top-level design module 

defined in Verilog HDL. 

Included in “modulename-syn.tcl” are “set_option” arguments that define the 

technology family, part number, package type, and speed grade for the programmable 

logic device being targeted for the design, as well any necessary compilation parameters.  

In the current implementation, programmable logic device information is hard-coded on a 

per-vendor basis, since only one development board from each vendor was available for 

lab development.  In future versions of the UML-to-FPGA tool, this information would 

ideally be selected in real-time by the user.  Following the synthesis parameter directives, 

the Verilog source code is added to the project by including an “add_file –verilog 

sourcefile.v” directive to the Tcl script file for each source module in the design.  By 

convention, Synplify requires that the final “add_file” directive must be for the top-level 
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design file.  Finally, the last line of the Tcl script file contains the text “project –run”, 

which tells Synplify to end project creation and run its logic synthesis process. 

After the Tcl script is created, the UML-to-FPGA tool executes the following 

command:  “synplify_pro -batch modulename-syn.tcl  > synplify.txt”.  This invokes the 

Synplify tool and tells it to run in batch mode using the indicated file.  All standard 

output is directed to the file “synplify.txt” for later analysis if desired.  Synplify generates 

a large number of result files and reports during the synthesis process, but the UML-to-

FPGA tool preserves only two of these output files:  the synthesis report file, 

“modulename.srr”, and the synthesized netlist file.  For the selected Xilinx device, the 

generated file, “modulename.edf”, is in EDIF format.  If an Altera device is the target, the 

netlist file, “modulename.vqm”, is in VQM format.  All other result files and directories 

are removed.  At this point in the process, if Synplify was chosen as the logic synthesis 

tool, Stage 4 of the UML-to-FPGA conversion process is complete.  

 

4.5 Stage 5 – Vendor-Specific Design Flow 

The fifth and final stage of the UML-to-FPGA conversion process makes use of 

vendor-specific design tools to correctly map, place, and connect logic elements on a 

specific programmable device, known as the target.  Most vendor design tools also 

include a logic synthesis program, and this Stage 4 operation is supported as an option 

selected by the user if the Synplify tool is not used.  The final processing step takes the 

completed “virtual” design created by the design software and converts it to a binary file 

that is downloaded directly into the target device.  The information contained in this 
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programming file tells the target device how to configure its internal programmable 

elements to implement the design specified by the original UML model.  The second 

command-line argument of the UML-to-FPGA tool (“-a” or “-x”) specifies which 

vendor’s target device is being used.  Like Synplify, Altera Quartus-II and Xilinx ISE are 

designed to be used with a GUI but also support command line batch-mode interfaces.  

Design flow parameters, directives, and constraints must be defined by the UML-to-

FPGA tool before the Altera or Xilinx design flow is invoked.  This section details the 

requirements and usage of the vendor-specific batch-mode tools utilized by the UML-to-

FPGA tool. 

 

4.5.1 Altera Design Flow 

Altera Quartus-II batch mode is based on Tcl scripting, much like Synplify Pro.  The 

UML-to-FPGA Perl script must collect the necessary information to create a Tcl script 

file, “modulename.tcl”, which governs design flow and parameters, where modulename is 

the name of the top-level design module.  The first line of the Quartus-II Tcl script file 

contains the following text: 

   

project_new -family "Cyclone II" -part EP2C35F672C6 -overwrite modulename 

 

The “-family” and “-part” parameters have been hard coded for development, but the 

purpose of this first statement is clear:  to define the project name (equivalent to the name 

of the top-level design module) and the target Altera device.  The following line (or lines) 
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in the Tcl script file defines the source design file.  When Synplify Pro is used for design 

synthesis, the design file declaration is: 

 

set_global_assignment -name VQM_FILE modulename.vqm 

 

If Altera’s own vendor-specific synthesis tool is to be used, there must be a design 

file declaration for each source Verilog file generated in Stage 3 of the UML-to-FPGA 

tool in the format: 

 

set_global_assignment -name VERILOG_FILE verilogmodule.v 

 

One of the most important steps in programmable logic design is definition of design 

constraints.  Vendor design tools use these constraints as design goals to govern the 

process of mapping, placing, and interconnecting logic components within the target 

device.  The most common design constraints define pin placement on the target device.  

The top-level I/O ports in the overall design are mapped to physical I/O pins on the target 

device, and in order for there to be connectivity with any external devices (e.g. switches, 

LEDs, other ICs), the designer must assign signals to specific pins.  If the target device 

pinout is not defined, the placement tool will assign I/O pins arbitrarily, which can lead to 

unpredictable results.  Therefore, pinout constraints must be supplied as an input to the 

vendor design flow.  Other design constraints might include clock frequency design goals 

and specific placement instructions for internal logic elements. 
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Design constraints for the Quartus-II tool can be defined using Tcl commands, so 

pinout constraints are listed in the Tcl script file.  The constraint assigning the port 

“reset” to pin V2 of the target device might have the format: 

 

set_location_assignment PIN_V2 -to reset 

 

All pinout constraints for the Altera device, like the one shown above, are hard coded 

into the file modulename.qsf.  The UML-to-FPGA Perl script copies the contents of this 

constraints file into the Tcl script file so that the constraints will be processed during 

Quartus-II design flow.   

The “set_global_assignment” directive is used to include any other design parameters 

in the Tcl script file, and the final line of the script file is “project_close”.  Once the Tcl 

script file is created, Quartus-II design flow is initiated.  The first command:  “quartus_sh 

-t modulename.tcl > ./quartus.tmp” creates the project environment for the design using 

the information from the Tcl script.  Any output to the screen is redirected to the 

“quartus.tmp” file.  The second command, “quartus_map modulename > ./quartus.tmp”, 

invokes the Quartus-II mapping tool that integrates all constraints and design entities into 

a single database file.  The “quartus_map” tool will also invoke the Quartus-II Integrated 

Synthesis tool if Verilog design files must be synthesized.  The third command, 

“quartus_fit modulename > ./quartus.tmp”, invokes the Quartus-II place-and-route tool 

that performs all pin assignments, logic cell assignments, and logic cell interconnection 

selection.  The final command, “quartus_asm modulename > ./quartus.tmp”, invokes the 
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Quartus-II assembler tool that creates the binary programming image file 

(“modulename.sof”) for the target device.  Screen output for each of these commands is, 

again, routed to the “quartus.tmp” file.  Any design flow errors that occur will be listed in 

this file.  After each tool completes its function, “quartus.tmp” is checked by the UML-

to-FPGA tool.  If any errors are detected in this file, the Perl script will report them and 

stop execution of the conversion process.  If all Quartus-II processes complete with no 

errors, a valid programming image file will have been created, and the design conversion 

will be complete. 

 

4.5.2 Xilinx Design Flow 

Xilinx ISE command-line design flow is slightly different from that of Altera.  

Instead of using Tcl scripting, Xilinx has defined its own proprietary batch-mode design 

flow, known as XFLOW.  XFLOW uses its own script, or “flow”, files to govern the 

invocation of the various tools that comprise its design flow.  The script file, “fpga.flw”, 

is provided by Xilinx, but may be modified by the user to select which tools are used.  

The Xilinx tools used in the design flow also have their own “options” files that dictate 

their operational parameters.  Xilinx provides these “options” files with default 

parameters pre-defined.  The files “xst_mixed.opt”, “balanced.opt”, and “bitgen.opt” 

must be copied to the XFLOW working directory before the Xilinx design flow is 

initiated. 
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When Synplify Pro is used as the logic synthesis tool, XFLOW can be invoked to 

operate directly on the modulename.edf file produced in UML-to-FPGA Stage 4. The 

command used to invoke XFLOW in such a case is: 

 

xflow -p xc3s200ft256-5 -implement balanced.opt -config bitgen.opt 

-wd WORK -rd ../OUTPUTS modulename.edf  > ./xflowout.txt 

 

The “–p” parameter defines the Xilinx target device; the “-implement” parameter 

defines the option file to be used for the Xilinx “ngdbuild”, “map”, and “par” tools; the “-

config” parameter defines the option file used for the “bitgen” tool; and the “-wd” and “-

rd” parameters define input and output directories to be used during the XFLOW process.  

The “ngdbuild” tool is used to build Xilinx-specific circuit descriptions using the netlist 

provided by Synplify.  Xilinx uses its “map” tool to map these descriptions to specific 

Xilinx target device logic constructs, while the “par” tool performs all virtual placing and 

routing functions.  Finally, the “bitgen” tool is used to generate the binary programming 

image file. 

If the Synplify Pro tool is not selected by the user, then XFLOW requires a project 

file that lists all the Verilog modules needed for logic synthesis.  If the “-x” and “-ven” 

options are selected, the UML-to-FPGA tool will create a file called “modulename.prj” 

containing a line for each Verilog module with the format: “verilog WORK 

verilogmodule.v”.  In this case, XFLOW is invoked using the command: 
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xflow -p xc3s200ft256-5 -synth xst_mixed.opt -implement balanced.opt -config 

bitgen.opt -wd WORK -rd ../OUTPUTS modulename.prj > ./xflowout.txt 

 

Here, the additional “-synth” parameter is used to define the option file used for the 

Xilinx synthesis tool, “xst”.  The netlist created by “xst” is fed into the “ngdbuild” tool, 

taking the place of the EDIF file used when the Synplify option is selected. 

XFLOW screen output is always redirected to the file “xflowout.txt”.  After XFLOW 

stops running, the UML-to-FPGA tool checks this file for any listed errors.  If any errors 

exist, the Perl script will report them and stop execution of the conversion process. 

Pinout constraints and other requirements are hard coded into the file 

“modulename.ucf”, which must be copied into the XFLOW working directory before the 

Xilinx design flow is initiated.  Though it is a separate file, XFLOW incorporates it into 

the design as long as modulename matches the name of the top-level design file.  The 

Xilinx constraint file format is shown below.  In this example, the “reset” signal is 

assigned to pin K13. 

 

NET "reset" LOC = "K13"; 

 

If the XFLOW process completes with no errors, a valid programming image file, 

“modulename.bit”, will have been created, and the UML-to-FPGA design conversion will 

be complete. 
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4.5.3 Design Flow Clean-up  

After the vendor-specific design flow process is completed and a valid binary 

configuration file has been produced for the target programmable device, there are a large 

number of extraneous files in the UML-to-FPGA working directory.  Generated by the 

vendor design tool, they are the various report files, parameter files, and intermediate 

design files produced during the design flow process.  The UML-to-FPGA Perl script 

calls a subroutine that moves all essential design and report files to the “OUTPUTS” 

directory and removes the remaining, unnecessary files.  Included among the files 

preserved in the “OUTPUTS” directory are the DAXML model file, the Verilog HDL 

source files, the binary configuration file, any existing Tcl files, the Synplify Pro netlist 

file (if applicable), and any vendor-generated log or report files.  Once this clean-up 

process is completed, the UML-to-FPGA tool exits, and returns the user to the command 

prompt. 
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Chapter 5 

TOOL EVALUATION 

 

5.1 Running the UML-to-FPGA Tool 

The UML-to-FPGA tool is invoked from a command line prompt using the following 

syntax: 

 

perl ./uml2fpga {-a|-x} {-syn|-ven} {toplevelmodule} {inputfile.xml} 

 

All command arguments shown above are required.  The first argument tells the tool 

which vendor design flow to follow and must correspond to the vendor of the target 

programmable device.  Option “-a” selects Altera design flow, and option “-x” selects 

Xilinx design flow.  The second command argument specifies the tool that should be 

used for logic synthesis.  Option “-syn” indicates that Synplify Pro design flow should 

be used.  Option “-ven” specifies that the synthesis tool supplied by the selected 

programmable logic vendor should be used.  The third command argument specifies the 

name of top level Verilog module for the design.  This information is used to ensure that 

the design module hierarchy is correctly interpreted by the UML-to-FPGA tool.  The 

final argument is the name of the input model file, in XMI format.  This model file must 
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have an “.xml” extension.  The figures below show some examples of on-screen feedback 

provided during UML-to-FPGA tool operation. 

 

 

 

Figure 5.1:  Sample UML-to-FPGA Screen Output 

 

5.2 Testing Methodology 

In order to test the automation functionality of the UML-to-FPGA tool, two sample 

designs were created in UML, following the design capture conventions specified in 

Sections 4.1.1 and 4.1.2.  The completed high-level UML models were processed using 

the UML-to-FPGA tool and tested on available FPGA design development hardware.  

Though the UML-to-FPGA tool has been tested successfully on Xilinx development 
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hardware, the most recent testing has been completed using the Altera DE2 development 

board, which contains a Cyclone II family FPGA supporting over 33,000 programmable 

logic elements. 

The first of the two sample designs was a simple traffic light system implementation, 

initially intended to test Verilog code generation for the controller module alone.  Initial 

testing was done by integrating the automatically generated Verilog code for the traffic 

light controller module with a set of hard coded datapath elements in order to synthesize 

a complete design for hardware testing.  Once a functional traffic light system 

implementation was achieved using controller-only model transformation, development 

of automatic datapath module generation began.  The simple datapath elements used in 

the traffic light system model were ideal for the early stages of development and 

debugging.  Upon successfully realizing a working hardware implementation with HDL 

generated automatically from both controller and datapath UML models, the second, 

more complex, sample design was introduced. 

Designed to create a more extensive verification environment for the UML-to-FPGA 

tool, the second sample design was an implementation of an 8-bit iterative Newton-

Raphson inverter.  This design primarily tested the automatic datapath module generation 

features of the UML-to-FPGA tool by incorporating greater numbers of modules, 

multiple copies of modules, and multiple versions of similar modules.  The 

aforementioned elements of complexity proved to be critical test cases that contributed 

greatly to the development of a robust design. 
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The sample designs were tested using both logic synthesis options supported by the 

UML-to-FPGA tool.  Configuration image files generated by the tool were downloaded 

into the target FPGA, and design verification against the originally specified UML model 

was carried out manually using the various I/O buttons and switches provided on the 

hardware development board. 

 

5.3 Design Results 

In addition to the physical hardware realization of the designs captured in UML, 

which must be demonstrated using the FPGA development board, the UML-to-FPGA 

tool captures and preserves a variety of output data and report files in a results directory 

named “OUTPUTS”.  Table 5.1 and Table 5.2 list and describe the typical contents of 

this directory resulting from Altera-specific design flow using the Quartus Integrated 

Synthesis tool and Synplify Pro logic synthesis, respectively.   
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Table 5.1:  UML-to-FPGA Output Files using Altera-specific Synthesis 

Output File Description 
toplevel.fit.eqn Proprietary equations generated by the Quartus Fitter tool 
toplevel.map.eqn Proprietary equations generated by the Quartus Mapper tool 
toplevel.pin Table of design pinout assignments on the target device 
toplevel.pof Binary configuration image file (parallel download) 
toplevel.asm.rpt Quartus Assembler report file 
toplevel.fit.rpt Quartus Fitter report file 
toplevel.flow.rpt Quartus design flow report file 
toplevel.map.rpt Quartus Analysis and Synthesis report file 
toplevel.tan.rpt Quartus Timing Analyzer report file 
toplevel.sof Binary configuration image file (serial download) 
toplevel.fit.summary Summary of Quartus Fitter results 
toplevel.map.summary Summary of Quartus Synthesis results 
toplevel.tan.summary Summary of Quartus Timing Analyzer results 
toplevel.tcl Quartus Tcl script file 
toplevel.v, *.v Verilog HDL source modules 
DAXML.xml DAXML model file 

 

 

Table 5.2:  UML-to-FPGA Output Files using Synplify Pro Synthesis 

Output File Description 
toplevel.fit.eqn Proprietary equations generated by the Quartus Fitter tool 
toplevel.map.eqn Proprietary equations generated by the Quartus Mapper tool 
toplevel.pin Table of design pinout assignments on the target device 
toplevel.pof Binary configuration image file (parallel download) 
toplevel.asm.rpt Quartus Assembler report file 
toplevel.fit.rpt Quartus Fitter report file 
toplevel.flow.rpt Quartus design flow report file 
toplevel.map.rpt Quartus Analysis and Synthesis report file 
toplevel.tan.rpt Quartus Timing Analyzer report file 
toplevel.sof Binary configuration image file (serial download) 
toplevel.srr Synplify Pro log file 
toplevel.fit.summary Summary of Quartus Fitter results 
toplevel.map.summary Summary of Quartus Synthesis results 
toplevel.tan.summary Summary of Quartus Timing Analyzer results 
toplevel.tcl Quartus Tcl script file 
toplevel-syn.tcl Synplify Pro Tcl script file 
synplify.txt Synplify Pro run-time output log 
toplevel.v, *.v Verilog HDL source modules 
toplevel.vqm Synplify-generated netlist file  
DAXML.xml DAXML model file 
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Report and log files generated by the design tools typically include a listing of 

important output parameters related to the function provided, as well as the input 

parameters and settings used for the most recent implementation and a copy of all screen 

output generated during run-time.  This report information generated by the synthesis and 

implementation tools can be extremely valuable for design debugging and analysis, 

especially in cases for which design hardware is not yet available.  The following set of 

tables is derived entirely from information contained within the report and summary files 

generated by Altera’s Quartus-II design toolset. 

