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This research presents concepts intended to reduce a system’s vulnerability to a 

password sniffing technique that exploits differential current usage in hardware, known 

as an electromagnetic side channel attack.  The first countermeasure discussed is an 

augmentation to the standard register design that significantly reduces the amount of 

electromagnetic interference produced by these circuits.  Furthermore, this paper outlines 

a novel approach to user authentication based on keystroke dynamics that, in the event a 

user’s password is compromised by this kind of attack, renders this information 

insufficient as a standalone credential for system login.

One well documented security concern when using a keyboard as an input device to a 

system is the capability of an individual to measure electromagnetic emanations produced 

by the changes in current and register states associated with a user’s keystroke activity.  

By capturing and analyzing these signals an attacker can discover the user’s exact 

keystroke pattern, possibly revealing a password or other sensitive information.  

Background research was conducted into this form of computer system attack and causes
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as well as potential countermeasures identified. Techniques known as signal strength 

reduction and signal information reduction are described as traditional corrective 

methods.  However, because of limited commercial interest, these approaches have not

been applied to vulnerable system entry point devices such as the standard keyboard. To 

address this potential security concern a new model of register was created with an 

emphasis on equalizing current flow to the various nets within a device.  Using this 

design significantly reduces the electromagnetic interference produced by the keyboard 

device, making it considerably harder to isolate the information bearing signal from 

standard atmospheric noise, thus hardening the system against this type of a side channel 

attack.

Despite significantly reducing the possibility of an electromagnetic side channel 

attack, the use of these secure registers does not entirely eliminate the potential for 

hardware signal interception.  Consequently, an improved keystroke dynamics algorithm 

is also presented which when used in combination with interference reducing registers 

provides near total protection from hardware password sniffing techniques.  Keystroke 

dynamics is a field of study that leverages an individual’s consistently demonstrated 

tendencies when typing commonly used words as a means of behavioral biometric 

identification.  Prior to the presentation of a novel augmentation to this concept, an 

investigation into traditional methods for identifying and isolating the unique 

characteristics of user’s typing pattern was performed.  Concepts of “flight” and “down” 

time were recognized as established means for these purposes and the outcome of 

research implementing these mechanisms produced and analyzed.  Close examination of 
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these results showed inconsistencies in the ability of such routines to consistently and 

accurately determine user identification based on these two heuristics alone.  

Consequently, new capabilities which incorporated the concept of pressure were modeled 

and added to expand upon the original timing based characteristics of this biometric 

technique.  These enhancements resulted in substantial increases in the accuracy of the 

overall authentication routine such that this method of user recognition now displays the 

potential for deployment as a standalone system that further could diminish the threat 

posed to keyboard entry devices by electromagnetic side channel attacks.
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Chapter 1

INTRODUCTION

The keyboard is one of the most common devices used to input information into a

computer system.  While extended work has been done in the area of computer security 

as it relates to information already contained within a software or network system, little 

emphasis has been placed on the authentication and integrity of data at this initial system 

entry point.  Despite its under-researched nature, significant security concerns exist at this 

crucial junction in the overall information assurance process.  These concerns include, 

but are not limited to, data interception and user authentication.  Data interception is the 

act of a third party recording the signals produced by a system.  This information can 

then be used for a variety of purposes such as discovering compromising information 

about the system’s operation or to gain unauthorized access at some point in the future.  

In the field of network security the latter case is commonly referred to as a replay attack 

and has received considerable attention.  However, the monitoring of computer signals 

can occur at any level within the system including software and hardware. User 

authentication involves evaluating credentials submitted by an individual with the intent 

of allowing or denying system access.  These materials can be knowledge, token, or 

biometric based or some combination therein.  Moreover, there is generally a direct 

relationship between the number of authentication classes required by a system and the 
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perceived security of that system. The focus of this research is to address these two

security issues by proposing design enhancements to prevent the capture of 

electromagnetic signals produced at the circuit level and to introduce a novel 

augmentation to the user authentication process based on behavioral biometrics.

Data interception at the hardware level receives relatively little attention as compared 

to the emphasis this security concern enjoys in the networking field.  The majority of 

attention in this field of study has been given to countering side channel cryptanalysis, 

which is the process of obtaining and then analyzing information, such as power 

consumption and produced electromagnetic interference, leaked from the operation of a 

hardware system.  It has been proven that using this information and differential analysis

the encryption primitives of several smart cards can be obtained [8].  More relevant to 

this research however is the possibility that an attacker could record the electromagnetic 

signatures produced by changes in current and internal register state of a standard 

keyboard and then use this information to discover a person’s password or other sensitive 

information.   

Efforts to reduce the possibility of this type of side channel attack have largely

focused on two key areas.  Firstly, reducing the possibility of an attacker obtaining such 

information, called signal strength reduction, and secondly, reducing the possibility that if 

obtained these signals contain any usable information, called signal information 

reduction.  Signal strength reduction uses electromagnetic shielding to ensure that 

emanations omitted by device components are weakened and therefore undetectable by 

modern antennas [6].  This is the approach adopted by most government agencies, 
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explaining why secure devices, rooms, and even entire buildings employ expensive 

metallic shielding.  The second common means of preventing side channel attacks, signal 

information reduction, attempts to adapt standard circuit elements to ensure that a 

minimal amount of constructive interference is generated.  One method to acheive this 

desirable quality is signal balancing, which involves offsetting events that produce 

electromagnetic interference with a set of events that are electromagnetically neutral, 

essentially balancing the interference generated by the circuit component as a whole.  

Another approach involves randomizing the produced electromagnetic interference for a 

single execution sequence [7].  This ensures that attackers are unable to reliably interpret 

the magnetic signature of hardware events and therefore cannot statistically determine 

what input stimuli affect different parts of the system.

Behavioral biometric identification attempts to distinguish individuals based on the 

measurement of some learned routine. This subset of the larger biometric identification 

class is generally viewed as far less accurate than physiological biometrics, which 

measure innate features such as fingerprints or DNA samples.  This is because 

physiological characteristics are largely invariant over time, whereas behaviors can be 

modified or even unlearned completely.  Despite this fact several reliable methods for 

behavioral biometric identification have been developed including gait recognition, 

handwritten signature analysis, and keystroke dynamics.

Keystroke Dynamics involves measuring and analyzing certain distinguishable

aspects of a person’s typing habits in real time as they enter information into a terminal.  

This information can then be compared to a standard template of a user’s keystroke 
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tendencies and used to either confirm or repudiate identity.  Previous work in this field 

has largely focused on timing the period between the keystrokes and other timing based 

measurements such as total time to type a given word [1].  More commonly this timing 

can be broken down into “flight” and “dwell” time, which are defined as the time a user 

is in transition between two keys and the time a user holds down a specific key, 

respectively.  Despite noticeable effort by the research community [1, 4, 5], this field of 

research has largely failed to produce results comparable to those obtained using 

conventional biometric authentication.

Our approach to counteracting the electromagnetic side channel attack involves 

implementing a register that uses signal balancing to significantly reduce current 

differential within keyboard registers.  We will show the design theoretically leads to vast 

reductions in electromagnetic signal production thereby providing increased security 

against attacks that capture and analyze these signals.  We also seek to further secure user 

authentication systems against this form of attack by augmenting current timing based 

models of keystroke dynamics with pressure sensitive heuristics.  Adding both a measure 

of maximum pressure and matching a pressure curve to the pattern in which the user 

depresses any particular key greatly increases the degrees of freedom associated with this 

biometric.  By employing both of these two methodologies, the vulnerability of keyboard 

input systems to electromagnetic side channel attacks and unauthorized use is 

significantly reduced.
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Chapter 2

BACKGROUND

This section discusses the background topics that support this research.  First, a 

discussion of key principles related to user authentication is presented to provide a 

framework for understanding the proposed security enhancements outlined by this paper.  