 

Table 5.3:  Comparison of Automated and Manual Implementation Methods 

Parameter Automated Manual 
Total Logic Elements Used 110 76 
4-input LUTs (look up tables) used 39 30 
3-input LUTs used 20 17 
<3-input LUTs used 41 29 
Registers Used 57 27 
Average signal fanout 2.54 2.51 
Worst-case Register-Register Delay 4.944 ns 10.748 ns 
Maximum Clock Frequency 202.27 MHz 93.04 MHz 

 

 

Table 5.3 compares the implementation results, in terms of internal FPGA resource 

usage and timing performance estimates, for two implementations of the sample Newton-

Raphson inverter design.  Here, the comparison is between results generated by the 

UML-to-FPGA tool and results generated using a low-level, non-automated design 

approach.  In both cases, the Quartus-II Integrated Synthesis tool was used.  The non-
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automated inverter implementation was designed using a combination of Verilog HDL 

and schematic capture, using tools provided by Altera’s design software.  It should be 

noted that this “manual” approach was developed for an independent project and was 

implemented long before the UML-to-FPGA tool was conceived.  While the internal 

structures of the two implementations naturally differ, their external interfaces and 

functionality are identical.  Consequently, a true comparison of design methodologies can 

be made.  Differences in the number of internal resources used in the two 

implementations can be primarily attributed to the controller design.  Where the UML-to-

FPGA tool is currently limited to a Moore machine controller implementation, the low-

level design takes advantage of the flexible nature of Verilog design constructs to 

generate a more compact implementation with fewer logic elements.  This difference in 

implementation methodology might also explain the timing performance advantage held 

by the automated implementation.  By using more area (in the form of register elements), 

the UML-to-FPGA implementation requires less delay between sequential elements, 

thereby decreasing the minimum possible clock period and increasing the maximum 

operational frequency of the circuit.  Additionally, this performance advantage is 

evidence that the use of a high-level, automated design methodology does not necessarily 

limit or reduce the quality of the implemented design. 

Table 5.4 shows a comparison of internal FPGA resource usage when different 

synthesis tools are used for the implementation of the sample traffic light system design.  

A designer could use the generated information to determine which synthesis method 
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allows for a more efficient usage of hardware resources.  In the example shown below, it 

appears that the second option would be the preferred logic synthesis method. 

 

Table 5.4:  Comparison of Synthesis Tools using Logic Mapping Parameters 

Parameter Tool #1 Tool #2 
Registers Used 41 41 
Combinational Functions Implemented 143 134 
4-input LUTs used 86 60 
3-input LUTs used 12 49 
<3-input LUTs used 45 25 
Average signal fanout 2.76 2.85 
Logic Cells Used 184 175 

 

 

Table 5.5 shows a comparison of internal FPGA resource usage based on outputs 

from the Quartus-II Fitter tool for the sample Newton-Raphson inverter design.  Here 

design comparisons are made between two different Verilog datapath module source 

libraries, one of which uses Altera’s Library of Parameterized Modules (LPMs) instead 

of standard Verilog coding.  Once again, a designer can glean important design trade-off 

information from the output files preserved by the UML-to-FPGA tool.  Here, it is clear 

that using a Verilog source code library that utilizes LPMs will lead to a much more 

efficient use of hardware resources. 
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Table 5.5:  Comparison of Code Libraries using Mapping and Fitter Parameters 

Parameter Without LPMs With LPMs 
Total Logic Elements Used 183 110 
4-input LUTs used 42 39 
3-input LUTs used 28 20 
<3-input LUTs used 80 41 
Registers Used 111 57 
Average signal fanout 2.42 2.54 
Logic Cells Used 269 157 

 

 

Table 5.6 and Table 5.7 show comparisons of timing parameters generated by the 

Quartus-II Timing Analyzer.  Here again, the designer can make informed 

implementation decisions based on feedback from the design tools.  Table 5.6 shows the 

variations in the performance of the sample traffic light system based on the selection of 

different logic synthesis tools.  Table 5.7 shows the drastic timing improvement achieved 

in the sample inverter design with the use of LPMs in the Verilog source libraries.   

 

Table 5.6:  Comparison of Synthesis Tools using Timing Parameters 

Parameter Tool #1 Tool #2 
Worst-case Setup Time 5.978 ns 7.749 ns 
Worst-case Register-Register Delay 7.217 ns 7.067 ns 
Maximum Clock Frequency 138.56 MHz 141.50 MHz 
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Table 5.7:  Comparison of Code Libraries using Timing Parameters 

Parameter Without LPMs With LPMs 
Worst-case Setup Time 6.395 ns 5.618 ns 
Worst-case Register-Register Delay 9.794 ns 4.944 ns 
Maximum Clock Frequency 102.10 MHz 202.27 MHz 

 

 

It should be noted that all information provided by design synthesis tools could be fed 

back into and processed by an automated tool like UML-to-FPGA in order to provide a 

more “intelligent” automated design tool that incorporates these implementation results 

and makes informed design decisions based on requirements set forth in the high-level 

system model. 
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Chapter 6 

CONCLUSIONS AND IDEAS FOR FUTURE RESEARCH 

 

6.1 Future UML-to-FPGA Tool Development 

The UML-to-FPGA implementation presented in this Thesis is intended to be a 

“proof-of-concept” design.  Ideally, this automated hardware generation process would 

be integrated into a larger design package used in an MDA development environment, 

where a system designer could define high-level models and be able to realize them in 

hardware, software, or a combination of both, with only a minimal amount of knowledge 

about the lower-level implementation mechanisms.  However, there are many additional 

features and improvements that can be made to the UML-to-FPGA tool as a stand-alone 

hardware design tool before it is integrated into an all-encompassing MDA system design 

tool.  The remainder of this section will discuss several useful features that could be the 

focal point of the UML-to-FPGA tool development effort in the near future. 

 

6.1.1 Multiple XMI Format Support 

As mentioned in Section 4.1.3, UML design packages supporting XMI export 

functionality would not necessarily generate identical XML documents from the same 

UML model.  As a stand-alone conversion tool that accepts an XMI document as input, it 

would be advantageous, in terms of portability and utility, for UML-to-FPGA to support 
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UML design capture from as many off-the-shelf development packages as possible.  

Until the design is integrated into a design tool of larger scope, it remains useful to retain 

flexibility in terms of the third-party tools with which it can interface. 

Support for multiple XMI formats can be implemented simply by revising the Stage 2 

XSLT transform used by UML-to-FPGA.  This can be done without the tool itself ever 

having to know what software generated the XMI it is processing.  By using multiple 

pattern-matching templates corresponding to the unique XMI paths generated by the 

various UML design tools, multiple XMI formats can be supported within a single XSLT 

rules file.  The development effort would be focused on investigating the similarities and 

differences between XMI formats and mirroring the existing XSLT guidelines so that the 

same DAXML output is achieved. 

 

6.1.2 Automatic Constraint File Generation 

The UML-to-FPGA tool already processes design constraints at a certain level via the 

implementation of DATARANGE elements, as described in Section 4.1.  However, this 

feature can be expanded to cover a wider range of design functionality.  UML provides 

means for capturing the entire spectrum of design requirements, all of which will be 

included in the XMI document that is exported and used as input for the UML-to-FPGA 

tool.  Taking advantage of the power of XSLT to generate any type of formatted text, the 

conversion process can be utilized to generate any constraints or implementation files 

required in later stages of the tool, in addition to the Verilog HDL code that is already 

being created.   
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Of particular importance in hardware design are the cost and performance of the 

design.  Specifications for the “cost” of a design using configurable logic typically refer 

to the number of programmable resources utilized by the implemented design.  Design 

requirements captured in UML might specify maximum cost by defining the particular 

target device into which the design must fit, or by defining a maximum number of 

programmable logic cells to be used within the target device.  Additionally, the I/O 

pinout for the target device might already be defined.  Specifications for design 

“performance” might dictate a specific clock frequency at which the design must operate.  

Such timing requirements, together with logic element and pinout constraints, impact the 

way the external synthesis and design realization tools produce the final implementation.  

If these specifications can be defined in some manner at the system level, functions 

within the UML-to-FPGA tool can be defined to convert these requirements into 

information that can be processed by the necessary low-level design tools, thereby adding 

a further degree of automation to the entire application. 

In the current implementation, most of the design constraint parameters have been 

hard-coded into the UML-to-FPGA tool because the design was limited to only two 

possible target devices.  Ideally, information describing parameters such as target device 

information, I/O pin assignments, minimum required clock frequency, and other vendor-

specific design flow options would be incorporated into the requirements specified in the 

UML model at some point in the design cycle.  Again, implementation of this feature 

would necessitate adaptation of existing XSLT rules files.  Modifications to the DAXML 

schema to support requirement specifications would also be beneficial. 
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Thought must also be put into determining how, and at what level and/or design 

phase, these requirements will be integrated into the UML design model.  Once the early 

stages of the UML-to-FPGA tool can generate constraint rules and processing 

instructions that can be used by later stages in the conversion process, additional, more 

powerful functionality may be implemented, as is explained in the following section. 

 

6.1.3 Iterative Requirement Satisfaction 

Once design synthesis parameter and constraint generation has been incorporated into 

the UML-to-FPGA tool, it would be possible for the tool to incorporate feedback from 

the various synthesis packages used in the conversion process to ensure that design goals, 

as defined within the UML model, are met.  An Iterative Requirement Satisfaction (IRS) 

feature would allow multiple passes through, at a minimum, Stages 4 and 5 of the UML-

to-FPGA process, with the tool taking a slightly different implementation approach with 

each iteration.  The UML-to-FPGA tool can use the various report files generated by the 

logic synthesis and design realization tools to determine if design goals such as circuit 

performance and design cost have been met. 

For example, a vendor design tool might report that the given design does not fit 

within the specified target device, telling the UML-to-FPGA tool that it has not met its 

area constraint.  Additionally, most programmable logic vendors incorporate a timing 

analysis package into their tool that is designed for modeling the delay through and 

between programmable logic elements within their devices.  By collecting information 

from a vendor’s timing analysis report, the UML-to-FPGA tool can verify that the clock 
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delays within the specified target device meet the performance requirements set by the 

system designer.  Some tools now incorporate power dissipation calculators, which also 

might be used to generate feedback for an automated iterative design process. 

Much of the design work for an IRS feature would go into defining algorithms and/or 

heuristics for processing design tool feedback and altering design parameters.  Vendor 

tools generally have goal-oriented synthesis processes that incorporate certain 

requirements to define design implementation.   However, even these processes are not 

100% effective.  The UML-to-FPGA tool must define methods for adjusting synthesis 

parameters at each iteration, so that the external tools are given an increased amount of 

flexibility. 

In addition to manipulating external tool parameters, other applications might be 

employed to modify the design model itself.  One example might be a tool extension that 

automatically pipelines design datapath elements to reduce delay between clocked 

elements [30], under the assumption that a new pipeline stage would be added upon each 

iteration until timing constraints are met or area constraints are exceeded.  Additional 

research would be necessary to determine at what point such methods would be more 

efficient than simply adjusting synthesis parameters. 

 

6.1.4 Design Checking 

In the current incarnation of the UML-to-FPGA tool, there are few true design 

checkpoints.  The tool will exit if an XSLT conversion fails, or if one of the Stage 4 or 

Stage 5 synthesis processes encounters an error, but beyond these points of failure, the 
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tool does little in terms of verification.  For example, errors in UML capture might not be 

detected until the synthesis tool detects faulty Verilog code several stages later.  Further 

steps should be taken to allow design checks to be as localized within the conversion 

process as possible. 

If they cannot be checked within the UML tool itself, design capture conventions 

could be checked in the XMI model or, perhaps even more easily, in the DAXML model.  

Critical checks here would include verifying that the datapath elements are defined 

correctly, that ports and components are named so that they correspond to the appropriate 

source Verilog modules, that buswidths for ports and their corresponding nets match, and 

that the controller ports identified in the datapath diagram correspond to those defined in 

the controller diagram. 

The XML files generated in Stages 1 and 2 of the conversion process may also be 

checked for structural correctness using a schema validation tool.  Many such tools are 

available online or as part of XML development software.  Schema validation would 

ensure that proper formatting is observed in the XMI and DAXML models, so that poorly 

formed XML does not impact downstream processing. 

The tools invoked in Stages 4 and 5 of the UML-to-FPGA conversion process will 

provide feedback to the designer if the original UML model does not produce 

synthesizable Verilog HDL.  However, additional tools may be incorporated to verify the 

correctness of the source code that is produced.  The SMU Hardware/Software Co-

Design team already has made efforts toward the development of a design validation tool 

using SystemVerilog assertions [23]. 
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6.1.5 SysML 

Until this point, only the constructs defined by the UML standard have been 

considered for use as the building blocks for modeling a hardware design.  However, 

UML’s roots as a software development tool tend to make the description of a hardware 

system somewhat cumbersome, as is especially evident in the design capture conventions 

and processing steps required for datapath specification.  In particular, the UML 

“Component” and “Dependency” constructs are each used in multiple contexts in the 

UML component diagram, requiring unique text descriptors that add extra complexity to 

the design capture and design conversion processes.  For instance, UML “Component” 

elements are used to represent both a datapath module and its individual input and output 

ports, so the designer is required to manually establish the relationship between the two 

types using specific naming syntax.  Additional work is also required to process the XMI 

model derived from UML because the translation tool must determine if each 

“Component” element it finds in the XMI model structure represents a module or a port 

before it can appropriately process the information.  It is evident that, while UML does 

provide a method for modeling hardware designs, it may not be the best possible solution. 

OMG Systems Modeling Language, or SysML, provides the tools and structures 

needed for a more elegant solution to hardware datapath capture.  Adopted as a standard 

in 2006, SysML has its roots in UML, but provides additional constructs and diagrams 

that are specifically designed to describe physical system composition and 

interconnection [16].  Direct support for module interconnection constructs would greatly 

aid in datapath design capture and processing required when using the UML-to-FPGA 
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tool.  Like its UML precursor, SysML also supports behavioral modeling and constraints 

capture [29], which are necessary for detailing controller operation and defining system 

requirements in the UML-to-FPGA tool.  With these structural and behavioral constructs 

designed specifically for modeling real-world systems, SysML is an ideal tool for 

hardware/software co-design in a model-driven design environment. 

Overall design parameters and packages are managed using SysML “Model 

Elements”, which can be used to specify packageable elements and the relationships 

between them [29].  This becomes especially useful when making implementation 

decisions (choosing between a hardware or software solution) at the system design level.  

Both hardware and software implementations can be modeled separately, and associated 

with constraints elements that define overall design requirements [29], as shown in 

Figure 6.1.  Coupled with design realization tools like UML-to-FPGA, this process would 

allow design decisions to be made at a high-level based on the success or failure of a low-

level design to meet certain system requirements. 

 

 

Figure 6.1:  SysML Model Elements 
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SysML “Block” constructs are the basic structural units that would replace UML 

“Components” as the representation for the various modules within the datapath 

description of a hardware system.  SysML supports two forms of diagrams that can be 

used for capturing the functional, behavioral, and structural elements of a design module.  

The Block Definition Diagram helps to define the features and functions of a SysML 

“Block”, while the Internal Block Diagram is used to capture the structure and 

interconnections between design “Blocks” [29]. 

The most beneficial new construct supported by SysML, in terms of hardware 

datapath design, may be the “Port”.  A SysML “Port” defines a point of interaction 

between a “Block” and its external environment.  By interconnecting the “Ports” for each 

“Block” in a datapath model, the complete structure of the design can be defined.  It is 

also important to note that “Ports” are automatically, and clearly associated, with a 

particular design “Block”, removing the need for manual association by the designer [29].   

 

 

Figure 6.2:  SysML "Blocks", "FlowPorts", and "ItemFlows" 
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SysML “FlowPorts” are a specific type of “Port” that specify points where data, 

material, or energy can flow into or out of a “Block” [29].  For the purposes of the 

datapath definition, “FlowPorts” can be used to define input and output ports of a design 

module through which binary data flows.  SysML also specifies an “ItemFlow”, which 

specifies the data, material, or energy that flows between “Blocks” [29].  If “FlowPorts” 

represent the port names for an individual datapath module, “ItemFlows” represent the 

names of the interconnecting nets.  The relationship between SysML “Blocks”, 

“FlowPorts”, and “ItemFlows” as they might be used for hardware datapath design is 

shown in Figure 6.2.  In the figure, two “Blocks” are shown, representing a multiplexer 

and a D-type flip-flop.  Note that the name for each “Block” (before the “:”) is the 

instance number of the component, while the type (after the “:”) defines the type of 

module that is being instantiated.  The “FlowPort” definitions use the type field (after the 

“:”) to define the physical width of the module I/O port.  The “ItemFlow” shown in the 

figure is assigned the net name “mux_out_net”. 

SysML “FlowPorts” can be atomic (defining the connection point for a single 

“ItemFlow”) or non-atomic (defining the connection point for multiple “ItemFlows”), 

depending on the model organization selected by the system designer.  It may often be 

possible to simplify design representation by combining several atomic “FlowPorts” into 

a single non-atomic “FlowPort” if multiple connections exist between two SysML 

“Blocks”.  SysML also supports the interconnection of “Block” constructs using a bus, 

where data, material, or energy can be broadcast to multiple destinations or multiplexed 
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over a common structural connection [29].  Similar structures would be extremely 

difficult to implement using UML.    