Secondly, key motivations for the research into entry point security and its place in the 

spectrum of the information assurance process are explained.  Next, we discuss the theory 

surrounding the electromagnetic side channel attack, present research detailing the 

severity of this form of password sniffing, and describe approaches designed to 

counteract its threat.  Concepts surrounding the field of keystroke dynamics are also 

presented and previous work in this area discussed.  Finally, this chapter presents a 

description of our methods for eliminating the possibility of faulty user authentication 

due to an electromagnetic side channel attack.

2.1 User Authentication

The ultimate goal of computer security, whether it is at the hardware, software, or 

network level, is to prevent the unauthorized access of sensitive data.  The first step in the 

user authentication process is to accurately identify the individual attempting the access 

the system.  Any one of the dozens of common identification schemes generally fall into 

one of three primary categories:  what you have, what you know, and who you are [9].  
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The more categories implemented by a security system, for example using a password 

(what you know) and a key card (what you have), the more secure that system is thought 

to be.  “What you have” is the category used to delineate measures that operate via the

possession of a physical device, such as a badge card.  “What you know” has been the 

traditional means of computer access and relies on some unique and secretive knowledge 

that only an authorized user is thought to possess, such as user name and password 

schemes.  “Who you are” is most commonly thought of as biometrically identifying an 

individual using some unchanging and unique physical detail, such as a fingerprint or 

retinal scan.  However, more behavioral details, such as a written signature or the way 

someone walks, can also be thought of as biometrically relevant although typically less 

accurate than physiological measurements.  This topic will be discussed in detail in later

sections.

2.2 Entry Point Security and the Information Assurance Process

As society becomes increasingly mobile the access of information over networks has 

become more common.  As a consequence, much research and effort has been put into 

securing network systems from malicious observation and manipulation.  However, 

another largely overlooked consequence of this tremendous increase in human mobility 

has been the corresponding rise in the manner of ways and number of locations from 

which legitimate users access their data.  Public workstations are used every day to view 

sensitive personal and corporate information at locations ranging from coffee shops to 

hotel lobbies.
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These unfamiliar systems are just a few examples of entry points that are vastly more 

susceptible to manipulation by outside parties than the traditional desktop that remains 

safely locked inside a home or place of business. The principle goal of user 

authentication as it relates to network security is to ensure that the digital signals which 

represent identifying attributes cannot be manipulated or forged.  However, another 

equally important aspect is that these attributes cannot be forged or stolen before they 

have been digitized for transmission to an authentication service.  This is the concept of 

entry point security and as the use of unfamiliar systems increases it must receive 

additional attention in order to ensure an unbroken chain of security from legitimate user 

to remote data.

2.3 Electromagnetic Side Channel Attacks on Unfamiliar Systems

One of the greatest entry point security concerns related to the knowledge (What you 

know) based systems which dominate the modern computer landscape is the possibility 

that the information required for authentication has been intercepted and is now being 

used by an illegitimate party.  One of the particularly well documented [21] techniques 

used by attackers to achieve these goals is password sniffing via the capture of 

electromagnetic emanations or interference that radiate from keyboards.  These physical 

anomalies arise because of changing current flows within the various channels of a 

device.  In modern CMOS circuits current is required to change the state of any 

continuous section of wire, also called a net, while holding these fields constant uses little 

to no current flow.  Because at some level all hardware components can be modeled as a 

series of interconnected nets, any device which switches several different nets at one time 



8

will require a surge in electrical power.  This often sudden change in current flow and 

consequently netlist state is usually modeled as a short burst of square waves with sharp 

rising and falling edges and emits electromagnetic signals with a frequency related to the 

duration of the rise or fall time and the pulse frequency.  These emanations carry 

information about the current flow, netlist state, and consequently the device’s operation.  

If these waves are intercepted and properly interpreted they can reveal the events that are 

occurring on a piece of hardware at any given clock cycle.

Electromagnetic interference can be divided into two general categories: direct and 

unintentional, or indirect emanations.  Direct interference results from intentional current 

flows from one system component to another.  These generally coincide with a sharp 

burst of current at the rising edge of a square wave clock cycle and can be observed over 

a wide range of frequencies, depending on the state transition time.  Unintentional 

emanations results from interactions between device components that exist at close 

proximity.  These are often easier to detect than direct signals because they propagate as 

modulations of carrier signals, which can be picked up at greater distances away from a 

device than direct radiation.  However, discerning the exact cause of this type of 

interference is much harder even for circuit designers and usually only becomes evident 

during compliance testing [8].  Consequently, information retrieval from this variety of 

radiation is generally harder, although not impossible.

The emanations generated by increased current flows propagate through space by a 

combination of radiation and conduction.  Generally the presence of these signals can be 

observed through the use of a wide range receiver set to scan its entire frequency range.  
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The recorded output is then demodulated based on its Amplitude Modulation or 

Frequency Modulation in an attempt to isolate signals of interest.  Once any such signal is 

identified, filtering and narrow band antennas can be used to decrease the signal to noise 

ratio to extract useful information [8, 21].

The first recorded use of these signals to perform an attack on a computer signal 

occurred in the 1960s when British MI5 scientists, after several unsuccessful attempts at 

breaking a French diplomatic cipher, noticed a faint electromagnetic phenomenon in the 

enciphered traffic.  This signal turned out to be the plain text which had leaked through 

the cipher machine as a result of electromagnetic emanations [19].

More recently, Agrawal et al. in [6] demonstrate this manner of attack by placing a 

simple near-field probe on the back of a smart card and an employing an Amplitude 

Modulation (AM) receiver.  Using only this simple equipment, they are able to 

successfully isolate a 13 instruction loop and identify the conditions within the device’s

registers that caused the processor to begin this series of execution.  Once these 

conditions were discovered, by simply modifying the perceived values coming from the 

register file their team was able to infinitely lock the card’s operation inside this loop.

In terms of user authorization and entry point security these same EM emanations 

utilized in [6] and [19] can easily be monitored to determine a user’s password.  Most 

modern keyboards operate on the basic principle that a grid of broken circuits, called the 

key matrix, lies underneath the physical keys.  When a user presses, a key a switch is 

depressed that completes the circuit causing current to flow.  Since EM emanations are 

the consequence of differential current flow it naturally follows that keystrokes cause 
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distinctive patterns of electromagnetic interference to be produced from a keyboard.  If 

these signals were intercepted by an attached probe or, perhaps more concerning, a 

remote antenna they could be easily filtered to reveal a user’s typing history and 

potentially a password or other sensitive information.  Vuagnoux and Pasini [21] 

definitively demonstrated the catastrophic nature of this security weakness with their 

2009 study in which they were able to recover nearly 95% of keystrokes typed on a 

several varieties of both wired and wireless keyboard at distanced of up to 20 meters and 

through walls.  The extent of this problem has been recognized by various government 

and intelligence organizations since the 1960s and is one of the main reasons secure 

buildings employ expensive shielding materials against these electromagnetic 

emanations, or Tempest radiation, so named after a U.S. government program to 

counteract their affect [20].  

Unfortunately, the modern computer user cannot rely on electromagnetic shielding 

when accessing sensitive information on unfamiliar work stations.  Moreover, it has been 

argued that this form of signal strength reduction alone will never fully solve the 

problems associated with Tempest radiation because shielding never entirely eliminates 

electromagnetic signals coming from a device [7].  Shielding can only reduce and 

obscure these signals but even at the most elementary physical level, the interaction of an 

electromagnetic wave with another atomic structure (such as shielding material) induces

oscillations within that structure, which in turn produce more electromagnetic waves.  

Granted, shielding does provide a prohibitive factor in an attacker’s attempts to analyze 
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tempest radiation.  However as knowledge of a shielding scheme and antenna sensitivity 

increases, this factor is markedly reduced.

2.4 Signal Information Reduction

For reasons discussed above, the only truly effective long term solution to 

electromagnetic emanations, especially as they relate to unfamiliar entry points, is signal 

information reduction.  This methodology attempts to ensure that while tempest radiation 

might emanate from a device, the information contained within its frequencies is minimal 

harmful at best.  Several designs to accomplish this goal have been suggested. However, 

because of prohibitive costs, littler commercial interest in either signal strength or signal 

information reduction has ever been achieved.

Two general approaches have been proposed, namely the randomization of 

general operations’ execution sequence over time and electromagnetic balancing. 

Randomization involves executing particular portions of an algorithm in different orders 

with the goal of confusing attempts to reliably interpret the electromagnetic emanations 

that are produced as a result.  This can be as simple as initializing variables or recalling 

them from memory in different permutations for each iteration of a particular loop.  

However, because of the vast interdependencies of the various modules of most modern 

algorithms, Chari et al. [7] suggest this approach will never achieve true randomness and 

a “casual order” will always be discernable as the device executes its various stages.  The 

alternative, load balancing, requires that any event producing a significant 

electromagnetic signal, i.e. consuming current, be offset by a complementary event which 

causes some other portion of the device to significantly reduce its current dissipation.  
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Again, Chari et al., point out evident faults in this approach by noting that balancing 

attempts will be ineffective at high resolutions because they never achieve perfect 

symmetry between the offsetting sequences.

Kuhn in his Cambridge doctoral dissertation [22] did extensive work on the 

feasibility of remotely obtaining information from electronic devices, specifically 

monitors.  While only limited countermeasures are suggested or tested, one promising 

solution seemed to be adding a significant source of background radiation that is of a 

similar frequency to the electromagnetic emanations in order to mask the information 

carrying signal.  Having several independent sources generating such a signal also 

significantly interrupted the team’s ability to isolate and analyze the emanation coming 

from their control device because the multiple background producers were out of phase 

with each other.  However, this notion proves impractical for use on unfamiliar systems 

because it requires individuals to transport and employ external equipment for effective 

implementation.

Despite the best efforts of security engineers, the total elimination of 

electromagnetic emanations from hardware will more than likely never be achieved.  This 

has little to do with circuit design but is instead a property of the physical laws governing 

the creation and containment of these waves.  While significant progress is undoubtedly 

possible, as we hope to demonstrate in this paper, other measures such as using 

biometrics must be taken to harden authentication processes against malicious intentions.
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2.5 Biometric Identification on Unfamiliar Systems

Of the three previously discussed primary classes for user identification, biometrics

(who you are) hold a distinctive advantage over both knowledge based (what you know) 

and token based (what you have) methods [10].  This is a consequence of the obvious fact 

that the former scheme is based on inherent attributes of a given individual while the 

latter two are based on aspects that can be lost, stolen, or simply forgotten.  Generally,

biometric identification is divided into two general categories which have already been 

briefly touched on:  physiological and behavioral [3].  Physiological biometrics deals 

with innate features of an individual’s identity while the measurement of learned routines

falls into the behavioral category.  In most cases, physiological features are extensively 

more accurate because they are invariant over time.  However, biometric identification of 

this type typically requires external and often expensive equipment to record, such as iris 

scanners or fingerprint readers.  Behavioral features are generally less accurate but 

certain extensively repeated and therefore muscularly ingrained operations such as an 

individual’s written signature have been shown to be reliable means of confirming 

identity.

Because of the external equipment needed to measure physiological biometrics, their 

implementation is generally not practical on unfamiliar systems.  Keystroke dynamics 

however is a means of behavioral biometric identification that requires only a keyboard, a 

device almost universally found on modern computer systems.
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2.6 Identification based on Keystroke Characteristics

Gains et al. [12] were the first to study the timing information between keystrokes as 

a means of individual identification.  They attempted to create a matrix of digraph 

latency times or flight times between any given key and every other letter of the alphabet.  

Only lower case letters were used resulting in a 26x26 matrix or 676 possible two letter 

combinations.  Their experiment asked ten RAND corporation secretaries to type a 300-

400 word passage and used only digraph information for which the two letter 

combination appeared more than ten times.  This resulted in 87 statistically significant 

letter combinations.  To test their findings, Gains et al. developed a model for statistical 

comparison of each digraph latency time.  This model essentially compared each 

individual digraph entry to the mean for that digraph of either the same secretary or a 

different secretary depending on whether false acceptance or false rejection rates were 

being produced. In this manner the team determined how often a given user is not able to 

consistently reproduce flight times between letters and the probability that someone else 

could reproduce similar flight times and thus gain faulty access to the system.  Using this 

model and eliminating redundant tests, 55 comparisons were carried out on the data.  The 

results show a combined false acceptance rate of zero and a false rejection rate of 4%.  

Moreover, Gains was able to run his analysis on individual two key combinations and 

found that if only a select subset were used, namely in, io, no, on, and ul, that 

both the false acceptance and false rejection rates dropped to zero.

Because of the extremely small test pool in this study, minimal importance can be 

given to the accuracy results obtained.  However, this work did show the feasibility of 
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keystroke dynamics (although the name had not been coined at the time) as a possibility 

for obtaining identifying credentials from a user.

The next major set of experiments conducted on Keystroke dynamics were conducted 

by Leggett, Williams, and Umphress and presented in a series of papers [13, 14, 15].  

This team’s first effort [15] had 17 programmers type a control paragraph of 1400 

characters and a second test paragraph of 300 characters.  This test expanded on Gains’

original idea by comparing the overall mean of the users keystroke latencies in addition 

to statistically significant digraph flight times.  The team considered a test signature to be 

verified if more than 60% of the test latencies were deemed valid.  The requirement for a 

test latency to be deemed valid was that it fell within 0.5 of a standard deviation of the 

mean digraph latencies for the control signature. The results from this study show that 

the mean latency time, which basically measured the user’s average typing speed, did not 

improve the accuracy results as obtained by [12].

The team’s next study [13] expanded the test pool to 36 participants which typed a 

537 character paragraph on two separate occasions.  The measure of mean keystroke 

latency was dropped and the space bar was added to the digraph latency matrix, causing 

its size to increase from 676 to 729.  A number of different tests were performed on the 

digraph latency times, including generating false acceptance and rejection rates if only 

right hand or only left hand digraphs are used, as well as only using the subset identified 

by [12] and the 15 most frequently typed digraphs.  These tests produced interesting 

results, such as that using the subset of digraphs that produced zero percent false 

acceptances and false rejections in [12] resulted in false acceptance and rejection rates of 
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17% and 30% in [15], respectively.  Ultimately however, it was discovered that the best 

accuracy results were obtained from using the set of digraphs that had maximum 

latencies under 500 milliseconds.  Using these heuristics, the team obtained false 

rejection rates of 5.5% and false acceptance rates of 5.0% by again using the same 

comparison method described in their first experiment.