In addition to supporting a greatly simplified datapath design capture methodology, 

SysML also provides a highly defined set of constructs for capturing design 

requirements.  SysML “Constraint” blocks allow for the integration of engineering 

analysis in the form of performance and reliability models.  “Constraints” can specify 

mathematical expressions or simple definitions that can be associated with a particular 

“Block” within the design [29].  For example, a requirement limiting the delay through a 

particular datapath block might be accomplished using a “Constraint” block bound 

directly to the module “Block”.  Other global constraints might be associated with the 

entire hardware “Model Element”.  Like UML, SysML supports system behavioral 

modeling through State Machine descriptions [29].  Controller design capture 

conventions would most likely remain the same, despite using SysML instead of UML.  

Unfortunately, at the time of this tool implementation, no SysML design package was 

available for use in design capture.  However, as such tools become readily available, 

effort should be made to convert the existing UML-to-FPGA tool to a SysML-to-FPGA 

tool.  Most of the design constructs defined in SysML, and described in the previous 

paragraphs, can be intuitively mapped to the capture conventions defined for UML in 

Chapter 4 of this document, making the transition of datapath and controller design 

capture capability fairly simple.  However, it is critical that the SysML design tool that is 

selected be able to support some form of export functionality that can generate an XML-

based text file.  The majority of the design work necessary to replace UML with SysML 
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in this tool will likely involve modifications to the Stage 2 XSLT rules that adapt the 

conversion process to the organizational improvements provided by the new SysML 

constructs. 

 

6.2 Summary 

Among the most difficult challenges facing today’s embedded system designers is the 

task of dividing functionality implementation between hardware and software.  

Technological advances, especially in programmable hardware technologies such as 

FPGAs and CPLDs, are making it harder to draw a distinct line between the between the 

two fields.  Old design methodologies no longer yield optimal results and often lead to 

difficulties in design verification and documentation, as well as poor design flow. 

The Model Driven Architecture approach to hardware-software co-design offers the 

designer a new method of system development.  Using high-level abstractions to describe 

system requirements, structure, and behavior, the MDA design approach allows the 

designer to maintain a unified, implementation-independent model throughout most of 

the development cycle.  Implementation choices need only be made once a design and its 

requirements have been fully defined, allowing for a more intelligent and informed 

decision, and, typically, a more optimally realized design.  The MDA approach to system 

design is also intended to bridge the gap between system definition and system 

implementation by allowing for automated coding and other intelligent design tools.  

Though many such intelligent automation tools exist for software implementations, a 

method for automated hardware implementation has yet to be fully developed. 
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This Thesis has attempted to rectify this discrepancy by proposing a framework for an 

automated MDA-based hardware realization process that creates a fully functional 

hardware realization from a high-level system model with a single command.  As a 

“proof-of-concept”, this document presented UML-to-FPGA, a functional automated 

hardware implementation tool that utilizes off-the-shelf design software and commonly-

used scripting languages to generate working FPGA configuration images from UML 

system models.  Chapter 3 discussed the high-level architectural features of this five-

stage conversion process and presented justification for the design tools selected for its 

implementation.  Chapter 4 presented stage-by-stage design details for the UML-to-

FPGA tool, including discussion of UML design capture conventions, XML-based 

intermediate design modeling formats, and implementation and/or invocation of the 

processes needed for automatic Verilog HDL generation and programmable logic 

synthesis.  Chapter 5 followed by reporting experimental results from two sample designs 

realized using the UML-to-FPGA tool.  Finally, several feature improvements were 

proposed for the future development of the current incarnation of the tool. 

This Thesis also presented a new XML schema adapted from W3C’s State Chart 

XML.  Design Automation XML (DAXML) supports a structured format for the storage 

of information and requirements related to both the controller and the datapath portions 

of a synchronous sequential circuit, enabling all essential design parameters for a 

complete hardware implementation to be captured within a single XML document.  As 

such, DAXML is provided as an intermediary hardware design model used for the 

facilitation and simplification of automatic non-language-specific HDL code generation. 
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The UML-to-FPGA tool, including its associated third-party implementation 

packages and its specific implementation procedures, presented in this Thesis is intended 

to serve merely as a guideline for future MDA-based hardware implementation 

applications.  The individual translation and synthesis tools selected for this 

implementation are commercially available off-the-shelf packages that can be 

interchanged with other off-the-shelf or custom tools without impacting the overall 

purpose of the design.  The overall automation process does not depend on the use of 

UML as a modeling tool, nor does it necessitate either design description with Verilog 

HDL or the targeting of a specific hardware implementation technology.  UML-to-FPGA 

is just one possible implementation of a more general “MDA-to-FPGA” or, more 

appropriately, “MDA-to-Hardware” framework.   
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APPENDIX A 

UML-TO-FPGA PERL SOURCE CODE 

 

#!/usr/bin/perl 
use File::Path; 
 
# VERSION DESCRIPTIONS ################################################################## 
# 01 - Original CSE 8340 Project script 
# 02 - Added support for Synplify tool 
# 03 - Added coding structure for support of Altera process flow 
# 04 - Added support for Altera process flow 
# 05 - Added datapath generation 
# 06 - Modified/corrected datapath generation 
# 07 - Clean-up for release 
######################################################################################### 
 
# XSLT TRANSFORMATION VARIABLES ######################################################### 
$xalanjardir = './xalan/bin'; 
$xalan1 = 'xalan.jar'; 
$xalan2 = 'xercesImpl.jar'; 
$xalan3 = 'xml-apis.jar'; 
$xalan4 = 'serializer.jar'; 
$xsltdir = './xalan/xslt'; 
$xslt1 = 'xmi2daxml.xslt'; 
$xslt2 = "daxml2verilog.xslt"; 
$xalandir = './xalan'; 
######################################################################################### 
 
# GLOBAL VARIABLES ###################################################################### 
$xilinxdir = './xilinx'; 
$sourcedir = './source'; 
######################################################################################### 
 
# Parce Command Line Options ############################################################ 
 
# Determine OS Platform 
$platform = $ENV{'TERM'}; 
if ("cygwin" eq $platform) 
 {$classstring = "\"$xalanjardir/$xalan1;$xalanjardir/$xalan2;" . 
                   "$xalanjardir/$xalan3;$xalanjardir/$xalan4;\"";} 
elsif ("xterm" eq $platform) 
 {$classstring = "\"$xalanjardir/$xalan1:$xalanjardir/$xalan2:" .  
                   "$xalanjardir/$xalan3:$xalanjardir/$xalan4\"";} 
else 
 {die "USAGE: Unknown OS platform\n";} 
 
# Select FPGA Vendor 
$vendor = shift(@ARGV); 
die "USAGE: First argument must specify FPGA vendor (-x or -a)\n"  
 if !("-x" eq $vendor or "-a" eq $vendor); 
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# Select Synthesis Tool   
$synopt = shift(@ARGV);   
die "USAGE: Second argument must specify synthesis method (-ven or -syn)\n" 
 if !("-ven" eq $synopt or "-syn" eq $synopt);       
 
# Get Top Level module name   
$toplevel = shift(@ARGV); 
chomp($toplevel); 
die "ERROR: Top Level Source File does not exist\n" 
 if !(-e "./$toplevel.xml");  
     
# Get Input XMI File 
$inputfile = shift(@ARGV); 
chomp($inputfile); 
die "ERROR: XML Input File Does Not Exist...\n"   
 if !(-e $inputfile); 
 
system "mkdir OUTPUTS";   
 
# Perform XSLT Transformations ########################################################## 
&Transform; 
######################################################################################### 
 
# Process Source File to Eliminate Duplicate Modules #################################### 
&Process_Source; 
######################################################################################### 
   
# Separate Transform Output to Create Source Verilog #################################### 
&File_Sep; 
######################################################################################### 
 
# Synthesize Verilog Code ############################################################### 
######################################################################################### 
 
# Using Xilinx XFlow Synthesis ##########################################################  
if ("-ven" eq $synopt and "-x" eq $vendor) 
 { 
  #Create Xilinx project file for FPGA synthesis 
  print "Creating Xilinx Project File\n"; 
  @verilog_files = glob "WORK/*.v"; 
  die "All verilog source files must be initially stored in $sourcedir\n" 
   if (!defined(@verilog_files)); 
  open TOPLEVELFILE, ">", "$toplevel.prj"; 
  foreach $vfile (@verilog_files) 
   { 
    $vfile =~ s/WORK\///; 
    print TOPLEVELFILE "verilog WORK $vfile\n"; 
   } 
  close TOPLEVELFILE; 
  system "mv $toplevel.prj WORK"; 
 
  #Run Xilinx XFlow 
  print "Running Xilinx ISE XFlow\n"; 
  system "xflow -p xc3s200ft256-5 " . 
         "-synth xst_mixed.opt " . 
         "-implement balanced.opt " . 
         "-config bitgen.opt " . 
         "-wd WORK " . 
         "-rd ../OUTPUTS " . 
         "$toplevel.prj " . 
         " > ./xflowout.txt"; 
  print "Generating FPGA Configuration File\n";    
 
  #Check for Xflow errors 
  &Check_XFlow;                
 } 
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# Using Altera QFlow Synthesis ########################################################## 
elsif ("-ven" eq $synopt and "-a" eq $vendor) 
 {  
  #Create Altera QFlow TCL script file 
  @verilog_files = glob "WORK/*.v"; 
  die "All verilog source files must be initially stored in $sourcedir\n" 
   if (!defined(@verilog_files));    
  open ALTERATCLFILE, ">>", "$toplevel.tcl"; 
  print ALTERATCLFILE "project_new -family \"Cyclone II\" -part EP2C35F672C6 " . 
                      "-overwrite $toplevel\n"; 
  foreach $vfile (@verilog_files) 
   { 
    $vfile =~ s/WORK\///; 
    print ALTERATCLFILE "set_global_assignment -name VERILOG_FILE \"WORK/$vfile\"\n"; 
   }   
  print ALTERATCLFILE "\n"; 
  open SETTINGSFILE, "<", "WORK/$toplevel.qsf"; 
  while(<SETTINGSFILE>) 
   {print ALTERATCLFILE $_;} 
  close SETTINGSFILE; 
  print ALTERATCLFILE "\nset_global_assignment -name RESERVE_ALL_UNUSED_PINS" . 
                      " \"AS INPUT TRI-STATED\"\n"; 
  print ALTERATCLFILE "\nproject_close\n"; 
  close ALTERATCLFILE; 
   
  #Remove black box comments from Altera LPMs 
  &Remove_BB_Comments; 
   
  #Run Altera QFlow 
  print "Running Altera QuartusII Design Flow\n";   
  system "quartus_sh -t $toplevel.tcl > ./quartus.tmp"; 
  &Check_QFlow; 
  system "quartus_map $toplevel > ./quartus.tmp"; 
  &Check_QFlow; 
  system "quartus_fit $toplevel > ./quartus.tmp"; 
  &Check_QFlow; 
  print "Generating FPGA Configuration File\n"; 
  system "quartus_asm $toplevel > ./quartus.tmp"; 
  &Check_QFlow; 
  print "Analyzing Design Timing\n"; 
  system "quartus_tan $toplevel > ./quartus.tmp"; 
  &Check_QFlow;   
  system "rm quartus.tmp"; 
 } 
  
 
  
# Using Synplicity Synplify Pro Synthesis ############################################### 
elsif ("-syn" eq $synopt) 
 {    
  #Create Synplicity TCL file 
  print "Creating Synplicity TCL File\n"; 
  @verilog_files = glob "WORK/*.v"; 
  die "All verilog source files must be initially stored in $sourcedir\n" 
   if (!defined(@verilog_files)); 
  open TCLFILE, ">", "$toplevel-syn.tcl"; 
  if ("-x" eq $vendor) 
   { 
    print TCLFILE "set_option -technology SPARTAN3\n"; 
    print TCLFILE "set_option -part XC3S200\n"; 
    print TCLFILE "set_option -package FT256\n"; 
    print TCLFILE "set_option -speed_grade -5\n\n"; 
   } 
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  if("-a" eq $vendor) 
   { 
    print TCLFILE "set_option -technology CYCLONEII\n"; 
    print TCLFILE "set_option -part EP2C35\n"; 
    print TCLFILE "set_option -package FC672\n"; 
    print TCLFILE "set_option -speed_grade -6\n\n"; 
   } 
  print TCLFILE "set_option -fixgatedclocks 3\n\n"; 
  foreach $vfile (@verilog_files) 
   { 
    if ("WORK/$toplevel.v" ne $vfile) 
     { print TCLFILE "add_file -verilog \"$vfile\"\n"; } 
   } 
  print TCLFILE "add_file -verilog \"WORK/$toplevel.v\"\n"; 
  print TCLFILE "\nproject -run"; 
  close TOPLEVELFILE; 
     
  #Run Syplify Pro synthesis tool 
  print "Running Synplify Pro\n";  
  system "synplify_pro -batch $toplevel-syn.tcl  > synplify.txt"; 
  &Check_Synplify;   
  if ("-x" eq $vendor) 
   {system "mv rev_1/$toplevel.edf WORK";} 
  if ("-a" eq $vendor) 
   {system "mv rev_1/$toplevel.vqm WORK";} 
  system "mv rev_1/$toplevel.srr ."; 
  system "rm -r rev_1"; 
  system "rm stdout.log";   
          
  #Run Vendor tool for Design Mapping and Config File Generation 
  if ("-x" eq $vendor) 
   { 
    #Run Xilinx XFlow 
    print "Running Xilinx ISE XFlow\n"; 
    system "xflow -p xc3s200ft256-5 " . 
           "-implement balanced.opt " . 
           "-config bitgen.opt " . 
           "-wd WORK " . 
           "-rd ../OUTPUTS " . 
           "$toplevel.edf " . 
           " > ./xflowout.txt";      
    print "Generating FPGA Configuration File\n"; 
         
    #Check for Xflow errors 
    &Check_XFlow; 
   } 
  if ("-a" eq $vendor) 
   { 
    #Create Altera QFlow TCL script file  
    open ALTERATCLFILE, ">>", "$toplevel.tcl"; 
    print ALTERATCLFILE "project_new -family \"Cyclone II\" -part EP2C35F672C6 " . 
                        "-overwrite $toplevel\n"; 
    print ALTERATCLFILE "set_global_assignment -name VQM_FILE \"WORK/$toplevel.vqm\"\n"; 
    print ALTERATCLFILE "\n"; 
    open SETTINGSFILE, "<", "WORK/$toplevel.qsf"; 
    while(<SETTINGSFILE>) 
     {print ALTERATCLFILE $_;} 
    close SETTINGSFILE; 
    print ALTERATCLFILE "\nset_global_assignment -name RESERVE_ALL_UNUSED_PINS" .  
                        " \"AS INPUT TRI-STATED\"\n"; 
    print ALTERATCLFILE "\nproject_close\n"; 
    close ALTERATCLFILE; 
     
    #Remove black box comments from Altera LPMs 
    &Remove_BB_Comments; 
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    #Run Altera QFlow 
    print "Running Altera QuartusII Design Flow\n";   
    system "quartus_sh -t $toplevel.tcl > ./quartus.tmp"; 
    &Check_QFlow; 
    system "quartus_map $toplevel > ./quartus.tmp"; 
    &Check_QFlow; 
    system "quartus_fit $toplevel > ./quartus.tmp"; 
    &Check_QFlow; 
    print "Generating FPGA Configuration File\n"; 
    system "quartus_asm $toplevel > ./quartus.tmp"; 
    &Check_QFlow; 
    print "Analyzing Design Timing\n"; 
    system "quartus_tan $toplevel > ./quartus.tmp"; 
    &Check_QFlow;       
   } 
 } 
######################################################################################### 
  
&CleanUp; 
     
print "\nUML-to-FPGA Conversion Completed...\n"; 
 
#END OF MAIN PROCESS #################################################################### 
 
 
 
 
 
 
######################################################################################### 
#Perform XSLT Transformations 
######################################################################################### 
sub Transform 
{ 
 #Transform XMI to DAXML 
 print "\nConverting XMI to DAXML\n"; 
 system "java -classpath $classstring org.apache.xalan.xslt.Process " . 
        "-in ./$inputfile " . 
        "-xsl $xsltdir/$xslt1 " . 
        "-out $xalandir/output.xml"; 
 $outputfile = "$xalandir/output.xml";  
 die "ERROR: Conversion Failed\n" 
  if !(-e $outputfile); 
  
 #Transform DAXML to Verilog 
 print "Converting DAXML to Verilog\n"; 
 system "java -classpath $classstring org.apache.xalan.xslt.Process " . 
        "-in $xalandir/output.xml " . 
        "-xsl $xsltdir/$xslt2 " . 
        "-out $xalandir/output.v"; 
 $outputfile = "$xalandir/output.v";  
 die "ERROR: Conversion Failed\n" 
  if !(-e $outputfile);   
     