Further research conducted by Joyce and Gupta [2] explored the possibility of 

augmenting login credentials with additional information, in this case a first and last 

name, and performing keystroke analysis on these fields. Their research involved thirty-

three users going through a reference session in which they are asked to type their 

username, password, as well as first and last name eight times.  The flight times for each 

letter in these fields were calculated and those that were three standard deviations from 

the mean discarded.  Joyce and Gupta rejected the comparison technique used in [15, 13] 

because the 60% validity rule allowed a test vector to pass even if up to 40% of the some 

of the test signature latencies to differed substantially from the control signature.  Their 

team instead opted to view the comparison as a measurement of the difference between a 

test vector T and a control vector M where:

},,,{

},,,{

passwordfirstnamepasswordusername

lastnamefirstnamepasswordusername

ttttT

mmmmM





Such that each m is a vector consisting of the mean digraph times observed in the 

reference sessions and each t is a vector consisting of the digraph times observed in a 

subsequent login attempt.  In this manner the difference between M and T can simply 

be viewed as the L1 or Manhattan norm of the difference between M and T .  Their 
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approach also used the novel concept of adapting the threshold for acceptance based on 

the variance of the eight reference signatures.  In this manner, a user who had little 

variability in how they type would be expected to meet a much more stringent condition 

for verification than a user who demonstrated a large degree of inconsistency in their 

typing habits.

Their research reported two separate results.  The first requires test signatures to fall 

within a threshold of the mean plus 1.5 standard deviations for verification and has a false 

rejection rate of 16.36% and a false acceptance rate of 0.25%.  The second modifies this 

condition to allow verification if a test signature is within the mean plus 2.0 standard 

deviations and modifies the false rejection and acceptance rates to 6.67% and 0.8%, 

respectively.

Several other important contributions to the field of keystroke dynamic have been 

made since these original experiments.  These include a patent by Garcia [4] which 

introduced the idea of using Mahalanobis distance when comparing a test and control 

signature.  This essentially considered the variance of the control signature latency times 

when calculating the difference between them and a test signature latency time.  The 

implementation of the Mahalanobis distance had the effect of automatically skewing the 

data to account for inconsistencies in typing habits and of further encouraging research 

into alternative comparisons techniques, despite the fact that no results are actually 

presented in the patient literature.

Brown and Rogers [16] were the first to implement the concept of down time as well 

as flight time in their work.  By measuring and comparing the average time a single key 
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is held down in a 26 element vector, they substantially increased the amount of 

information their algorithm was able to leverage for its final verification decisions.  

Mahar et al. [17] showed using this two interval system was vastly more reliable than the 

original metrics based solely on latency time.  This idea has been expanded by [3] to 

suggest that down time is affected by the preceding keystroke and possibly the following 

keystroke as well.  This leads to the possibility of constructing a digraph down time

matrix in addition to the previously described digraph latency matrix and possibly 

expanding both of these matrices into trigraphs as well, although no research has been 

done to support this concept.

Lv and Wang [18] were the first to present initial work using pressure as a third 

heuristic on which to base their verification algorithm.  However their results gave only 

marginal improvements of less than a percent increase in accuracy over the results they 

saw when ignoring the pressure sensitive aspect.

2.7 Securing Unfamiliar Entry Points against Faulty User Authentication and 

Electromagnetic Side Channel Attacks

Our approach to the problem of user authentication and the electromagnetic side 

channel attack on unfamiliar entry points as outlined in the preceding sections is twofold.  

The first aspect seeks to prevent the possibility that a user’s password can be hijacked by 

employing a current neutral register to significantly reduce the electromagnetic 

differential associated with depressing various keys on a standard keyboard.  This design 

employs the load balancing technique of signal information reduction by attaching a 

secondary register which operates in the inverse mode of the primary register as well as 
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electromagnetically neutral control circuitry.  Because of the relatively small scale of a 

keyboard’s internal circuitry this load balancing attempt is feasible despite claims by [7] 

that such an approach is impractical.  The second portion of this paper outlines a 

methodology for ensuring that even in a scenario where a password is compromised, an 

attacker will be unable to maliciously employ this information because of a sophisticated 

keystroke dynamic algorithm.  This approach augments standard timing based keystroke 

analysis routines with a pressure sensitive aspect that monitors and compares not only 

absolute pressure as suggested by [18] but also the novel concept of a pressure curve.  

This curve attempts to increase the overall amount of information that can be obtained 

from a user’s typing patterns by leveraging the affect that tiny muscles in the fingers have 

on the manner in which a user presses and releases a key.  These same muscles are a 

critical factor in handwritten signature verification as researched by [23].  When an 

individual signs their name or performs any act of handwriting that has been repeatedly 

ingrained in their finger’s muscle memory, the action is smooth and clean.  However if 

this particular action is relatively new to the user the muscles in the fingers work in a 

disjoint manner, resulting in a significant amount of jitter or variability in the signature.  

This research intends to demonstrate this same general concept applies to the field of 

keystroke dynamics and to employ these findings in developing a superior algorithm for 

biometric identification based on observed typing tendencies.
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Chapter 3

DESIGN OF ELECTROMAGNETICALLY NEUTRAL REGISTER

In order to reduce the electromagnetic emanations from a standard keyboard we must 

first look at the design of such a device and understand what operations cause these 

signals to be produced. This chapter starts with a discussion of the basic design concepts 

employed by modern keyboards.  Next, we analyze the current flow through these 

devices when various input transitions are made and isolate components where 

differential power requirements could produce Tempest radiation.  After identifying the 

electromagnetically compromising elements we present one possible solution to equalize 

current dissipation throughout the design.

3.1 Standard Keyboard Design

While the exact keyboard circuitry varies for different manufacturers, the basic 

concepts remain the same across most modern devices.  Generally, keyboards operate as 

a layer of keyswitches placed over a grid of broken circuits.  Depressing a particular 

keyswitch connects the circuit and generates a signal which is subsequenyly processed by 

the keyboard controller and communicated via some interface to a system’s operating 

software.  Instead of having one signal for each keyswitch, which would require over one 

hundred keyswitches and therefore over one hundred input pins on the controller, 

keyswitch sensors are arranged in a grid like pattern.  Thus when a particular key is 

pressed, it simply communicates a row and column number to the controller, requiring far 
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fewer pins.  The concepts of keyswitches, keygrids, and the keyboard controller are

shown for a simplified 4x4 keyboard in Figure 3.1. This basic design can easily be 

expanded to accommodate any arbitrary N x M keyboard layout.  

Figure 3.1 - Simple 4x4  Keyboard Diagram

However, this simplified design fails to account for one crucial aspect, which if left 

unaddressed results in extremely unpredictable transmissions from the keygrid to the 

keyboard controller.  Switch bounce, or contact bounce, is a physical side effect 

experienced by any mechanical switch.  These components are made of spring like 

materials that are forced into contact by an actuator, in this case a human finger.  

However, after this transition from open to close and then back to open these switches 

experience some degree of bounce.  Physically, this contact bounce is a function of both 

the momentum with which the switch is depressed and the elasticity of the metals that 

make up this circuit component.

In terms of our keyboard design, switch bounce will cause the controller to record 

several rapid key events for each actual depression of a key.  This will obviously need to 
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be accounted for in order for the perceived input from the user to match the electronic 

signals interpreted by the keyboard controller.  The simplest, and therefore the most 

widely used approach to “debouncing” is to use a double throw SR Latch (Figure 3.2) to 

remove the bounce from the signal and then a D Flip-Flop to capture the steady state 

output.  The SR Latch has the property that even if the switch bounces in the neutral 

region between the two contacts, the output will remain constant because of the feedback 

loop between the NAND gates.

Figure 3.2 - “Debounce” Circuit [26]

In order to prevent multiple instances of a single letter being processed for a single 

keystroke event these circuits must be placed in between the keyswitches and the 

keyboard controller for every row and column.
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3.2 Analysis of Current Flow within Keyboard Design

In order to isolate parts of this design which generate compromising electromagnetic 

signals, we must examine how current flows through the various components for 

different keystroke events.  As mentioned, tempest radiation is the result of sudden 

changes in the overall current needs of a circuit.  Thus, any state transition that causes 

varying numbers of nets to switch will have a distinctive electromagnetic signature.

Surprisingly, the gird of wires and keyswitches is relatively electromagnetically 

neutral.  We can see this by picturing what happens across the grid as a user enters 

information.  Only two lines, one corresponding to the row and the other to the column of 

the pressed key, are active during any given keystroke1.  Consequently two nets will 

begin drawing current while two other will have their power needs drop to zero, resulting 

in constant current flow over time to this particular component.  This is demonstrated by 

Figures 3.3 and 3.4.

                                                

1 We recognize the possibility that users can hold down two keys simultaneously, such as when 

entering a capital letter.  However, for the purpose of this research we will consider the possibility that an 

attacker could identify the number of capital letters in a password as minimally important relative to the 

possibility that an attack could identify an entire password string.
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Figure 3.3 - Active Lines with Key 3,3 pressed

Figure 3.4 - Active Lines with Key 4,1 Pressed

This successfully eliminates the keyswitch grid as the source of the keyboard’s

electromagnetic emanations.  The next component to look at is the debouncing circuitry 

we discussed earlier.  First, we will examine the operation of the SR Latch as its input 
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changes.  This proves relatively easy to do by hand because there is only one input pin 

and four nets, which for the purposes of this discussion have been numbered in a 

clockwise order as outlined by Figure 3.5.

We will define the time quanta t = 0 as a point in time when the switch is in the up 

position.  At this instant the grounded switch pin establishes connection to one input of 

the upper NAND gate causing its output to become 1 and the entire netlists state to be (0,

1, 0, 1)2.  As stated we must examine the effect on consumption as a result of all possible 

transitions.  First we look at the number of net transitions when the switch moves from 

this initial state to the down position at time t = 1.  This action causes an input of the 

lower NAND to become connected to the ground signal forcing Net 3 to transition from 0 

to 1, which in turn switches Net 2 to 0 resulting in the stable state configuration of (1, 0, 

1, 0) for the switch in the lower position.  Lastly, we must examine the internal netlist 

states as the switch moves from the lower to the higher position.  At time t = 2 we force 

the switch to make this state transition and again observe the total net configuration of (0, 

1, 0, 1).  This entire sequence can be seen in Table 3.1.

                                                

2 (Net 1, Net 2, Net 3, Net 4)
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Figure 3.5 - Netlists of SR Latch

Notice that for either the up-to-down or down-to-up transition the total number of 

nets transitioning from 0 to 1 equals the total number of nets transitions from 1 to 0.  

Mathematically, this corresponds to the Corrected Hamming distance between any netlist 

configuration and the configuration of the circuit at the previous time interval being equal 

to 0.  Corrected Hamming distance is a term used throughout this paper to denote a 

special case of the Hamming distance measurement3 in which a substitution of two 

complementary digits cancels out.  In the SR Latch example, 1 and 0 are complementary 

binary units and therefore since each transition requires the substitution of exactly two 1s 

and two 0s, the Corrected Hamming distance cancels out to 0.  

Electronically, we can see then that as the SR Latch operates, the number of switches 

and therefore the total component current usage is constant and therefore a static amount 

                                                

3 A Hamming Distance is the number of positions by which two equal length strings differ.  For 

example HD( 1110, 1010) = 1 because the first and second strings only differ in the second digit [25].
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of electromagnetic interference is produced.  Because the amount of electromagnetic 

interference produced is unchanging, it cannot be used by an attacker to learn sensitive 

information about the devices operation.  Consequently, the SR Latch component is 

electromagnetically neutral and not the source of the keyboard’s tempest radiation 

emanations.

Table 3.0.1 - Condition of SR Latch Nets as Component Operates

Net 1 Net 2 Net 3 Net 4 CHD

t = 0 0 1 0 1 NA

t = 1 1 0 1 0 0

t = 2 0 1 0 1 0

The next component of the keyboard design we need to look at is the D Flip-Flop that 

registers keystroke information before it is passed to the keyboard controller.  Because 

these components are larger and have multiple inputs, we will not be able to examine 

them by hand as we did the SR Latch.  Instead, we modeled the gate level design of a 

DFF circuit, which is shown in Figure 3.6, using the hardware description language 

Verilog4.  We also created a test bench to transition this design through all possible state 

changes.  For the SR Latch circuit there were only two possible state changes: up to down 

and down to up. However for a three input DFF circuit there are 64 possible state 

                                                

4 IEEE 1364 Standard Verilog code, compiled using Icarus Verilog software on Windows Vista 

environment
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transitions.  After each change in input, all nine of the internal nets must be checked and 

compared to their previous state to compute the current differential associated with that 

transition.

Figure 3.6 - Gate Model of D Flip Flop

By analyzing the results of this test, which are presented in Table 3.2, we can see that 

the D Flip-Flop circuit is not electromagnetically neutral.  As the inputs to the component 

change, the corrected Hamming distance does not equal 0 and thus the total change in 

netlist state is not constant, meaning that the circuit draws differential amounts of current 

and therefore puts off distinct electromagnetic waves.  These signals can be recorded and 

analyzed to determine what transition the device has just performed, which on a keyboard 

equates to the row and column number of the key that was just entered by the user.
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Table 3.0.2 - Hamming Distance Results for DFF Input Transitions

Input Output Corrected HD Input Output Corrected HD

001 001011101 NA 111 111101010 2
000 000011101 -1 001 001011101 -1
000 000011101 0 111 111101010 1
001 001011101 1 010 010010101 -2
001 001011101 0 011 011010101 1
010 010010101 -1 010 010010101 -1
010 010010101 0 100 100011101 1
000 000011101 0 010 010010101 -1
010 010010101 0 101 101111001 2
001 001011101 1 010 010010101 -2
011 011010101 0 110 110010101 1
011 011010101 0 010 010010101 -1
000 000011101 -1 111 111010101 2
011 011010101 1 011 011010101 -1
001 001011101 0 100 100011101 0
100 100011101 0 011 011010101 0
100 100011101 0 101 101111001 1
000 000011101 -1 011 011101110 0
100 100011101 1 110 110010101 -1
001 001011101 0 011 011010101 0
101 101111001 1 111 111010101 1
101 101111001 0 100 100011101 -1
000 000011101 -2 101 101111001 1
101 101111001 2 100 100011101 -1
001 001011101 -1 110 110010101 0
110 110010101 0 100 100011101 0
110 110010101 0 111 111101010 1
000 000011101 -1 101 101111010 0
110 110010101 1 110 110010101 -1
001 001011101 0 101 101111001 1
111 111101010 1 111 111101010 0
111 111101010 0 110 110010101 -1
000 000011101 -2 111 111010101 1
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3.3 Design of Electromagnetically Neutral Register

Our goal is to design augmentations to the standard D Flip Flop design that cause 

each of the nine nets in the circuit to be counterbalanced by another net.  This means that 

when a net switches state from 0 to 1, its counter net switches from 1 to 0 and vice versa.  