 #Transfer all FPGA source files to "WORK" directory 
 system "mkdir WORK"; 
 system "mv $xalandir/output.v ./WORK"; 
 system "cp $xilinxdir/* ./WORK";  
} 
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######################################################################################### 
# Process Source File to Eliminate Duplicate Modules  
######################################################################################### 
sub Process_Source 
{ 
  #Create Module Information Data Structure from Source File 
  my $inputs = "*"; 
  my $outputs = "*"; 
  my $refdes = ""; 
  my $modulename1 = ""; 
  my @refdesarray = (); 
  my @modarray = (); 
  my @inarray = (); 
  my @outarray = (); 
  my @duparray = (); 
  my @vararray = (); 
   
  open ORIGSOURCEFILE, "<", "WORK/output.v"; 
  while(<ORIGSOURCEFILE>) 
   { 
    if(/\/\/u(\w+)/) 
     {$refdes = $1;}  
    if(/module (\w+)\(/) 
     {$modulename1 = $1;} 
    if(/input (\w+)/) 
     {$inputs = $inputs . $1 . '*';} 
    if(/input \[(\w+):(\w+)\] (\w+)/) 
     {$inputs = $inputs . "$3\[$1:$2\]*";} 
    if(/output (\w+)/) 
     {$outputs = $outputs . $1 . '*';} 
    if(/output \[(\w+):(\w+)\] (\w+)/) 
     {$outputs = $outputs . "$3\[$1:$2\]*";} 
    if(/endmodule/) 
     { 
      if($modulename1 ne "controller") 
       { 
        push(@refdesarray,$refdes); 
        push(@modarray,$modulename1); 
        push(@inarray,$inputs); 
        push(@outarray,$outputs); 
        push(@duparray,0);  
        push(@vararray,1); 
        $inputs = "*"; 
        $outputs = "*"; 
       } 
     } 
   
   } 
  close ORIGSOURCEFILE; 
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  #Analyze Module Information Data Structure for Dups/Mods 
  my $i = 0; 
  my $j = 0; 
  foreach (@refdesarray) 
   { 
    if($_ ne "") 
     { 
      for($j=0;$j<$i;$j++) 
       { 
        #ignore duplicates  
        if($duparray[$j] eq 0) 
         { 
          #match module name first 
          if($modarray[$j] eq $modarray[$i]) 
           { 
            #if I/O ports match, it's a duplicate module 
            if(($inarray[$j] eq $inarray[$i]) and ($outarray[$j] eq $outarray[$i])) 
             {$duparray[$i] = 1;} 
            #otherwise, create a new variation of the module 
            else 
             { 
              $vararray[$i]++; 
              if($vararray[$i] gt 2) 
               { 
                if($modarray[$i] =~ /(\w+)__(\d+)/) 
                 {$modarray[$i] = "$1__$vararray[$i]";} 
               } 
              else 
               {$modarray[$i] = $modarray[$i] . "__$vararray[$i]";} 
             } 
           } 
         } 
       }  
     } 
    $i++; 
   } 
    
  #Update Source Verilog File 
  my $numcomp = @refdesarray; 
  my $intoplevel = 1; 
  my $checking = 0; 
  my $founddup = 0; 
  my $savedindex = -1; 
  open NEWSOURCEFILE, ">","WORK/newoutput.v"; 
  open ORIGSOURCEFILE, "<", "WORK/output.v"; 
  while(<ORIGSOURCEFILE>) 
   { 
    if($intoplevel) 
     { 
      if(/^(\w+) u(\d+)_/) 
       { 
        for($i=0;$i<$numcomp;$i++) 
         { 
          if($2 eq $refdesarray[$i])  
           {$savedindex = $i;} 
         } 
        if($vararray[$savedindex] ne 1) 
         { 
          s/(\w+) u(\d+)_(\w+) \(/$modarray[$savedindex] u$2_$modarray[$savedindex] \(/;  
         } 
        print NEWSOURCEFILE $_;  
       } 
      else  
       {print NEWSOURCEFILE $_;}  
     } 
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    else 
     {  
      if($checking) 
       { 
        if($duparray[$savedindex] eq 0) 
         {  
          if(/module (\w+)\(/) 
           {s/module (\w+)\(/module $modarray[$savedindex]\(/;} 
          print NEWSOURCEFILE $_; 
         } 
        if(/======================================/)  
         { 
          $checking = 0;  
          $savedindex=-1 
         }        
       } 
      else 
       { 
        if(/\/\/u(\d+)/)  
         { 
          $checking = 1; 
          for($i=0;$i<$numcomp;$i++) 
           { 
            if($1 eq $refdesarray[$i])  
             {$savedindex = $i;} 
           } 
         } 
        else  
         {print NEWSOURCEFILE $_;} 
       } 
     } 
   
    if(/======================================/)  
     {$intoplevel = 0;}   
   } 
  close ORIGSOURCEFILE; 
  close NEWSOURCEFILE;  
  #die "debug now\n"; 
  system "rm WORK/output.v"; 
  rename "WORK/newoutput.v", "WORK/output.v"; 
} 
 
 
 
 
######################################################################################### 
# Separate Transform Output to Create Source Verilog 
######################################################################################### 
sub File_Sep 
{ 
 $fileseperror = 0;  
 open XSLTOUTFILE, "<", "WORK/output.v"; 
 while(<XSLTOUTFILE>) 
  { 
   open NEWSOURCEFILE, ">>", "$sourcedir/zzz.v"; 
   if(/module\s(\w+)__(\d+)/) 
    {$sourcemodulename = $1;}    
   elsif(/module\s(\w+)/) 
    {$sourcemodulename = $1;} 
     
   if(/module\s(\w+)/) 
    {$modulename = $1;} 
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   if(/endmodule/) 
    { 
     if($sourcemodulename ne "controller" and $sourcemodulename ne $toplevel) 
      { 
       # search for source material 
       open SRCCODEFILE, "<", "$sourcedir/source.src"; 
       $found = 0; 
       $copy = 0; 
       while(<SRCCODEFILE>) 
        { 
         if(/==============/) 
          {$copy = 0;}        
         if($copy) 
          {  
           $currentline = $_; 
           if(/\#\#\#define\(width\):(\w+)\#\#\#/) 
            { 
             $param = $1; 
             $width = 0; 
             #print "width needed for $param\n"; 
             close NEWSOURCEFILE; 
             open NEWSOURCEFILE, "<", "$sourcedir/zzz.v"; 
             $paramfound = 0; 
             while(<NEWSOURCEFILE>) 
              { 
               if(/output \[(\w+):0] $param/) 
                { 
                 #print "found width ($1) for $param\n"; 
                 $width = $1; 
                 $paramfound = 1; 
                } 
               elsif(/input \[(\w+):0] $param/) 
                { 
                 #print "found width ($1) for $param\n"; 
                 $width = $1; 
                 $paramfound = 1;                 
                } 
              } 
             if(!$paramfound) 
              { 
               print "ERROR: Parameter \"$param\" not found for " . 
                     "module \"$modulename\"\n"; 
               $fileseperror = 1; 
              } 
             close NEWSOURCEFILE; 
             open NEWSOURCEFILE, ">>", "$sourcedir/zzz.v"; 
             $width = $width + 1; 
             if($width ne 1) 
              {$currentline =~ s/\#\#\#define\(width\):$param\#\#\#/$width/;} 
             else 
              { 
               $currentline =~ s/\#\#\#define\(width\):$param\#\#\#/PARAMETER NOT FOUND/; 
              } 
             print NEWSOURCEFILE "$currentline"; 
            } 
           elsif(/\#\#\#define\(bus\):(\w+)\#\#\#/) 
            { 
             $param = $1; 
             $buswidth = 0; 
             #print "buswidth needed for $param\n"; 
             close NEWSOURCEFILE; 
             open NEWSOURCEFILE, "<", "$sourcedir/zzz.v"; 
             $paramfound = 0; 
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             while(<NEWSOURCEFILE>) 
              { 
               if(/output \[(\w+):0] $param/) 
                { 
                 #print "found buswidth ($1) for $param\n"; 
                 $buswidth = $1; 
                 $paramfound = 1; 
                } 
               elsif(/input \[(\w+):0] $param/) 
                { 
                 #print "found buswidth ($1) for $param\n"; 
                 $buswidth = $1; 
                 $paramfound = 1; 
                } 
              } 
             if(!$paramfound) 
              { 
               print "ERROR: Parameter \"$param\" not found for " . 
                     "module \"$modulename\"\n"; 
               $fileseperror = 1; 
              }              
             close NEWSOURCEFILE; 
             open NEWSOURCEFILE, ">>", "$sourcedir/zzz.v"; 
             if($buswidth ne 0) 
              {$currentline =~ s/\#\#\#define\(bus\):$param\#\#\#/$buswidth/;} 
             else 
              { 
               $currentline =~ s/\#\#\#define\(bus\):$param\#\#\#/PARAMETER NOT FOUND/; 
              } 
             print NEWSOURCEFILE "$currentline"; 
            }            
           else      
            {print NEWSOURCEFILE $_;}             
          }        
         if(/====$sourcemodulename====/) 
          { 
           $found = 1; 
           $copy = 1; 
          } 
        } 
       close SRCCODEFILE; 
       if(!$found) 
        { 
         print NEWSOURCEFILE "\n<INSERT VERILOG SOURCE CODE HERE>\n"; 
         print "ERROR: Source verilog not found for module \"$modulename\"\n"; 
         $fileseperror = 1; 
        }    
      }     
     print NEWSOURCEFILE "\nendmodule\n"; 
     close NEWSOURCEFILE; 
     rename "$sourcedir/zzz.v", "$sourcedir/$modulename.v"; 
    } 
   elsif(/==========/) 
    { 
     close NEWSOURCEFILE; 
     system "rm $sourcedir/zzz.v"; 
    } 
   else 
    { 
     print NEWSOURCEFILE $_; 
     close NEWSOURCEFILE; 
    }  
  } 
 close XSLTOUTFILE; 
 system "rm WORK/output.v"; 
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 if($fileseperror) 
  { 
   &CleanUp;   
   die "\nUML2Verilog ERROR: exiting due to source code creation errors\n"; 
  } 
 else 
  { 
   system "cp $sourcedir/* ./WORK"; 
   system "rm $sourcedir/*.v"; 
  } 
} 
 
 
######################################################################################### 
# Remove black box comments from source files containing Altera LPMs 
######################################################################################### 
sub Remove_BB_Comments 
{ 
  my @verilog_files = glob "WORK/*.v"; 
  die "No verilog files found in WORK directory\n" 
    if (!defined(@verilog_files));    
  foreach my $vfile (@verilog_files) 
   { 
    open SOURCEFILE, "<", "$vfile"; 
    open MODSOURCEFILE, ">", "zzz.v"; 
    while(<SOURCEFILE>) 
     { 
      s/\/\/BBsynplify //; 
      print MODSOURCEFILE $_; 
     }  
    close SOURCEFILE; 
    close MODSOURCEFILE; 
    rename "zzz.v", "$vfile"; 
   }  
} 
 
 
 
 
######################################################################################### 
# Check for Synplify Errors 
######################################################################################### 
sub Check_Synplify 
{ 
 open SLOGFILE, "<", "synplify.txt"; 
 $empty = 1; 
 while(<SLOGFILE>) 
  { 
   $empty = 0; 
   if(/ERROR:/) 
    { 
     $errorsfound = 1; 
     print "$_"; 
    } 
  } 
 close SLOGFILE; 
 if($errorsfound eq 1 || $empty eq 1) 
  { 
   rename "synplify.txt", "./OUTPUTS/synplify.txt"; 
   &CleanUp; 
   die "\nUML2Verilog ERROR: exiting due to Synplify errors\n";  
  }   
} 
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######################################################################################### 
# Check for XFlow Errors 
######################################################################################### 
sub Check_XFlow 
{ 
 open XLOGFILE, "<", "xflowout.txt"; 
 $empty = 1; 
 while(<XLOGFILE>) 
  { 
   $empty = 0; 
   if(/ERROR:/) 
    { 
     $errorsfound = 1; 
     print "$_"; 
    } 
  } 
 close XLOGFILE; 
 if($errorsfound eq 1 || $empty eq 1) 
  { 
   rename "xflowout.txt", "./OUTPUTS/xflowout.txt"; 
   &CleanUp; 
   die "\nUML2Verilog ERROR: exiting due to Xflow errors\n";  
  }   
}  
 
 
 
 
######################################################################################### 
# Check for QFlow Errors 
######################################################################################### 
sub Check_QFlow 
{ 
 open QLOGFILE, "<", "quartus.tmp"; 
 while(<QLOGFILE>) 
  { 
   if(/Error:/) 
    { 
     $errorsfound = 1; 
     print "$_"; 
    } 
  } 
 close QLOGFILE; 
 if($errorsfound) 
  { 
   rename "quartus.tmp", "./OUTPUTS/quartusout.txt"; 
   &CleanUp; 
   die "\nUML2Verilog ERROR: exiting due to Qflow errors\n";  
  }   
}  
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######################################################################################### 
#Clean Up Work Area 
######################################################################################### 
sub CleanUp 
{ 
 if (defined(glob "WORK/*.v")) {system "cp WORK/*.v ./OUTPUTS";} 
 system "mv $xalandir/output.xml ./OUTPUTS"; 
 rename "./OUTPUTS/output.xml", "./OUTPUTS/DAXML.xml";   
 if ("-x" eq $vendor) 
  { 
   if (-e "xflow.his") {system "rm xflow.his";} 
   if (-e "WORK/$toplevel.bit") {system "cp WORK/$toplevel.bit ./OUTPUTS";} 
   if (-e "WORK/$toplevel.msk") {system "cp WORK/$toplevel.msk ./OUTPUTS";} 
   if (-e "xflowout.txt") {rename "./xflowout.txt", "./OUTPUTS/xflowout.txt";} 
   if ("-syn" eq $synopt) 
    { 
     if (-e "WORK/$toplevel.edf") {system "mv WORK/$toplevel.edf ./OUTPUTS";} 
    } 
  } 
 else 
  { 
   if (-e "$toplevel.sof") {system "mv $toplevel.sof ./OUTPUTS";} 
   if (-e "$toplevel.pof") {system "mv $toplevel.pof ./OUTPUTS";} 
   if (defined(glob "*.summary")) {system "mv *.summary ./OUTPUTS";} 
   if (defined(glob "*.rpt")) {system "mv *.rpt ./OUTPUTS";} 
   if (defined(glob "*.smsg")) {system "mv *.smsg ./OUTPUTS";} 
   if (defined(glob "*.eqn")) {system "mv *.eqn ./OUTPUTS";} 
   if (-e "$toplevel.tcl") {system "mv $toplevel.tcl ./OUTPUTS";} 
   if (-e "$toplevel.pin") {system "mv $toplevel.pin ./OUTPUTS";} 
   if (-e "db") {system "rm -r db";} 
   if (-e "$toplevel.qsf") {system "rm $toplevel.qsf";} 
   if (-e "$toplevel.qpf") {system "rm $toplevel.qpf";} 
   if (-e "quartus.tmp") {system "rm quartus.tmp";} 
   if ("-syn" eq $synopt) 
    { 
     if (-e "WORK/$toplevel.vqm") {system "mv WORK/$toplevel.vqm ./OUTPUTS";} 
    } 
  } 
 if ("-syn" eq $synopt) 
  { 
   if (-e "synplify.txt") {rename "./synplify.txt", "./OUTPUTS/synplify.txt";} 
   if (-e "$toplevel.srr") {rename "./$toplevel.srr", "./OUTPUTS/$toplevel.srr";} 
   if (-e "$toplevel-syn.tcl") {system "mv $toplevel-syn.tcl ./OUTPUTS";}    
  } 
 if (-e "WORK") {system "rm -r WORK";} 
}
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APPENDIX B 

XMI-TO-DAXML XSLT RULES FILE 

 

<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  
                              xmlns:fo="http://www.w3.org/1999/XSL/Format"  
                              xmlns:xs="http://www.w3.org/2001/XMLSchema"  
                              xmlns:fn="http://www.w3.org/2005/02/xpath-functions"  
                              xmlns:xdt="http://www.w3.org/2005/02/xpath-datatypes"  
                              xmlns:UML="href://org.omg/UML/1.3"  
                              xmlns:xalan="http://xml.apache.org/xalan"  
                              exclude-result-prefixes="xalan"> 
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/> 
  
 
 <!-- Compute log2 --> 
 <xsl:template name="log2"> 
  <!-- named template called by main template below --> 
  <xsl:param name="i"/> 
  <xsl:param name="count"/> 
  <xsl:param name="maxValue"/> 
  <xsl:choose> 
   <!-- If there are more iterations to do, add the passed 
    value of pi to another round of calculations. --> 
   <xsl:when test="$i &lt; $maxValue"> 
    <xsl:call-template name="log2"> 
     <xsl:with-param name="i" select="$i *2"/> 
     <xsl:with-param name="count" select="$count + 1"/> 
     <xsl:with-param name="maxValue" select="$maxValue"/> 
    </xsl:call-template> 
   </xsl:when> 
   <!-- If no more iterations to do, add  
    computed value to result tree. --> 
   <xsl:otherwise> 
    <xsl:value-of select="$count"/> 
   </xsl:otherwise> 
  </xsl:choose> 
 </xsl:template> 
 
 
 <!-- General XSLT Variables --> 
 <xsl:variable name="modelname" select="/XMI/XMI.content/UML:Model/@name"/> 
 <xsl:variable name="stateid" select="/XMI/XMI.content/UML:Model/ 

UML:Namespace.ownedElement/UML:StateMachine/UML:StateMachine.top/ 
UML:CompositeState/UML:CompositeState.subvertex/UML:SimpleState/@xmi.id"/> 

 <xsl:variable name="transition" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:StateMachine/UML:StateMachine.transitions/ 
UML:Transition/@xmi.id"/> 

 <xsl:variable name="signal" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:SignalEvent/@xmi.id"/> 

 <xsl:variable name="comments" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:Comment/@name"/> 