Furthermore, when a series of nets is in a steady state or does not change from time t=x

to time t=x+1 we want its series of counter nets to also stay steady in its inverted state.  

Lastly, these augmentations should be not affect the overall function of the primary D 

Flip Flop circuit and should be limited to a minimal amount of complexity so as not to 

significantly increase the cost of manufacturing the circuit.

Figure 3.7 - High Level Design of Electromagnetically Neutral Register

An obvious starting point for designing a circuit that meets these criteria is to add a 

secondary register whose function is directed by some amount of control logic (as shown 

in Figure 3.7) because we now have two sets of identical netlists whose operation we can 
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manipulate.  However our manipulation of the nets inside the secondary register is still 

governed by basic Boolean algebra.  In order to ensure that we will be able to direct the 

netlists of this shadow register into the exact inverse operations of the primary register 

we need to closely examine the power consumption affects that different input stimuli 

had on the flip flop device by groups in search of distinct patterns, which we attempt to 

demonstrate in Tables 3.3 and 3.4.

Table 3.0.3 - Current Differential Table I

Inputt Inputt+1

000 001 010 011 100 101 110 111

000 0 1 0 1 1 2 1 2

001 -1 0 -1 0 0 1 0 1

010 0 1 0 1 1 2 1 2

011 -1 0 -1 0 0 1 -1 1

100 -1 0 -1 0 0 1 0 1

101 -2 -1 -2 0 -1 0 -1 0

110 -1 0 -1 0 0 1 0 1

111 -2 -1 -2 -1 -1 0 -1 0

While it might not be immediately obvious, this table is almost a perfectly 

represented symmetrically negated matrix.  Because of the manner in which we set up its 

layout, this distinct pattern provides valuable insight into the input stimuli that will cause 

the netlists of the shadow register to display the inverse behavior of the primary flip flop.  

With few exceptions these findings indicate that by inverting the three input stimuli to the 
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shadow register we should obtain the desired inverse switching behavior in the netlists.  

The few deviations from this rule correspond to locations where the matrix is not exactly 

symmetric, such as the transition from 101 to 011 and 100 to 001.  However these 

anomalies should produce far less current differential than the results we saw in Table 

3.2.  The relationship and its significance are more easily recognized if we color code the 

Corrected Hamming Distances and black out the identity transition, as shown in Table 

3.4.

Table 3.0.4 - Differential Current Table II

Inputt Inputt+1

000 001 010 011 100 101 110 111

000 1 1 1 2 1 2

001 -1 -1 1 1

010 1 1 1 2 1 2

011 -1 -1 1 -1 1

100 -1 -1 1 1

101 -2 -1 -2 -1 -1

110 -1 -1 1 1

111 -2 -1 -2 -1 -1 -1
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Chapter 4

DESIGN OF AUGMENTED KEYSTROKE DYNAMIC ALGORITHM

Chapter 5 demonstrates that the use of the electromagnetically neutral register has the 

potential to significantly reduce tempest radiation produced by a keyboard as a result of 

differential current requirements.  While this design makes significant progress in 

reducing the likelihood that electromagnetic signals could be used to discover a 

keyboard’s textual input, it does not entirely eliminate the possibility of such an attack

occurring.  Consequently, additional augmentations are needed to further strengthen the 

user authentication process against electromagnetic side channel attacks on password 

based systems.  This section will describe pressure based additions to standard keystroke 

dynamics approach that substantially increase the amount of information leveraged by the 

procedures and thus noticeable increase correctly matched signatures.  These algorithmic 

refinements elevate the accuracy of this behavioral biometric to a degree where it 

becomes a workable option to harden passwords against sniffing techniques.

4.1 Pressure Based Keystroke Attributes

As discussed, the use of keystroke dynamics has the potential to be an easily

deployed and user transparent extension to the traditional login process.  One major road 

block to the application of this technology in the real world has been its well documented 

struggle to obtain consistently reliable accuracy results.  This is largely because standard 

methods for measuring individuals’ typing habits have been primarily based on the 
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evaluation of only two characteristics per keystroke, namely down time and flight time.  

To make an analogy to the comparison of handwritten signatures, this approach would be 

like measuring only the length of and space between each written letter.  Not only is this 

insufficient information to make accurate correlations between handwritten signatures, 

but these characteristics are the easiest to forge by illegitimate users.  Consequently, in 

traditional handwriting comparison, letter length and letter gap are the least significant 

contributing factors to the verification or repudiation of two signatures [25].  

Unfortunately, the equivalents of these two characteristics are the only measurements 

available to the vast majority of keystroke dynamics algorithms.  The most meaningful 

characteristics in handwriting analysis are those that relate to curve smoothness and jitter.  

Obviously, there is no direct correlation between these characteristics and those that can 

be measured by a keyboard.  However, pressure curves, or the exact depression pattern 

with which a user strikes a key, draw noticeable comparisons with measurements of 

curve smoothness in the sense that are much more sensitive to finger vibration and 

extremely difficult to reproduce.  We will demonstrate that the addition of this 

measurement, along with normalized maximum pressure, significantly increases the 

accuracy of a keystroke dynamic algorithm to the point where it is a viable approach to 

strengthening password based log in systems against electromagnetic side channel 

attacks.
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Figure 4.1 - Visual Description of Keystroke Measurements

Figure 3.7 attempts to visually describe the four attributes that our keystroke dynamic 

algorithm will take into affect. This diagram also shows a variety of pressure curves 

observed for a sample user typing the word “password”.  As we can, see the nature and 

shape of these curves vary greatly depending on the users exact finger movement as they 

type a given word.  Furthermore, because they are intricately tied to reflex mussel 

coordination that is ingrained through the process of repetition in a user’s typing habits, 

they are exponentially harder for illegitimate users to reproduce than characteristics such 

as down and flight time.

There are two distinct aspects of any keystroke dynamics algorithm: signature 

construction and signature scoring.  Signature construction is the process of observing a 

user’s typing patterns and then employing that information to generate what we will refer 
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to as a legitimate keystroke template5.  Signature scoring is umbrella term for the 

algorithms we use to compare any other claimant keystroke template to a user’s 

legitimate template with the ultimate goal of confirming or repudiating identity.  For the 

purpose of this research we will define a keystroke signature as the set individual letter 

signatures for a typed log in credential.  Presumably, this credential is a standard textual 

password however, as demonstrated by [2], these same concepts can be applied to other 

frequently typed words such as first and last name. Letter signatures contain the 

measurements of flight time6, down time, maximum pressure, and a pressure curve for an 

individual key depression.

4.2 Signature Construction

Figure 3.7 is a visual representation of a keystroke signature but for comparison 

purposes these attributes must be described mathematically.  Down time, flight time, and 

maximum pressure are fairly straightforward to model numerically.  When constructing 

or updating a legitimate keystroke template, the mean, and standard deviation are 

maintained for each of these three features.  This will allows us to calculate both the 

expected value for any of these characteristics as well as a measure of variability 

demonstrated by a particular user in the past.  Furthermore, in order to be able to update 

these numbers a vector consisting of the most recent one hundred valid measurements for 

                                                

5 The words “keystroke signature” and “keystroke template” are used interchangeable throughout this 

paper

6 Note that in this algorithm flight time was arbitrarily selected as the time preceding the first instance 

of measured pressure.
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each characteristic is maintained.  When constructing a claimant signature there are no 

mean values or standard deviations because the sample size is 1.  Consequently, we only 

need to record the actual observed flight time, down time, pressure, and pressure curve 

for each letter typed.

Storing the pressure curve entry in each letter signature is slightly different than the 

method presented above for the obvious reason that curves must be modeled as lines 

while the other measurements can be represented as simple points.  The curves must be 

constructed from the information as it is received by the keyboard which in its initial 

form is a vector of pressures.  The particular keyboard used in our research pulses the 

operating system at a frequency of approximately 100 Hz.  Thus the pressure 

measurements we received from the keyboard were spaced out evenly by about ten 

milliseconds.  Using this information we can fit a curve to the resulting plot of the data in 

the xy plane.  We attempted to model all pressure curves as third degree polynomials to 

better represent scenarios where the either the depression or the release of the key came 

very quickly while the opposite action came more gradually, such as that seen in the “a” 

and “o” characters in Figure 3.77.  By using this method we were able to store the 

relevant information about the shape of these curves by maintaining only the mean and 

standard deviation for a, b, c, and d of the equation:

dcxbxax  23

                                                

7 For a moderate number of curves this degree of accuracy was not needed and the coefficient 

corresponding to the x3 term was effectively ignored.
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In order to update the standard deviation we also maintained a vector of these 

coefficients in the twenty five most recently observed pressures curve as well.

4.3 Entry Scoring

Entry scoring is the next crucial aspect of a keystroke dynamic algorithm.  The goal 

of our scoring algorithm is to calculate a difference measurement between the features of 

a claimant template and a legitimate user template that varies directly with claimant 

distance from the mean but indirectly with the standard deviation.  In this manner the 

difference measurement will increase as the distance from the mean grows but not 

penalize user’s who have a high degree of variability associated with a given feature.  

Much like the methods we used to create the keystroke signatures, this difference 

measurement must be calculated differently for the point like characteristics of flight 

time, down time, and maximum pressure and the line like characteristics of the pressure 

curve measurement.  Originally, our research efforts attempted to calculate the difference 

measurement for the point-like characteristics ( ip ) as a function of the legitimate 

template mean ( i ) and standard deviation ( i ) and the claimant sample ( z ) using the 

formula:

i

i
i

z
p


 || 



The individual difference measurements for flight time, down time, and maximum 

pressure ( i 0, 1, and 2, respectively) are then added together and combined with the 

difference measure of the pressure curve, which is discussed momentarily.  However, this 

approach neglects to place an upper bound on the affect that any one particular point-like
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feature can have on the overall penalty applied to a letter signature.  Furthermore, we 

want the difference measurement to reach this bounded maximum only when the 

observed sample z reaches some number of standard deviations away from the 

legitimate template mean i .  Through our research we found this optimal number of 

standard deviations to be three, changing the formula for the difference measurement of 

point-like characteristics to:
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The next step in the entry scoring process was to establish a method for calculating a 

difference score between the claimant and legitimate users pressure curve characteristics.  

As we stated, the process for evaluating the similarity of these measurements is different 

because they are modeled as a line while the other three keystroke characteristics can be 

represented as points.  The most obvious approach is to simply calculate area between the 

legitimate template pressure curve ( )(tl ) where the domain is given by ntlD ))(( and 

the claimant template pressure curve ( )(tz ) where the domain is given by mtzD ))((

normalized by some factor ( ) which is given by the equation:

 
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dttzdttlc
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This approach yields interesting questions related to the calculation of a difference 

measurement on line-like objects.  Firstly, we must address the situation where the 

domain of the two curves is not equivalent ( mn  ).  Visually we can think of this as a 

scenario in which one pressure curve has more points than the other and thus is longer in 
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the t dimension.  The interesting and at first counter-intuitive point here is that even 

though this situation obviously increases the amount of difference between two curves, 

we do not want to increase the pressure curve difference measurement.  At this point in 

the algorithm’s development we have not attempted to apply any weight to dictate which 

features contribute most significantly to the final claimant difference measurement.  

While these weights will eventually become an important aspect in optimizing the entry 

scoring process, we want to maintain the ability to easily and transparently modify the 

weights to fit the particular circumstances of the algorithm’s operation.  By penalizing the 

curve for being of differential length in the t dimension we are implicitly adding 

additional weight to the down time measurement, which is the characteristic specifically 

designed to estimate dissimilarity in the domain of each letter signature’s depression 

time.  Consequently, when faced with two curves of differing domains, we must 

horizontally stretch the curve associated with the smaller domain without penalty.  We 

know that the pressure felt on any key must be 0 and both time t=0 and the final observed 

time t=tn.  Mathematically this means that any pressure curve is “anchored” at the points 

(0, 0) and ( nt , 0).  Knowing this fact allows us to apply a simple geometric stretch to 

either the function )(tl or )(tz depending on which has the smaller domain.  

Mathematically, we can express this as:
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The result of this function can be seen in Figures 4.2 and 4.3 on two pressures curves 

obtained during testing and modeled in graphical software.  Figure 4.2 shows a legitimate 

user’s pressure curve ( )(tl ) for some letter in red and a claimant pressure curve ( )(tz ) for 

the same letter in green.  We can visually inspect the domains and determine that 

55))(( tlD and 30))(( tzD .  Therefore according to the above equation )()( tltl  , 

meaning the legitimate user pressure curve has the greater domain larger and therefore 

stays the same.  The claimant pressure curve however needs to be stretched horizontally, 

given mathematically by )54(.)
55

30
()( tztztz  .  The result of this stretch can be seen 

in Figure 4.3.

Figure 4.2 - Non Equalized Claimant and Legitimate User Pressure Curves
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Figure 4.3 - Equalized Claimant and Legitimate User Pressure Curves

The next interesting problem brought up by the application of the difference measure 

to line-like objects is the question of what to normalize the difference by.  Originally, our 

approach was to normalize the area difference by the total area under the legitimate user

curve. However, we found that using this method made it easier for a user to get good 

pressure curve difference scores against legitimate users who had letter signatures with 

high maximum pressures.  This interdependence between maximum pressure and 

pressure curve score again violates the idea that at this point in the algorithm all features 

are weighed as autonomous and equal.  Instead we concluded that the difference 

measurements for two curve-like models should be proportional to those model’s R2

values, which mathematically can be related to a measure of unexplained variance 

between the two datasets.  Again, we also want to limit the total negative affect that this 
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particular characteristic’s difference measurement can have on the entire letter signature 

difference score.  This resulted in the difference equation for pressure curves being 

established as:
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Resulting in the total difference measurement for a given letter signature kd where 

each wi is the eight applied to ith characteristic being:
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Chapter 5

RESULTS

This section discusses the results obtained by this research.  First, the switching 

reduction observed when employing the electromagnetic register design is discussed.  

Secondly, the accuracies associated with a brief human trial of the modified keystroke 

dynamic algorithm are presented.