 <xsl:variable name="morecomments" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:Comment/UML:ModelElement.name"/> 
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<xsl:variable name="component" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:Subsystem/UML:Namespace.ownedElement/UML:Component/
@xmi.id"/>  

<xsl:variable name="dependency" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:Subsystem/UML:Namespace.ownedElement/UML:Dependency
/@xmi.id"/> 

 <xsl:variable name="net" select="/XMI/XMI.content/UML:Model/ 
UML:Namespace.ownedElement/UML:Subsystem/UML:Namespace.ownedElement/UML:Comment/ 
@xmi.id"/> 

 
 
 <!-- Main Template Match --> 
 <xsl:template match="/"> 
  <daxml version="1.0"> 
   <Model> 
    <xsl:attribute name="name"> 
     <xsl:value-of select="./XMI/XMI.content/UML:Model/@name"/> 
    </xsl:attribute> 
   </Model> 
 
   <comments> 
    <!-- Identify DAXML comment types --> 
    <xsl:for-each select="$comments"> 
     <xsl:variable name="pname" select="substring-before(.,':')"/> 
     <xsl:variable name="pcontent" select="substring-after(.,':')"/> 
     <xsl:if test="($pname='CODINGSTYLE')"> 
      <xsl:element name="{$pname}"> 
       <xsl:value-of select="$pcontent"/> 
      </xsl:element> 
     </xsl:if> 
     <xsl:if test="($pname='INITIALSTATE')"> 
      <xsl:element name="{$pname}"> 
       <xsl:value-of select="$pcontent"/> 
      </xsl:element> 
     </xsl:if> 
     <xsl:if test="($pname='DATARANGE')"> 
      <xsl:variable name="perdata" select="xalan:tokenize($pcontent,';')"/> 
      <xsl:element name="{$pname}"> 
       <xsl:for-each select="$perdata"> 
        <comments.DATARANGE> 
         <xsl:attribute name="name"> 
          <xsl:value-of select="substring-before(.,'.')"/> 
         </xsl:attribute> 
         <xsl:variable name="claim" select="substring-after(.,'.')"/> 
         <xsl:variable name="claimvalue" select="substring-before($claim,'=')"/> 
         <xsl:attribute name="maxValue"> 
          <xsl:value-of select="substring-after($claim,'=')"/> 
         </xsl:attribute> 
         <xsl:if test="($claimvalue='list')"> 
          <xsl:variable name="perlist" select="xalan:tokenize($claim,',')"/> 
          <xsl:attribute name="maxValue"> 
           <xsl:value-of select="count($perlist)"/> 
          </xsl:attribute> 
          <xsl:attribute name="list"> 
           <xsl:value-of select="substring-after($claim,'=')"/> 
          </xsl:attribute> 
         </xsl:if> 
        </comments.DATARANGE> 
       </xsl:for-each> 
      </xsl:element> 
     </xsl:if> 
    </xsl:for-each> 
    <!-- Identify DAXML comment types --> 
    <xsl:for-each select="$morecomments"> 
     <xsl:variable name="pname" select="substring-before(.,':')"/> 
     <xsl:variable name="pcontent" select="substring-after(.,':')"/> 
     <xsl:if test="($pname='DATARANGE')"> 
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      <xsl:variable name="perdata" select="xalan:tokenize($pcontent,';')"/> 
      <xsl:element name="{$pname}"> 
       <xsl:for-each select="$perdata"> 
        <comments.DATARANGE> 
         <xsl:attribute name="name"> 
          <xsl:value-of select="substring-before(.,'.')"/> 
         </xsl:attribute> 
         <xsl:variable name="claim" select="substring-after(.,'.')"/> 
         <xsl:variable name="claimvalue" select="substring-before($claim,'=')"/> 
         <xsl:if test="($claimvalue='max')"> 
          <xsl:attribute name="maxValue"> 
           <xsl:value-of select="substring-after($claim,'=')"/> 
          </xsl:attribute> 
         </xsl:if> 
         <xsl:if test="($claimvalue='list')"> 
          <xsl:variable name="perlist" select="xalan:tokenize($claim,',')"/> 
          <xsl:attribute name="maxValue"> 
           <xsl:value-of select="count($perlist)"/> 
          </xsl:attribute> 
          <xsl:attribute name="list"> 
           <xsl:value-of select="substring-after($claim,'=')"/> 
          </xsl:attribute> 
         </xsl:if> 
        </comments.DATARANGE> 
       </xsl:for-each> 
      </xsl:element> 
     </xsl:if> 
    </xsl:for-each> 
   </comments> 
 
   <!-- Process each controller state --> 
   <xsl:for-each select="$stateid"> 
    <state> 
     <xsl:attribute name="id"> 
      <xsl:value-of select="../@name"/> 
     </xsl:attribute> 
     <!-- find outgoing state transitions --> 
     <xsl:variable name="transitionid" select="xalan:tokenize(../@outgoing,' ')"/> 
     <xsl:for-each select="$transitionid"> 
      <xsl:variable name="transitionidone" select="."/> 
      <!-- define "next" state for transition --> 
      <xsl:variable name="targetname"> 
       <xsl:for-each select="$transition"> 
        <xsl:if test="../@xmi.id = $transitionidone"> 
         <xsl:variable name="targetid" select="../@target"/> 
         <xsl:for-each select="$stateid"> 
          <xsl:if test="../@xmi.id = $targetid"> 
           <xsl:value-of select="../@name"/> 
          </xsl:if> 
         </xsl:for-each> 
        </xsl:if> 
       </xsl:for-each> 
      </xsl:variable> 
      <!-- define transition event trigger signal --> 
      <xsl:variable name="signalname"> 
       <xsl:for-each select="$transition"> 
        <xsl:if test="../@xmi.id = $transitionidone"> 
         <xsl:variable name="signalid" select="../@trigger"/> 
         <xsl:for-each select="$signal"> 
          <xsl:if test="../@xmi.id = $signalid"> 
           <xsl:value-of select="../@name"/> 
          </xsl:if> 
         </xsl:for-each> 
        </xsl:if> 
       </xsl:for-each> 
      </xsl:variable> 
      <!-- create DAXML transition element --> 
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      <transition> 
       <xsl:choose> 
        <xsl:when test="contains($signalname,'@') "> 
         <xsl:variable name="eventname" select="substring-before($signalname,'(@')"/> 
         <xsl:variable name="conda" select="substring-after($signalname,'@')"/> 
         <xsl:variable name="cond" select="substring-before($conda,')=')"/> 
         <xsl:variable name="eventvalue" select="substring-after($conda,')=')"/> 
         <xsl:attribute name="event"> 
          <xsl:value-of select="$eventname"/> 
         </xsl:attribute> 
         <xsl:attribute name="value"> 
          <xsl:value-of select="$eventvalue"/> 
         </xsl:attribute> 
         <xsl:attribute name="cond"> 
          <xsl:value-of select="$cond"/> 
         </xsl:attribute> 
        </xsl:when> 
        <xsl:when test="contains($signalname,'=')"> 
         <xsl:variable name="eventname" select="substring-before($signalname,'=')"/> 
         <xsl:variable name="eventvalue" select="substring-after($signalname,'=')"/> 
         <xsl:attribute name="event"> 
          <xsl:value-of select="$eventname"/> 
         </xsl:attribute> 
         <xsl:attribute name="value"> 
          <xsl:value-of select="$eventvalue"/> 
         </xsl:attribute> 
        </xsl:when> 
        <xsl:otherwise> 
         <xsl:attribute name="event"> 
          <xsl:value-of select="$signalname"/> 
         </xsl:attribute> 
        </xsl:otherwise> 
       </xsl:choose> 
       <target> 
        <xsl:attribute name="next"> 
         <xsl:value-of select="$targetname"/> 
        </xsl:attribute> 
       </target> 
      </transition> 
     </xsl:for-each> 
     <!-- define "on entry" state behavior --> 
     <onentry> 
      <xsl:for-each select="../UML:State.entry/UML:ActionSequence/ 

UML:ActionSequence.action/UML:SendAction/@name"> 
       <assign> 
        <xsl:attribute name="name"> 
         <xsl:value-of select="../@name"/> 
        </xsl:attribute> 
        <xsl:attribute name="expr"> 
         <xsl:value-of select="../UML:Action.actualArgument/UML:Argument/ 

UML:Argument.value/UML:Expression/@body"/> 
        </xsl:attribute> 
       </assign> 
      </xsl:for-each> 
     </onentry> 
     <!-- define state behavior --> 
     <xsl:for-each select="../UML:State.doActivity/UML:ActionSequence/ 

UML:ActionSequence.action/UML:SendAction/@name"> 
      <assign> 
       <xsl:attribute name="name"> 
        <xsl:value-of select="../@name"/> 
       </xsl:attribute> 
       <xsl:attribute name="expr"> 
        <xsl:value-of select="../UML:Action.actualArgument/UML:Argument/ 

UML:Argument.value/UML:Expression/@body"/> 
       </xsl:attribute> 
      </assign> 
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     </xsl:for-each> 
    </state> 
   </xsl:for-each> 
   <!-- Process Datapath Elements --> 
   <components> 
    <!-- define top-level I/O ports --> 
    <ports>   
     <inputs> 
      <!-- find top-level inputs --> 
      <xsl:for-each select="$component"> 
       <xsl:variable name="componentname" select="../@name"/> 
       <xsl:variable name="componenttype" select="substring-before($componentname,':')"/> 
       <xsl:if test="$componenttype = 'IN'">               
        <xsl:element name="input"> 
         <xsl:value-of select="substring-after($componentname,':')"/> 
         <!-- look for port width definition in DATARANGE block --> 
         <xsl:for-each select="$net"> 
          <xsl:if test="contains(../@name,'DATARANGE')"> 
           <xsl:variable name="rangelist" select="substring-after(../@name,':')"/> 
           <xsl:variable name="ranges" select="xalan:tokenize($rangelist,';')"/> 
           <xsl:for-each select="$ranges"> 
            <xsl:variable name="rangenet" select="substring-before(.,'.')"/> 
            <xsl:if test="substring-after($componentname,':') = $rangenet"> 
             <xsl:variable name="temp" select="substring-after(.,'.')"/> 
             <xsl:variable name="rangetype" select="substring-before($temp,'=')"/> 
             <xsl:if test="$rangetype = 'width'"> 
              <xsl:value-of select="'['"/> 
              <xsl:value-of select="substring-after($temp,'=')-1"/> 
              <xsl:value-of select="':0]'"/> 
             </xsl:if> 
             <xsl:if test="$rangetype = 'max'"> 
              <xsl:variable name="buswidth"> 
               <xsl:call-template name="log2"> 
                <xsl:with-param name="i" select="1"/> 
                <xsl:with-param name="count" select="0"/> 
                <xsl:with-param name="maxValue" select="substring-after($temp,'=')"/> 
               </xsl:call-template> 
              </xsl:variable> 
              <xsl:if test="$buswidth>1"> 
                <xsl:value-of select="'['"/> 
                <xsl:value-of select="number($buswidth)-1"/> 
                <xsl:value-of select="':0]'"/> 
              </xsl:if> 
             </xsl:if>                         
            </xsl:if> 
           </xsl:for-each> 
          </xsl:if> 
         </xsl:for-each>           
        </xsl:element>         
       </xsl:if> 
      </xsl:for-each> 
     </inputs> 
     
     <outputs> 
      <!-- find top-level outputs --> 
      <xsl:for-each select="$component"> 
       <xsl:variable name="componentname" select="../@name"/> 
       <xsl:variable name="componenttype" select="substring-before($componentname,':')"/> 
       <xsl:if test="$componenttype = 'OUT'">              
        <xsl:element name="output"> 
         <xsl:value-of select="substring-after($componentname,':')"/> 
         <!-- look for port width definition in DATARANGE block --> 
         <xsl:for-each select="$net"> 
          <xsl:if test="contains(../@name,'DATARANGE')"> 
           <xsl:variable name="rangelist" select="substring-after(../@name,':')"/> 
           <xsl:variable name="ranges" select="xalan:tokenize($rangelist,';')"/> 
           <xsl:for-each select="$ranges"> 
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            <xsl:variable name="rangenet" select="substring-before(.,'.')"/> 
            <xsl:if test="substring-after($componentname,':') = $rangenet"> 
             <xsl:variable name="temp" select="substring-after(.,'.')"/> 
             <xsl:variable name="rangetype" select="substring-before($temp,'=')"/> 
             <xsl:if test="$rangetype = 'width'"> 
              <xsl:value-of select="'['"/> 
              <xsl:value-of select="substring-after($temp,'=')-1"/> 
              <xsl:value-of select="':0]'"/> 
             </xsl:if> 
             <xsl:if test="$rangetype = 'max'"> 
              <xsl:variable name="buswidth">   
               <xsl:call-template name="log2"> 
                <xsl:with-param name="i" select="1"/> 
                <xsl:with-param name="count" select="0"/> 
                <xsl:with-param name="maxValue" select="substring-after($temp,'=')"/> 
               </xsl:call-template> 
              </xsl:variable> 
              <xsl:if test="$buswidth>1"> 
               <xsl:value-of select="'['"/> 
               <xsl:value-of select="number($buswidth)-1"/> 
               <xsl:value-of select="':0]'"/> 
              </xsl:if> 
             </xsl:if>                         
            </xsl:if> 
           </xsl:for-each> 
          </xsl:if> 
         </xsl:for-each>             
        </xsl:element>         
       </xsl:if> 
      </xsl:for-each> 
     </outputs>   
    </ports> 
   
    <!-- define internal nets --> 
    <wires> 
     <xsl:for-each select="$net"> 
      <xsl:variable name="netname" select="../@name"/> 
      <xsl:if test="not(contains($netname,'DATARANGE'))"> 
       <xsl:element name="wire">               
        <xsl:value-of select="$netname"/> 
        <!-- look for port width definition in DATARANGE block --> 
        <xsl:for-each select="$net"> 
         <xsl:if test="contains(../@name,'DATARANGE')"> 
          <xsl:variable name="rangelist" select="substring-after(../@name,':')"/> 
          <xsl:variable name="ranges" select="xalan:tokenize($rangelist,';')"/> 
          <xsl:for-each select="$ranges"> 
           <xsl:variable name="rangenet" select="substring-before(.,'.')"/> 
           <xsl:if test="$netname = $rangenet"> 
            <xsl:variable name="temp" select="substring-after(.,'.')"/> 
            <xsl:variable name="rangetype" select="substring-before($temp,'=')"/> 
            <xsl:if test="$rangetype = 'width'"> 
             <xsl:value-of select="'['"/> 
             <xsl:value-of select="substring-after($temp,'=')-1"/> 
             <xsl:value-of select="':0]'"/> 
            </xsl:if> 
            <xsl:if test="$rangetype = 'max'"> 
             <xsl:variable name="buswidth"> 
              <xsl:call-template name="log2"> 
               <xsl:with-param name="i" select="1"/> 
               <xsl:with-param name="count" select="0"/> 
               <xsl:with-param name="maxValue" select="substring-after($temp,'=')"/> 
              </xsl:call-template> 
             </xsl:variable> 
             <xsl:if test="$buswidth>1"> 
              <xsl:value-of select="'['"/> 
              <xsl:value-of select="number($buswidth)-1"/> 
              <xsl:value-of select="':0]'"/> 
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             </xsl:if> 
            </xsl:if>                         
           </xsl:if> 
          </xsl:for-each> 
         </xsl:if> 
        </xsl:for-each> 
       </xsl:element>                 
      </xsl:if> 
     </xsl:for-each> 
    </wires> 
 