5.1 Results for Electromagnetically Neutral Register

Table 4.1 outlines the results obtained when the Corrected Hamming distances are 

calculated for the electromagnetically neutral register as described in Section 3.3.  As we 

can see all but four input transitions cause the number of nets switching from 0 to 1 to be 

exactly equal to the number of nets switching from 1 to 0.  Furthermore, these anomalies 

were the transitions predicted by the matrix represented by Table 3.4.  Consequently this 

design as a whole draws a nearly constant amount of current regardless of the operation 

of the register.  Because there are no sudden spikes in current flow, significantly less 

electromagnetic interference is produced by the device.
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Table 5.0.1 - Switching Results from Electromagnetically Neutral Register

Input Output Corrected HD Input Output Corrected HD

001 001011101 NA 111 111101010 0
000 000011101 0 001 001011101 0
000 000011101 0 111 111101010 0
001 001011101 0 010 010010101 0
001 001011101 0 011 011010101 0
010 010010101 0 010 010010101 0
010 010010101 0 100 100011101 1
000 000011101 0 010 010010101 -1
010 010010101 0 101 101111001 0
001 001011101 0 010 010010101 0
011 011010101 0 110 110010101 0
011 011010101 0 010 010010101 0
000 000011101 0 111 111010101 0
011 011010101 0 011 011010101 0
001 001011101 0 100 100011101 0
100 100011101 0 011 011010101 0
100 100011101 0 101 101111001 0
000 000011101 0 011 011101110 1
100 100011101 0 110 110010101 -1
001 001011101 0 011 011010101 0
101 101111001 0 111 111010101 0
101 101111001 0 100 100011101 0
000 000011101 0 101 101111001 0
101 101111001 0 100 100011101 0
001 001011101 0 110 110010101 0
110 110010101 0 100 100011101 0
110 110010101 0 111 111101010 0
000 000011101 0 101 101111010 0
110 110010101 0 110 110010101 0
001 001011101 0 101 101111001 0
111 111101010 0 111 111101010 0
111 111101010 0 110 110010101 0
000 000011101 0 111 111010101 0
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5.2 Results for Augmented Keystroke Dynamic Algorithm

In order the gauge the results of our approach to keystroke dynamics we need to 

evaluate how often a User A is prevented from logging into their account on the first 

attempt and how often User B, who happens to know User A’s password, is able 

successfully imitate User A’s typing habits and gain access to his/her account.  The 

former case is an example of Type II or false negative error and the later is an example of 

a Type I or false positive error.  Obviously, errors of the second type are much less severe 

because they only constitute the simple inconvenience of forcing the user to type their 

password again, while Type I Errors correspond to a much more serious unauthorized 

account access.

Our experiment involved asking 35 computer science students to attempt to gain 

access to a theoretical bank account.  Two passwords were generated by the research 

team, one having complicated letter signatures and the other having a relatively simple 

pattern.  Each student was then told the password for the complex system and given five 

chances to attempt to enter the system.  This was then repeated on the system protected 

by the simple password.  Following this test we allowed each student to see the visual 

password signature (much like the one in Figure 3.7) and explained how the keystroke 

dynamic algorithm worked and why it was preventing them from successfully accessing 

the account.  Furthermore, the researcher who generated the password successfully 

logged into the system three times while the test subject watched, allowing them to 

visually measure how typing habits were translated into the signatures they were 

observing.  Each student was then given five more attempts on both the complex and 



47

simple system where after each try they could see an overlaid model of their most recent 

typing signature and the legitimate user signature for the account password.  

This test allowed us to obtain false acceptance information for two sets of types of 

individuals; a naïve participant and a well informed user, as well as false rejection 

information for participating researchers.  Furthermore, we were able to observe how the 

algorithm performed on both a simple and complex keystroke signature.  Finally, by 

recording and applying this data to the entry scoring algorithm using a variety of different 

weights for the various characteristics we were able to determine the optimal amount of 

influence each measurement had on the overall keystroke template difference score.  

These weights are outlined in Table 4.2.

Table 5.0.2 - Optimal Weighting for Entry Scoring Function

Characteristic Optimal Weighing

Down Time .3

Flight Time .25

Maximum Pressure .25

Pressure Curve .2

The first result we obtained was that there was no noticeable difference between the 

naïve and well informed participant entry scores.  However, this was largely a 

psychological experiment and not directly related to the accuracy of the routine.  We did 

observe a significant statistical difference in the performance of the keystroke dynamic 

routine when it operated on complex and simple passwords.  Figure 5.1 demonstrates this 
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point by showing the receiver operating characteristic (ROC) curve for the two types of 

passwords using optimal weighing characteristics.  The area under the curve for the 

complex password was .997 for the complex password while the area under the curve for 

the simple password was only .952.

Figure 5.1 - Receiver Operating Characteristic Curve for Simple and Complex Password

Determining an exact False Rejection and False Acceptance rate is an arbitrary matter 

because it depends on our selection of a threshold.  In physiological biometrics the 

threshold is usually selected as the point where no False Acceptance errors occurred.  
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However, behavioral outliers are far more common than physiological ones and 

consequently this branch of biometrics usually allows for some percentage of False 

Acceptance error.  For purely summarization purposes Table 4.1 shows the False 

Acceptance and False Rejection rates for thresholds similar to those used by [18].

Table 5.3 - Comparison of False Acceptance and Rejection Rates

False Acceptance Rate False Rejection Rate

Complex Password 0.6% 3.9%

Simple Password 2.6% 23.0%
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

While the possibility of retrieving sensitive information by analyzing the 

electromagnetic waves produced by a device has been known for decades, Vaugnoux and 

Pasini’s recent study [21] place renewed emphasis on the development of methods to 

counter this security concern.  We have quantitatively shown that the deployment of 

electromagnetically neutral registers greatly reduces the amount of circuit switching and 

therefore produced electromagnetic interference generated by the standard keyboard 

design, making it significantly harder for an attacker to isolate these signals.  

Furthermore, we have discussed how the real world deployment of keystroke dynamic

algorithms can offer security against this type of attack and outlined a novel 

augmentation to these types of algorithms that increases their accuracy.  We believe the 

deployment of these two countermeasures significantly reduces the likelihood of

password sniffing via an electromagnetic side channel attack.  Additionally, these 

techniques can easily be incorporated into future systems for a minimal cost yet offer a 

relatively substantial degree of protection.

6.2 Future Research in the Field of Electromagnetic Neutrality

While the design implemented by this research appreciably reduces the amount of 

electromagnetic interference produced by a keyboard, additional research into signal 

balancing could further these results.  The keyboard controller is one element of a 
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standard keyboard’s design we did not examine.  This is largely due to the fact that 

electromagnetic properties are dictated by a component’s gate level model, which for the 

keyboard controller would vary depending on manufacturer, synthesis techniques, and the 

type of system interface a particular keyboard is using.  Also, additional research is 

required address security concerns associated with wireless keyboards.  This research 

focused on limited the amount of electromagnetic interference that was inadvertently 

generated as a result of differential current flow within a device.  However, the signals 

produced by wireless keyboard are another example of electromagnetic waves (although 

purposely generated in this case) and therefore could contain sensitive information.

6.3 Future Research in Keystroke Dynamics

The most pressing need for the keystroke dynamics field at this point is a standard 

database of keystroke information that could be used to compare various algorithms.  

Presently, each individual researcher who has developed some algorithm has done their 

own independent subject tests in an attempt to determine how their accuracy compares to 

other published findings.  However, unless other known algorithms are run on the same 

set of data these accuracy comparisons will never truly measure what methods and 

augmentations produce the best results.  Furthermore, having a standard database of 

keystroke dynamics routines relieves the research team of any burden associated with 

IRBs or other human subject testing issues.  In terms of algorithmic development, 

additional work could be done to increase the frequency with which the keyboard 

communicated to the operating system, thus increasing the amount of pressure 

information we have to model the pressure curves on.  This would likely led to increased 



52

accuracy in the pressure curve difference measurement and possibly allow the curves to 

be modeled as higher degree polynomials.  Furthermore, the idea of pressure curves 

could be expanded in a trigraph type fashion much like measurements of down time were 

in the late 1980s.  This would facilitate research into notions that pressure curves vary 

depending on the preceding and following keys pressed in a sequence, which could 

increase the accuracy of keystroke dynamic algorithms.
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