    <!-- define datapath modules -->  
    <xsl:for-each select="$component"> 
     <xsl:variable name="component_id" select="."/> 
     <xsl:variable name="componentname" select="../@name"/>  
     <xsl:variable name="componenttype" select="substring-before($componentname,':')"/> 
     <xsl:if test="$componenttype = ''"> 
      <xsl:element name="component"> 
       <xsl:attribute name="module"> 
        <xsl:choose> 
         <xsl:when test="substring-after(../@name,'#') = ''"> 
          <xsl:value-of select="../@name"/> 
         </xsl:when> 
         <xsl:otherwise> 
          <xsl:value-of select="substring-before(../@name,'#')"/> 
         </xsl:otherwise> 
        </xsl:choose>   
       </xsl:attribute> 
       <!-- find module input ports --> 
       <xsl:element name="inputs"> 
        <xsl:for-each select="$dependency"> 
         <!-- search dependencies for current component ID --> 
         <xsl:variable name="sourceport_id" select="../@supplier"/> 
         <xsl:if test="$sourceport_id = $component_id"> 
          <xsl:element name="input"> 
           <xsl:variable name="dependency_id" select="."/> 
           <xsl:for-each select="$component"> 
            <!-- search PORT components for matching outgoing dependency --> 
            <xsl:variable name="egress_dependency_id" select="../@clientDependency"/> 
            <xsl:variable name="ingress_dependency_id" select="../@supplierDependency"/>           
            <xsl:if test="$egress_dependency_id = $dependency_id">         
             <xsl:attribute name="port"> 
              <xsl:if test="not(contains(../@name,'['))"> 
               <xsl:value-of select="substring-after(../@name,'.')"/> 
              </xsl:if> 
              <xsl:if test="contains(../@name,'[')"> 
               <xsl:variable name="temp" select="substring-before(../@name,'[')"/> 
               <xsl:value-of select="substring-after($temp,'.')"/> 
              </xsl:if> 
             </xsl:attribute>             
             <xsl:if test="contains(../@name,'[')"> 
              <xsl:variable name="temp1" select="substring-after(../@name,'[')"/> 
              <xsl:variable name="spectype" select="substring-before($temp1,'=')"/> 
              <xsl:variable name="temp2" select="substring-after($temp1,'=')"/> 
              <xsl:variable name="specvalue" select="substring-before($temp2,']')"/> 
              <xsl:if test="$spectype = 'width'"> 
               <xsl:attribute name="width"> 
                <xsl:value-of select="$specvalue"/> 
               </xsl:attribute>                
              </xsl:if> 
              <xsl:if test="$spectype = 'max'"> 
               <xsl:attribute name="maxval"> 
                <xsl:value-of select="$specvalue"/> 
               </xsl:attribute>               
              </xsl:if> 
             </xsl:if>             
             <xsl:for-each select="$dependency"> 
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              <!-- search dependencies for matching PORT input --> 
              <xsl:if test="$ingress_dependency_id = ."> 
               <xsl:variable name="source_id" select="../@client"/> 
               <xsl:for-each select="$component"> 
                <!-- search components for source port/input --> 
                <xsl:if test="$source_id = ."> 
                 <xsl:if test="substring-before(../@name,':') = 'PORT'"> 
                  <xsl:for-each select="$net"> 
                   <!-- search net names for ingress dependency ID -->  
                   <xsl:if test="../@annotatedElement = $ingress_dependency_id"> 
                    <xsl:value-of select="../@name"/> 
                   </xsl:if> 
                  </xsl:for-each> 
                 </xsl:if> 
                 <xsl:if test="substring-before(../@name,':') = 'IN'"> 
                  <xsl:value-of select="substring-after(../@name,':')"/> 
                 </xsl:if> 
                </xsl:if> 
               </xsl:for-each> 
              </xsl:if> 
             </xsl:for-each>             
            </xsl:if> 
           </xsl:for-each> 
          </xsl:element> 
         </xsl:if> 
        </xsl:for-each> 
       </xsl:element> 
       <!-- find module output ports --> 
       <xsl:element name="outputs"> 
        <xsl:for-each select="$dependency"> 
         <!-- search dependencies for current component ID --> 
         <xsl:variable name="destinationport_id" select="../@client"/> 
         <xsl:if test="$destinationport_id = $component_id"> 
          <xsl:element name="output"> 
           <xsl:variable name="dependency_id" select="."/> 
           <xsl:for-each select="$component"> 
            <!-- search PORT components for matching incoming dependency --> 
            <xsl:variable name="egress_dependency_id" select="../@clientDependency"/> 
            <xsl:variable name="ingress_dependency_id" select="../@supplierDependency"/>           
            <xsl:if test="$ingress_dependency_id = $dependency_id">   
             <xsl:attribute name="port"> 
              <xsl:if test="not(contains(../@name,'['))"> 
               <xsl:value-of select="substring-after(../@name,'.')"/> 
              </xsl:if> 
              <xsl:if test="contains(../@name,'[')"> 
               <xsl:variable name="temp1" select="substring-before(../@name,'[')"/> 
               <xsl:value-of select="substring-after($temp1,'.')"/> 
              </xsl:if> 
             </xsl:attribute> 
             <xsl:if test="contains(../@name,'[')"> 
              <xsl:variable name="temp1" select="substring-after(../@name,'[')"/> 
              <xsl:variable name="spectype" select="substring-before($temp1,'=')"/> 
              <xsl:variable name="temp2" select="substring-after($temp1,'=')"/> 
              <xsl:variable name="specvalue" select="substring-before($temp2,']')"/> 
              <xsl:if test="$spectype = 'width'"> 
               <xsl:attribute name="width"> 
                <xsl:value-of select="$specvalue"/> 
               </xsl:attribute>               
              </xsl:if> 
              <xsl:if test="$spectype = 'max'"> 
               <xsl:attribute name="maxval"> 
                <xsl:value-of select="$specvalue"/> 
               </xsl:attribute> 
              </xsl:if> 
             </xsl:if> 
             <xsl:for-each select="$dependency"> 
              <!-- search dependencies for PORT output (tokenize for mult. outputs) --> 
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              <xsl:variable name="current_dependency_id" select="."/> 
              <xsl:variable name="current_supplier" select="../@supplier"/> 
              <xsl:variable name="egress_dependency"> 
               <xsl:choose> 
                <xsl:when test="contains($egress_dependency_id,' ')"> 
                 <xsl:value-of select="substring-before($egress_dependency_id,' ')"/> 
                </xsl:when> 
                <xsl:otherwise> 
                 <xsl:value-of select="$egress_dependency_id"/> 
                </xsl:otherwise> 
               </xsl:choose> 
              </xsl:variable> 
              <xsl:if test="$egress_dependency = $current_dependency_id"> 
               <xsl:variable name="destination_id" select="$current_supplier"/>         
               <xsl:for-each select="$component"> 
                <!-- search components for destination port/output --> 
                <xsl:if test="$destination_id = ."> 
                 <xsl:if test="substring-before(../@name,':') = 'PORT'"> 
                  <xsl:for-each select="$net"> 
                   <!-- search net names for egress dependency ID -->  
                   <xsl:if test="../@annotatedElement = $egress_dependency"> 
                    <xsl:value-of select="../@name"/> 
                   </xsl:if> 
                  </xsl:for-each> 
                 </xsl:if> 
                 <xsl:if test="substring-before(../@name,':') = 'OUT'"> 
                  <xsl:value-of select="substring-after(../@name,':')"/> 
                 </xsl:if> 
                </xsl:if> 
               </xsl:for-each> 
              </xsl:if>               
             </xsl:for-each>           
            </xsl:if> 
           </xsl:for-each> 
          </xsl:element> 
         </xsl:if> 
        </xsl:for-each> 
       </xsl:element>     
      </xsl:element> 
     </xsl:if> 
    </xsl:for-each> 
   </components> 
  </daxml> 
 </xsl:template> 
</xsl:stylesheet> 
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APPENDIX C 

DAXML-TO-VERILOG XSLT RULES FILE 

 

<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  
                              xmlns:fo="http://www.w3.org/1999/XSL/Format"  
                              xmlns:xs="http://www.w3.org/2001/XMLSchema"  
                              xmlns:xdt="http://www.w3.org/2005/02/xpath-datatypes"  
                              xmlns:xalan="http://xml.apache.org/xalan"  
                              exclude-result-prefixes="xalan"> 
 <xsl:output method="text"/> 
 
 
 <!-- Compute log2 --> 
 <xsl:template name="log2"> 
  <!-- named template called by main template below --> 
  <xsl:param name="i"/> 
  <xsl:param name="count"/> 
  <xsl:param name="maxValue"/> 
  <xsl:choose> 
   <!-- If there are more iterations to do, add the passed 
    value of pi to another round of calculations. --> 
   <xsl:when test="$i &lt; $maxValue"> 
    <xsl:call-template name="log2"> 
     <xsl:with-param name="i" select="$i *2"/> 
     <xsl:with-param name="count" select="$count + 1"/> 
     <xsl:with-param name="maxValue" select="$maxValue"/> 
    </xsl:call-template> 
   </xsl:when> 
   <!-- If no more iterations to do, add  
    computed value to result tree. --> 
   <xsl:otherwise> 
    <xsl:value-of select="$count"/> 
   </xsl:otherwise> 
  </xsl:choose> 
 </xsl:template> 
 
 
 
 <!-- General XSLT Variables --> 
 <xsl:variable name="modelname" select="/daxml/Model/@name"/> 
 <xsl:variable name="state" select="/daxml/state/@id"/> 
 <xsl:variable name="event" select="/daxml/state/transition/@event"/> 
 <xsl:variable name="onentryassignname" select="/daxml/state/onentry/assign/@name"/> 
 <xsl:variable name="assignname" select="/daxml/state/assign/@name"/> 
 <xsl:variable name="codingstyle" select="/daxml/comments/CODINGSTYLE"/> 
 <xsl:variable name="initialstate" select="/daxml/comments/INITIALSTATE"/> 
 <xsl:variable name="datarange" select="/daxml/comments/DATARANGE"/> 
 <xsl:variable name="zeros" select="'00000000000000000000000000000000'"/> 
 <xsl:variable name="inputports" select="/daxml/components/ports/inputs"/> 
 <xsl:variable name="outputports" select="/daxml/components/ports/outputs"/> 
 <xsl:variable name="netwire" select="/daxml/components/wires/wire"/> 
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<!-- Main Template Match --> 
 <xsl:template match="/"> 
  <!-- Define Top Level Module --> 
  <xsl:text>module </xsl:text><xsl:value-of select="$modelname"/><xsl:text>(</xsl:text> 
  <!-- list top-level input ports --> 
  <xsl:variable name="inputport" select="xalan:distinct($inputports/input)"/> 
  <xsl:for-each select="$inputport"> 
   <xsl:if test="contains(.,'[')"> 
    <xsl:variable name="justname" select="substring-before(.,'[')"/> 
    <xsl:value-of select="$justname"/><xsl:text>,</xsl:text> 
   </xsl:if> 
   <xsl:if test="not(contains(.,'['))"> 
    <xsl:value-of select="."/><xsl:text>,</xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <!-- list top-level output ports --> 
  <xsl:variable name="outputport" select="xalan:distinct($outputports/output)"/> 
  <xsl:for-each select="$outputport"> 
   <xsl:if test="contains(.,'[')"> 
    <xsl:variable name="justname" select="substring-before(.,'[')"/> 
    <xsl:value-of select="$justname"/> 
    <xsl:if test="position() != last()"> 
     <xsl:text>,</xsl:text> 
    </xsl:if> 
   </xsl:if> 
   <xsl:if test="not(contains(.,'['))"> 
    <xsl:value-of select="."/> 
    <xsl:if test="position() != last()"> 
     <xsl:text>,</xsl:text> 
    </xsl:if> 
   </xsl:if>   
  </xsl:for-each><xsl:text>);&#10;</xsl:text>  
  <!-- input port declarations --> 
  <xsl:for-each select="$inputport"> 
   <xsl:text>&#10;input </xsl:text> 
   <xsl:if test="contains(.,'[')"> 
    <xsl:variable name="justname" select="substring-before(.,'[')"/> 
    <xsl:variable name="justindex" select="substring-after(.,$justname)"/>      
    <xsl:value-of select="$justindex"/><xsl:text> </xsl:text> 
    <xsl:value-of select="$justname"/><xsl:text>;</xsl:text> 
   </xsl:if> 
   <xsl:if test="not(contains(.,'['))"> 
    <xsl:value-of select="."/><xsl:text>;</xsl:text> 
   </xsl:if>          
  </xsl:for-each> 
  <xsl:text>&#10;</xsl:text> 
  <!-- output port declarations --> 
  <xsl:for-each select="$outputport"> 
   <xsl:text>&#10;output </xsl:text> 
   <xsl:if test="contains(.,'[')">     
    <xsl:variable name="justname" select="substring-before(.,'[')"/> 
    <xsl:variable name="justindex" select="substring-after(.,$justname)"/> 
    <xsl:value-of select="$justindex"/><xsl:text> </xsl:text> 
    <xsl:value-of select="$justname"/><xsl:text>;</xsl:text> 
   </xsl:if> 
   <xsl:if test="not(contains(.,'['))"> 
    <xsl:value-of select="."/><xsl:text>;</xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <xsl:text>&#10;</xsl:text>   
  <!-- internal wire declarations --> 
  <xsl:variable name="internalwire" select="xalan:distinct($netwire)"/> 
  <xsl:for-each select="$internalwire"> 
   <xsl:sort/> 
   <xsl:text>&#10;wire </xsl:text> 
   <xsl:if test="contains(.,'[')"> 
    <xsl:variable name="justname" select="substring-before(.,'[')"/> 
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    <xsl:variable name="justindex" select="substring-after(.,$justname)"/> 
    <xsl:value-of select="$justindex"/><xsl:text> </xsl:text> 
    <xsl:value-of select="$justname"/><xsl:text>;</xsl:text>         
   </xsl:if> 
   <xsl:if test="not(contains(.,'['))"> 
    <xsl:value-of select="."/><xsl:text>;</xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <xsl:text>&#10;</xsl:text> 
  <!-- datapath module instantiations --> 
  <xsl:variable name="modname" select="/daxml/components/component/@module"/>  
  <xsl:for-each select="$modname"> 
   <xsl:sort/> 
   <xsl:variable name="modulename" select="."/> 
   <xsl:text>&#10;</xsl:text> 
   <xsl:value-of select="$modulename"/><xsl:text> u</xsl:text> 
   <xsl:value-of select="position()"/><xsl:text>_</xsl:text> 
   <xsl:value-of select="$modulename"/><xsl:text> (&#10;</xsl:text> 
   <!-- define port associations for module inputs --> 
   <xsl:variable name="compinport" select="../inputs/input"/> 
   <xsl:for-each select="$compinport"> 
    <xsl:text>  .</xsl:text> 
    <xsl:value-of select="./@port"/><xsl:text>(</xsl:text> 
    <xsl:value-of select="."/><xsl:text>),&#10;</xsl:text> 
   </xsl:for-each> 
   <!-- define port associations for module outputs --> 
   <xsl:variable name="compoutport" select="../outputs/output"/> 
   <xsl:for-each select="$compoutport"> 
    <xsl:text>  .</xsl:text> 
    <xsl:value-of select="./@port"/><xsl:text>(</xsl:text> 
    <xsl:value-of select="."/> 
    <xsl:if test="position() != last()"> 
     <xsl:text>),&#10;</xsl:text> 
    </xsl:if>  
    <xsl:if test="position() = last()"> 
     <xsl:text>));&#10;</xsl:text> 
    </xsl:if>  
   </xsl:for-each> 
  </xsl:for-each>     
  <xsl:text>&#10;endmodule&#10;&#10;</xsl:text> 
 
<xsl:text>&#10;=================================================&#10;&#10;</xsl:text>     
 
  <!-- Define Individual datapath modules --> 
  <xsl:variable name="component" select="xalan:distinct(/daxml/components/component)"/>  
  <xsl:for-each select="$component"> 
   <xsl:sort select="./@module"/> 
   <xsl:variable name="modulename" select="./@module"/> 
   <xsl:if test="$modulename != 'controller'"> 
    <!-- assign reference designator --> 
    <xsl:text>//u</xsl:text> 
    <xsl:value-of select="position()"/> 
    <xsl:text>&#10;</xsl:text> 
    <!-- module declaration --> 
    <xsl:text>module </xsl:text> 
    <xsl:value-of select="$modulename"/> 
    <xsl:text>(</xsl:text> 
    <xsl:variable name="compinport" select="./inputs/input"/> 
    <xsl:for-each select="$compinport"> 
     <xsl:sort select="./@port"/> 
     <xsl:value-of select="./@port"/><xsl:text>,</xsl:text> 
    </xsl:for-each> 
    <xsl:variable name="compoutport" select="./outputs/output"/> 
    <xsl:for-each select="$compoutport"> 
     <xsl:sort select="./@port"/> 
     <xsl:value-of select="./@port"/> 
     <xsl:if test="position() != last()"> 
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      <xsl:text>,</xsl:text> 
     </xsl:if>  
    </xsl:for-each>                   
    <xsl:text>);&#10;&#10;</xsl:text> 
    <!-- input port declarations --> 
    <xsl:for-each select="$compinport"> 
     <xsl:sort select="./@port"/> 
     <xsl:text>input </xsl:text> 
     <xsl:variable name="width" select="./@width"/> 
     <xsl:if test="count($width) &gt; 0"> 
      <xsl:text>[</xsl:text> 
      <xsl:value-of select="$width - 1"/> 
      <xsl:text>:0] </xsl:text> 
     </xsl:if> 
     <xsl:variable name="maxval" select="./@maxval"/> 
     <xsl:if test="count($maxval) &gt; 0"> 
      <xsl:variable name="buswidth"> 
       <xsl:call-template name="log2"> 
        <xsl:with-param name="i" select="1"/> 
        <xsl:with-param name="count" select="0"/> 
        <xsl:with-param name="maxValue" select="$maxval"/> 
       </xsl:call-template> 
      </xsl:variable>             
      <xsl:if test="$buswidth &gt; 1"> 
       <xsl:text>[</xsl:text>             
       <xsl:value-of select="$buswidth - 1"/> 
       <xsl:text>:0] </xsl:text> 
      </xsl:if> 
     </xsl:if>           
     <xsl:value-of select="./@port"/> 
     <xsl:text>;&#10;</xsl:text> 
    </xsl:for-each> 
    <xsl:text>&#10;</xsl:text> 
    <!-- output port declarations --> 
    <xsl:for-each select="$compoutport"> 
     <xsl:sort select="./@port"/> 
     <xsl:text>output </xsl:text> 
     <xsl:variable name="width" select="./@width"/> 
     <xsl:if test="count($width) &gt; 0"> 
      <xsl:text>[</xsl:text> 
      <xsl:value-of select="$width - 1"/> 
      <xsl:text>:0] </xsl:text> 
     </xsl:if> 
     <xsl:variable name="maxval" select="./@maxval"/> 
     <xsl:if test="count($maxval) &gt; 0"> 
      <xsl:variable name="buswidth"> 
       <xsl:call-template name="log2"> 
        <xsl:with-param name="i" select="1"/> 
        <xsl:with-param name="count" select="0"/> 
        <xsl:with-param name="maxValue" select="$maxval"/> 
       </xsl:call-template> 
      </xsl:variable>             
      <xsl:if test="$buswidth &gt; 1"> 
       <xsl:text>[</xsl:text>             
       <xsl:value-of select="$buswidth - 1"/> 
       <xsl:text>:0] </xsl:text> 
      </xsl:if> 
     </xsl:if>           
     <xsl:value-of select="./@port"/> 
     <xsl:text>;&#10;</xsl:text> 
    </xsl:for-each> 
    <xsl:text>&#10;</xsl:text> 
    <!-- leave empty space to be filled in with source templates --> 
    <xsl:text>endmodule&#10;&#10;</xsl:text> 
    <xsl:text>&#10;=================================================&#10;&#10;</xsl:text>       
   </xsl:if> 
  </xsl:for-each> 
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  <!-- Define Controller Module --> 
  <xsl:variable name="codelength"> 
   <!-- determine number of state encoding bits --> 
   <xsl:choose> 
    <xsl:when test="$codingstyle = 'gray'"> 
     <xsl:call-template name="log2"> 
      <xsl:with-param name="i" select="1"/> 
      <xsl:with-param name="count" select="0"/> 
      <xsl:with-param name="maxValue" select="count($state)"/> 
     </xsl:call-template> 
    </xsl:when> 
    <xsl:when test="$codingstyle = 'onehot'"> 
     <xsl:value-of select="count($state)"/> 
    </xsl:when> 
    <xsl:otherwise> 
     <xsl:call-template name="log2"> 
      <xsl:with-param name="i" select="1"/> 
      <xsl:with-param name="count" select="0"/> 
      <xsl:with-param name="maxValue" select="count($state)"/> 
     </xsl:call-template> 
    </xsl:otherwise> 
   </xsl:choose> 
  </xsl:variable> 
  <!-- assign state encoding constants -->     
  <xsl:choose> 
   <xsl:when test="$codingstyle = 'gray'"> 
    <xsl:for-each select="daxml/state"> 
     <xsl:text>`define </xsl:text> 
     <xsl:value-of select="@id"/><xsl:text> 2'b00&#10;</xsl:text> 
    </xsl:for-each> 
   </xsl:when> 
   <xsl:when test="$codingstyle = 'onehot'"> 
    <xsl:for-each select="daxml/state"> 
     <xsl:variable name="half2" select="substring(($zeros),1,count($state)-position())"/> 
     <xsl:variable name="half1" select="substring(($zeros),1,position()-1)"/> 
     <xsl:variable name="code" select="concat(concat($half1,'1'),$half2)"/> 
     <xsl:text>`define </xsl:text> 
     <xsl:value-of select="@id"/> 
     <xsl:text> </xsl:text> 
     <xsl:value-of select="$codelength"/> 
     <xsl:text>'b</xsl:text> 
     <xsl:value-of select="$code"/> 
     <xsl:text>&#10;</xsl:text> 
    </xsl:for-each> 
   </xsl:when> 
   <xsl:otherwise> 
    <xsl:for-each select="daxml/state"> 
     <xsl:text>`define </xsl:text> 
     <xsl:value-of select="@id"/> 
     <xsl:text>  </xsl:text> 
     <xsl:number value="position()-1" format="1"/> 
     <xsl:text>&#10;</xsl:text> 
    </xsl:for-each> 
   </xsl:otherwise> 
  </xsl:choose> 
  <!-- assign other constant values --> 
  <xsl:for-each select="$datarange/comments.DATARANGE/@list"> 
   <xsl:if test="count(.)>0"> 
    <xsl:variable name="perlista" select="substring-after(.,'{')"/> 
    <xsl:variable name="perlistb" select="substring-before($perlista,'}')"/> 
    <xsl:variable name="perlist" select="xalan:tokenize($perlistb,',')"/> 
    <xsl:for-each select="$perlist"> 
     <xsl:text>`define </xsl:text> 
     <xsl:value-of select="."/> 
     <xsl:text>  </xsl:text> 
     <xsl:number value="position()-1" format="1"/> 
     <xsl:text>&#10;</xsl:text> 
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    </xsl:for-each> 
   </xsl:if> 
  </xsl:for-each>  
  <!-- controller module declaration -->   
  <xsl:text>&#10;module </xsl:text> 
  <xsl:text>controller(</xsl:text> 
  <xsl:variable name="events" select="xalan:distinct($event)"/> 
  <xsl:for-each select="$events"> 
   <xsl:if test="not(.='')"> 
    <xsl:value-of select="."/><xsl:text>,</xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <xsl:variable name="onentryassignnames" select="xalan:distinct($onentryassignname)"/> 
  <xsl:for-each select="$onentryassignnames"> 
   <xsl:value-of select="."/><xsl:text>,</xsl:text> 
  </xsl:for-each> 
  <xsl:variable name="assignnames" select="xalan:distinct($assignname)"/> 
  <xsl:for-each select="$assignnames"> 
   <xsl:value-of select="."/><xsl:text>,</xsl:text> 
  </xsl:for-each> 
  <xsl:text>clk,reset);&#10;&#10;</xsl:text> 
  <!-- input port declarations -->   
  <xsl:text>input clk;&#10;</xsl:text> 
  <xsl:text>input reset;&#10;</xsl:text>   
  <xsl:for-each select="$events"> 
   <xsl:if test="not(.='')"> 
    <xsl:text>input </xsl:text> 
    <xsl:value-of select="."/><xsl:text>;&#10;</xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <xsl:text>&#10;</xsl:text> 
  <!-- output port declarations -->     
  <xsl:for-each select="$onentryassignnames"> 
   <xsl:variable name="onentrysignalname" select="."/> 
   <xsl:variable name="buswidth"> 
    <xsl:for-each select="$datarange/comments.DATARANGE/@name"> 
     <xsl:if test="../@name = $onentrysignalname "> 
      <xsl:call-template name="log2"> 
       <xsl:with-param name="i" select="1"/> 
       <xsl:with-param name="count" select="0"/> 
       <xsl:with-param name="maxValue" select="../@maxValue"/> 
      </xsl:call-template> 
     </xsl:if> 
    </xsl:for-each> 
   </xsl:variable>     
   <xsl:text>output </xsl:text>      
   <xsl:if test="$buswidth>1"> 
    <xsl:text>[</xsl:text> 
    <xsl:value-of select="number($buswidth)-1"/> 
    <xsl:text>:0] </xsl:text> 
   </xsl:if> 
   <xsl:value-of select="."/><xsl:text>;&#10;</xsl:text>       
   <xsl:text>reg    </xsl:text> 
   <xsl:if test="$buswidth>1"> 
    <xsl:text>[</xsl:text> 
    <xsl:value-of select="number($buswidth)-1"/> 
    <xsl:text>:0] </xsl:text> 
   </xsl:if> 
   <xsl:value-of select="."/><xsl:text>;&#10;</xsl:text> 
  </xsl:for-each> 
  <xsl:for-each select="$assignnames"> 
   <xsl:variable name="assignsignalname" select="."/> 
   <xsl:variable name="buswidth"> 
    <xsl:for-each select="$datarange/comments.DATARANGE/@name"> 
     <xsl:if test="contains($assignsignalname,../@name)"> 
      <xsl:call-template name="log2"> 
       <xsl:with-param name="i" select="1"/> 
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       <xsl:with-param name="count" select="0"/> 
       <xsl:with-param name="maxValue" select="../@maxValue"/> 
      </xsl:call-template> 
     </xsl:if> 
    </xsl:for-each> 
   </xsl:variable>       
   <xsl:text>output </xsl:text>      
   <xsl:if test="$buswidth>1"> 
    <xsl:text>[</xsl:text> 
    <xsl:value-of select="number($buswidth)-1"/> 
    <xsl:text>:0] </xsl:text> 
   </xsl:if> 
   <xsl:value-of select="."/><xsl:text>;&#10;</xsl:text>     
   <xsl:text>reg    </xsl:text> 
   <xsl:if test="$buswidth>1"> 
    <xsl:text>[</xsl:text> 
    <xsl:value-of select="number($buswidth)-1"/> 
    <xsl:text>:0] </xsl:text> 
   </xsl:if> 
   <xsl:value-of select="."/><xsl:text>;&#10;</xsl:text> 
  </xsl:for-each> 
  <!-- state registers -->   
  <xsl:text>&#10;</xsl:text> 
  <xsl:text>reg [</xsl:text> 
  <xsl:value-of select="number($codelength)-1"/> 
  <xsl:text>:0] pstate,nstate;&#10;</xsl:text> 
  <!-- sequential state transition always block -->  
  <xsl:text>&#10;</xsl:text> 
  <xsl:text>always@(posedge clk)&#10;</xsl:text> 
  <xsl:text> begin&#10;</xsl:text> 
  <xsl:text>  if (reset == 1'b1)&#10;</xsl:text> 
  <xsl:text>   pstate = `</xsl:text> 
  <xsl:value-of select="$initialstate"/> 
  <xsl:text>;&#10;</xsl:text> 
  <xsl:text>  else&#10;</xsl:text> 
  <xsl:text>   pstate = nstate;&#10;</xsl:text> 
  <xsl:text> end&#10;</xsl:text> 
  <!-- combinational state behavior always block -->   
  <xsl:text>&#10;</xsl:text> 
  <xsl:text>always@(</xsl:text> 
  <xsl:for-each select="$events"> 
   <xsl:if test="not(.='')"> 
    <xsl:value-of select="."/> 
    <xsl:text> or </xsl:text> 
   </xsl:if> 
  </xsl:for-each> 
  <xsl:text>pstate)&#10;</xsl:text> 
  <xsl:text> begin&#10;</xsl:text> 
  <xsl:text>  case (pstate)&#10;&#10;</xsl:text>  
  <!-- list behavior and transitions for each state -->  
  <xsl:for-each select="daxml/state"> 
   <xsl:text>   `</xsl:text> 
   <xsl:value-of select="@id"/> 
   <xsl:text>:&#10;</xsl:text> 
   <xsl:text>     begin&#10;</xsl:text> 
   <xsl:for-each select="./onentry/assign"> 
    <xsl:text>      </xsl:text> 
    <xsl:value-of select="@name"/> 
    <xsl:text> = </xsl:text> 
    <xsl:value-of select="@expr"/> 
    <xsl:text>;&#10;</xsl:text> 
   </xsl:for-each> 
   <xsl:for-each select="./assign"> 
    <xsl:text>      </xsl:text> 
    <xsl:value-of select="@name"/> 
    <xsl:text> = `</xsl:text> 
    <xsl:value-of select="@expr"/> 



128 

    <xsl:text>;&#10;</xsl:text> 
   </xsl:for-each> 
   <xsl:text>&#10;</xsl:text> 
   <xsl:choose> 
    <!-- behavior with 2 outgoing transitions -->  
    <xsl:when test="count(./transition)>1"> 
     <xsl:for-each select="./transition"> 
      <xsl:if test="position()=1"> 
       <xsl:text>      if(</xsl:text> 
       <xsl:value-of select="@event"/> 
       <xsl:if test="count(@value)>0"> 
        <xsl:text> == `</xsl:text> 
        <xsl:value-of select="@value"/> 
        <xsl:text>)&#10;</xsl:text> 
       </xsl:if> 
       <xsl:if test="count(@cond)>0"> 
        <xsl:text> &#38;&#38; (</xsl:text> 
        <xsl:value-of select="@cond"/> 
        <xsl:text>)&#10;</xsl:text> 
       </xsl:if> 
       <xsl:text>        nstate=`</xsl:text> 
       <xsl:value-of select="target/@next"/> 
       <xsl:text>;&#10;</xsl:text> 
      </xsl:if> 
      <xsl:if test="position()>1"> 
       <xsl:text>      else if(</xsl:text> 
       <xsl:value-of select="@event"/> 
       <xsl:if test="count(@value)>0"> 
        <xsl:text>==`</xsl:text> 
        <xsl:value-of select="@value"/> 
       </xsl:if> 
       <xsl:if test="count(@cond)>0"> 
        <xsl:text> &#38;&#38; (</xsl:text> 
        <xsl:value-of select="@cond"/> 
        <xsl:text>)</xsl:text> 
       </xsl:if> 
       <xsl:text>)&#10;</xsl:text> 
       <xsl:text>        nstate=`</xsl:text> 
       <xsl:value-of select="target/@next"/> 
       <xsl:text>;&#10;</xsl:text> 
      </xsl:if> 
     </xsl:for-each> 
     <xsl:text>      else&#10;</xsl:text> 
     <xsl:text>        nstate=`</xsl:text> 
     <xsl:value-of select="./@id"/> 
     <xsl:text>;&#10;</xsl:text> 
     <xsl:text>     end&#10;</xsl:text> 
     <xsl:text>&#10;</xsl:text> 
    </xsl:when> 
    <!-- behavior with 1 outgoing transition --> 
    <xsl:when test="count(./transition)=1"> 
     <xsl:if test="count(./transition/@event)>0"> 
      <xsl:variable name="transevent" select="./transition/@event"/> 
      <xsl:choose> 
       <xsl:when test="not($transevent='')"> 
        <xsl:text>      if(</xsl:text> 
        <xsl:value-of select="./transition/@event"/> 
        <xsl:if test="count(./transition/@value)>0"> 
         <xsl:text> == `</xsl:text> 
         <xsl:value-of select="./transition/@value"/> 
        </xsl:if> 
        <xsl:if test="count(./transition/@cond)>0"> 
         <xsl:text> &#38;&#38; (</xsl:text> 
         <xsl:value-of select="./transition/@cond"/> 
         <xsl:text>)</xsl:text> 
        </xsl:if> 
        <xsl:text>)&#10;</xsl:text> 
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        <xsl:text>        nstate=`</xsl:text> 
        <xsl:value-of select="./transition/target/@next"/> 
        <xsl:text>;&#10;</xsl:text> 
        <xsl:text>      else&#10;</xsl:text> 
        <xsl:text>        nstate=`</xsl:text> 
        <xsl:value-of select="./@id"/> 
        <xsl:text>;&#10;</xsl:text>   
       </xsl:when> 
       <xsl:when test="$transevent=''"> 
        <xsl:text>      nstate=`</xsl:text> 
        <xsl:value-of select="./transition/target/@next"/> 
        <xsl:text>;&#10;</xsl:text> 
       </xsl:when> 
      </xsl:choose> 
      <xsl:text>     end&#10;</xsl:text> 
      <xsl:text>&#10;</xsl:text> 
     </xsl:if> 
    </xsl:when> 
   </xsl:choose> 
  </xsl:for-each> 
  <xsl:text>  endcase&#10;</xsl:text> 
  <xsl:text> end&#10;</xsl:text> 
  <xsl:text>endmodule&#10;</xsl:text> 
  <xsl:text>=================================================</xsl:text>     
 </xsl:template> 
</xsl:stylesheet> 
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APPENDIX D 

DATAPATH VERILOG SOURCE TEMPLATES 

 

====sensor==== 
reg pulse_b1; 
reg pulse_b2; 
reg pulse_b3; 
reg sensor_out; 
 
always @(posedge clk)  
 begin 
  if(reset == 1'b1) 
   begin 
    pulse_b1 = 1'b0; 
    pulse_b2 = 1'b0; 
    pulse_b3 = 1'b0; 
    sensor_out = 1'b0; 
   end 
  else 
   begin 
    pulse_b1 = ext_sensor; 
    pulse_b2 = pulse_b1; 
    pulse_b3 = pulse_b2; 
     
    if(ext_sensor == 1'b1) 
      sensor_out = 1'b1; 
    else 
      sensor_out = 1'b0; 
   end 
 end 
============== 
====light==== 
reg [###define(bus):hwy_light###:0] hwy_light; 
reg [7:0] frm_light; 
 
always@(hwy_setlight) 
 begin 
  case(hwy_setlight) 
    2'b00   : hwy_light = 8'b11111110; 
    2'b01   : hwy_light = 8'b10111111; 
    2'b10   : hwy_light = 8'b11110111; 
    default : hwy_light = 8'b11111111; 
  endcase 
 end 
always@(frm_setlight)  
 begin 
  case(frm_setlight) 
    2'b00   : frm_light = 8'b11111110; 
    2'b01   : frm_light = 8'b10111111; 
    2'b10   : frm_light = 8'b11110111; 
    default : frm_light = 8'b11111111; 
  endcase 
 end 
============== 
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====display==== 
assign leds_out = {7'b0,active}; 
 
assign hex3 = digit3[6:0]; 
assign hex2 = digit2[6:0]; 
assign hex1 = digit1[6:0]; 
assign hex0 = digit0[6:0]; 
============== 
====timer==== 
wire start; 
reg enable; 
reg [5:0] timervalue; 
reg [5:0] timervalue2; 
reg [5:0] seconds; 
reg [25:0] count; 
reg timeout; 
reg active; 
reg [7:0] lower; 
reg [7:0] higher; 
reg [7:0] reflow; 
reg [7:0] refhigh; 
 
always@(posedge clk) 
 begin 
  if(reset == 1'b1) 
    timervalue2 = 6'b0; 
  else 
    timervalue2 = timervalue; 
 end  
 
always@(posedge clk) 
 begin 
  if(reset == 1'b1) 
    timervalue = 6'b0; 
  else 
    timervalue = settimer; 
 end 
 
assign start = (timervalue != settimer) ? 1'b1 : 1'b0; 
     
always@(posedge clk or posedge reset) 
 begin 
  if(reset == 1'b1) 
    enable = 1'b0; 
  else if(start == 1'b1) 
    enable = 1'b1; 
  else if(seconds == settimer) 
    enable = 1'b0; 
 end 
 
always@(reset or start or seconds[0]) 
 begin 
  if(reset == 1'b1 || start == 1'b1) 
   begin 
    timeout = 1'b0; 
   end 
  else if(seconds == settimer) 
   begin 
    timeout = 1'b1; 
   end 
 end 
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always@(posedge clk) 
 begin 
  if(reset == 1'b1) 
   begin 
    seconds = 6'b0; 
    count = 26'b0; 
    active = 1'b0; 
   end 
  else 
   if(start == 1'b1) 
    begin 
     count = 0; 
     seconds = 0; 
    end 
   else if(enable == 1'b1) 
    begin 
     count = count + 1; 
     //if(count == 25) 
     if(count == 25000000)          
       active = 1'b0; 
     //if(count == 50)              
     if(count == 50000000)          
      begin 
       seconds = seconds + 1; 
       active = 1'b1; 
       count = 0; 
      end 
    end  
 end 
   
always@(seconds[0]) 
 begin 
  case(seconds) 
    6'b000000 : begin higher = 8'b11000000; lower = 8'b11000000; end 
    6'b000001 : begin higher = 8'b11000000; lower = 8'b11111001; end 
    6'b000010 : begin higher = 8'b11000000; lower = 8'b10100100; end 
    6'b000011 : begin higher = 8'b11000000; lower = 8'b10110000; end 
    6'b000100 : begin higher = 8'b11000000; lower = 8'b10011001; end 
    6'b000101 : begin higher = 8'b11000000; lower = 8'b10010010; end 
    6'b000110 : begin higher = 8'b11000000; lower = 8'b10000010; end 
    6'b000111 : begin higher = 8'b11000000; lower = 8'b11111000; end 
    6'b001000 : begin higher = 8'b11000000; lower = 8'b10000000; end 
    6'b001001 : begin higher = 8'b11000000; lower = 8'b10010000; end 
       
    6'b001010 : begin higher = 8'b11111001; lower = 8'b11000000; end 
    6'b001011 : begin higher = 8'b11111001; lower = 8'b11111001; end 
    6'b001100 : begin higher = 8'b11111001; lower = 8'b10100100; end 
    6'b001101 : begin higher = 8'b11111001; lower = 8'b10110000; end 
    6'b001110 : begin higher = 8'b11111001; lower = 8'b10011001; end 
    6'b001111 : begin higher = 8'b11111001; lower = 8'b10010010; end 
    6'b010000 : begin higher = 8'b11111001; lower = 8'b10000010; end 
    6'b010001 : begin higher = 8'b11111001; lower = 8'b11111000; end 
    6'b010010 : begin higher = 8'b11111001; lower = 8'b10000000; end 
    6'b010011 : begin higher = 8'b11111001; lower = 8'b10010000; end 
       
    6'b010100 : begin higher = 8'b10100100; lower = 8'b11000000; end 
    6'b010101 : begin higher = 8'b10100100; lower = 8'b11111001; end 
    6'b010110 : begin higher = 8'b10100100; lower = 8'b10100100; end 
    6'b010111 : begin higher = 8'b10100100; lower = 8'b10110000; end 
    6'b011000 : begin higher = 8'b10100100; lower = 8'b10011001; end 
    6'b011001 : begin higher = 8'b10100100; lower = 8'b10010010; end 
    6'b011010 : begin higher = 8'b10100100; lower = 8'b10000010; end 
    6'b011011 : begin higher = 8'b10100100; lower = 8'b11111000; end 
    6'b011100 : begin higher = 8'b10100100; lower = 8'b10000000; end 
    6'b011101 : begin higher = 8'b10100100; lower = 8'b10010000; end 
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    6'b011110 : begin higher = 8'b10110000; lower = 8'b11000000; end 
    6'b011111 : begin higher = 8'b10110000; lower = 8'b11111001; end 
    6'b100000 : begin higher = 8'b10110000; lower = 8'b10100100; end 
    6'b100001 : begin higher = 8'b10110000; lower = 8'b10110000; end 
    6'b100010 : begin higher = 8'b10110000; lower = 8'b10011001; end 
    6'b100011 : begin higher = 8'b10110000; lower = 8'b10010010; end 
    6'b100100 : begin higher = 8'b10110000; lower = 8'b10000010; end 
    6'b100101 : begin higher = 8'b10110000; lower = 8'b11111000; end 
    6'b100110 : begin higher = 8'b10110000; lower = 8'b10000000; end 
    6'b100111 : begin higher = 8'b10110000; lower = 8'b10010000; end 
       
    6'b101000 : begin higher = 8'b10011001; lower = 8'b11000000; end 
    6'b101001 : begin higher = 8'b10011001; lower = 8'b11111001; end 
    6'b101010 : begin higher = 8'b10011001; lower = 8'b10100100; end 
    6'b101011 : begin higher = 8'b10011001; lower = 8'b10110000; end 
    6'b101100 : begin higher = 8'b10011001; lower = 8'b10011001; end 
    6'b101101 : begin higher = 8'b10011001; lower = 8'b10010010; end 
    6'b101110 : begin higher = 8'b10011001; lower = 8'b10000010; end 
    6'b101111 : begin higher = 8'b10011001; lower = 8'b11111000; end 
    6'b110000 : begin higher = 8'b10011001; lower = 8'b10000000; end 
    6'b110001 : begin higher = 8'b10011001; lower = 8'b10010000; end 
       
    6'b110010 : begin higher = 8'b10010010; lower = 8'b11000000; end 
    default   : begin higher = 8'b11111111; lower = 8'b11111111; end 
  endcase 
 end  
   
always@(settimer[0]) 
 begin 
  case(settimer) 
    6'b000000 : begin refhigh = 8'b11000000; reflow = 8'b11000000; end 
    6'b000001 : begin refhigh = 8'b11000000; reflow = 8'b11111001; end 
    6'b000010 : begin refhigh = 8'b11000000; reflow = 8'b10100100; end 
    6'b000011 : begin refhigh = 8'b11000000; reflow = 8'b10110000; end 
    6'b000100 : begin refhigh = 8'b11000000; reflow = 8'b10011001; end 
    6'b000101 : begin refhigh = 8'b11000000; reflow = 8'b10010010; end 
    6'b000110 : begin refhigh = 8'b11000000; reflow = 8'b10000010; end 
    6'b000111 : begin refhigh = 8'b11000000; reflow = 8'b11111000; end 
    6'b001000 : begin refhigh = 8'b11000000; reflow = 8'b10000000; end 
    6'b001001 : begin refhigh = 8'b11000000; reflow = 8'b10010000; end 
       
    6'b001010 : begin refhigh = 8'b11111001; reflow = 8'b11000000; end 
    6'b001011 : begin refhigh = 8'b11111001; reflow = 8'b11111001; end 
    6'b001100 : begin refhigh = 8'b11111001; reflow = 8'b10100100; end 
    6'b001101 : begin refhigh = 8'b11111001; reflow = 8'b10110000; end 
    6'b001110 : begin refhigh = 8'b11111001; reflow = 8'b10011001; end 
    6'b001111 : begin refhigh = 8'b11111001; reflow = 8'b10010010; end 
    6'b010000 : begin refhigh = 8'b11111001; reflow = 8'b10000010; end 
    6'b010001 : begin refhigh = 8'b11111001; reflow = 8'b11111000; end 
    6'b010010 : begin refhigh = 8'b11111001; reflow = 8'b10000000; end 
    6'b010011 : begin refhigh = 8'b11111001; reflow = 8'b10010000; end 
       
    6'b010100 : begin refhigh = 8'b10100100; reflow = 8'b11000000; end 
    6'b010101 : begin refhigh = 8'b10100100; reflow = 8'b11111001; end 
    6'b010110 : begin refhigh = 8'b10100100; reflow = 8'b10100100; end 
    6'b010111 : begin refhigh = 8'b10100100; reflow = 8'b10110000; end 
    6'b011000 : begin refhigh = 8'b10100100; reflow = 8'b10011001; end 
    6'b011001 : begin refhigh = 8'b10100100; reflow = 8'b10010010; end 
    6'b011010 : begin refhigh = 8'b10100100; reflow = 8'b10000010; end 
    6'b011011 : begin refhigh = 8'b10100100; reflow = 8'b11111000; end 
    6'b011100 : begin refhigh = 8'b10100100; reflow = 8'b10000000; end 
    6'b011101 : begin refhigh = 8'b10100100; reflow = 8'b10010000; end 
       
    6'b011110 : begin refhigh = 8'b10110000; reflow = 8'b11000000; end 
    6'b011111 : begin refhigh = 8'b10110000; reflow = 8'b11111001; end 
    6'b100000 : begin refhigh = 8'b10110000; reflow = 8'b10100100; end 
    6'b100001 : begin refhigh = 8'b10110000; reflow = 8'b10110000; end 
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    6'b100010 : begin refhigh = 8'b10110000; reflow = 8'b10011001; end 
    6'b100011 : begin refhigh = 8'b10110000; reflow = 8'b10010010; end 
    6'b100100 : begin refhigh = 8'b10110000; reflow = 8'b10000010; end 
    6'b100101 : begin refhigh = 8'b10110000; reflow = 8'b11111000; end 
    6'b100110 : begin refhigh = 8'b10110000; reflow = 8'b10000000; end 
    6'b100111 : begin refhigh = 8'b10110000; reflow = 8'b10010000; end 
       
    6'b101000 : begin refhigh = 8'b10011001; reflow = 8'b11000000; end 
    6'b101001 : begin refhigh = 8'b10011001; reflow = 8'b11111001; end 
    6'b101010 : begin refhigh = 8'b10011001; reflow = 8'b10100100; end 
    6'b101011 : begin refhigh = 8'b10011001; reflow = 8'b10110000; end 
    6'b101100 : begin refhigh = 8'b10011001; reflow = 8'b10011001; end 
    6'b101101 : begin refhigh = 8'b10011001; reflow = 8'b10010010; end 
    6'b101110 : begin refhigh = 8'b10011001; reflow = 8'b10000010; end 
    6'b101111 : begin refhigh = 8'b10011001; reflow = 8'b11111000; end 
    6'b110000 : begin refhigh = 8'b10011001; reflow = 8'b10000000; end 
    6'b110001 : begin refhigh = 8'b10011001; reflow = 8'b10010000; end 
       
    6'b110010 : begin refhigh = 8'b10010010; reflow = 8'b11000000; end 
    default   : begin refhigh = 8'b11111111; reflow = 8'b11111111; end 
  endcase 
 end  
============== 
====simpleram==== 
reg    [7:0] rddata; 
 
always@(posedge clk) 
 begin 
  if (reset == 1'b1) 
    rddata = 7'b0; 
  else 
    if(read == 1'b1) 
      case (addr[7:5]) 
        3'b000 : rddata = 7'h11; 
        3'b001 : rddata = 7'h05; 
        3'b010 : rddata = 7'h03; 
        3'b011 : rddata = 7'h02; 
        3'b100 : rddata = 7'h01; 
        3'b101 : rddata = 7'h01; 
        3'b110 : rddata = 7'h01; 
        3'b111 : rddata = 7'h01; 
      endcase 
 end 
============== 
====mult2pad24==== 
assign dout = {7'b0,din,9'b0};  
============== 
====trunc8==== 
assign dout = din[15:8];  
============== 
====mux21==== 
assign result = (select == 1'b0) ? in0 : in1;  
============== 
====monoshot2==== 
reg buf1; 
reg buf2; 
reg buf3; 
 
always@(posedge clock) 
 begin 
  buf1 <= sig_in; 
  buf2 <= buf1; 
  buf3 <= buf2; 
 end 
 
assign sig_out = ~sig_in & buf3;   
============== 
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====mult_pipe2==== 
// reg [###define(bus):result###:0] buffer; 
// reg [###define(bus):result###:0] result; 
 
// always@(posedge clock) 
//  begin 
//   if (aclr == 1'b1) 
//    begin 
//     buffer <= ###define(width):result###'b0; 
//     result <= ###define(width):result###'b0;   
//    end 
//   else  
//    begin 
//     buffer <= dataa * datab; 
//     result <= buffer;   
//    end 
//  end 
  
//BBsynplify lpm_mult mult ( 
//BBsynplify   .clock(clock), 
//BBsynplify   .aclr(aclr), 
//BBsynplify   .dataa(dataa), 
//BBsynplify   .datab(datab), 
//BBsynplify   .result(result)); 
//BBsynplify   defparam mult.LPM_WIDTHA = ###define(width):dataa###; 
//BBsynplify   defparam mult.LPM_WIDTHB = ###define(width):datab###; 
//BBsynplify   defparam mult.LPM_WIDTHP = ###define(width):result###; 
//BBsynplify   defparam mult.LPM_WIDTHS = ###define(width):dataa###; 
//BBsynplify   defparam mult.LPM_PIPELINE = 2; 
============== 
====dflipflop==== 
// reg [###define(bus):q###:0] q; 
//  
// always@(posedge clock) 
//  begin 
//   if (aclr == 1'b1) 
//     q <= ###define(width):q###'b0; 
//   else 
//     if (enable == 1'b1) 
//       q <= data; 
//  end 
 
//BBsynplify lpm_dff dff ( 
//BBsynplify   .data (data),  
//BBsynplify   .clock(clock), 
//BBsynplify   .enable(enable), 
//BBsynplify   .aclr(aclr), 
//BBsynplify   .q (q)); 
//BBsynplify   defparam dff.LPM_WIDTH = ###define(width):data###; 
============== 
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====counter==== 
// reg [###define(bus):q###:0] q; 
//  
// always@(posedge clock) 
//  begin 
//   if (aclr == 1'b1 | sclr == 1'b1) 
//     q <= ###define(width):q###'b0; 
//   else 
//     if(cnt_en == 1'b1) 
//       q <= q + 1; 
//  end 
 
//BBsynplify lpm_counter counter ( 
//BBsynplify   .clock(clock), 
//BBsynplify   .aclr(aclr), 
//BBsynplify   .sclr(sclr), 
//BBsynplify   .cnt_en(cnt_en), 
//BBsynplify   .q(q)); 
//BBsynplify   defparam counter.LPM_WIDTH = ###define(width):q###; 
============== 
====comparator==== 
// assign aeb = (dataa == datab) ? 1'b1 : 1'b0; 
 
//BBsynplify lpm_compare comparator ( 
//BBsynplify   .dataa(dataa), 
//BBsynplify   .datab(datab), 
//BBsynplify   .aeb(aeb)); 
//BBsynplify   defparam comparator.LPM_WIDTH = ###define(width):dataa###; 
============== 
====subtract_pipe1==== 
// reg [###define(bus):result###:0] result; 
//  
// always@(posedge clock) 
//  begin 
//   if (aclr == 1'b1) 
//     result <= ###define(width):result###'b0;   
//   else  
//     result <= dataa - datab; 
//  end 
  
//BBsynplify lpm_add_sub subtract_pipe1 ( 
//BBsynplify   .clock(clock), 
//BBsynplify   .aclr(aclr), 
//BBsynplify   .dataa(dataa), 
//BBsynplify   .datab(datab), 
//BBsynplify   .result(result)); 
//BBsynplify  defparam subtract_pipe1.LPM_WIDTH = ###define(width):dataa###; 
//BBsynplify  defparam subtract_pipe1.LPM_DIRECTION = "SUB"; 
//BBsynplify  defparam subtract_pipe1.LPM_PIPELINE = 1; 
============== 
====adder==== 
//BBsynplify lpm_add_sub adder ( 
//BBsynplify   .dataa(dataa), 
//BBsynplify   .datab(datab), 
//BBsynplify   .result(result)); 
//BBsynplify  defparam adder.LPM_WIDTH = ###define(width):dataa###; 
//BBsynplify  defparam adder.LPM_DIRECTION = "ADD"; 
============== 
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====sevensegment==== 
reg [7:0] segments; 
 
always@(hex) 
 begin 
  case(hex) 
    4'b0000 : segments = 8'b11000000; 
    4'b0001 : segments = 8'b11111001; 
    4'b0010 : segments = 8'b10100100; 
    4'b0011 : segments = 8'b10110000; 
    4'b0100 : segments = 8'b10011001; 
    4'b0101 : segments = 8'b10010010; 
    4'b0110 : segments = 8'b10000010; 
    4'b0111 : segments = 8'b11111000; 
    4'b1000 : segments = 8'b10000000; 
    4'b1001 : segments = 8'b10010000; 
    4'b1010 : segments = 8'b10001000; 
    4'b1011 : segments = 8'b10000011; 
    4'b1100 : segments = 8'b11000110; 
    4'b1101 : segments = 8'b10100001; 
    4'b1110 : segments = 8'b10000110; 
    4'b1111 : segments = 8'b10001110; 
  endcase 
 end 
============== 
====bussplit==== 
assign dout1 = din[7:4]; 
assign dout2 = din[3:0]; 
============== 
====const3bit5==== 
assign dout = 3'b101; 
============== 
====const8bit0==== 
assign dout = 8'b00000000; 
============== 
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