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ABSTRACT

We introduce a differentiable statistical moment aggregation layer,
enabling networks to learn the optimal method of statistical mo-
ment pooling for automatic modulation classification. Statistical
pooling, a cornerstone of convolutional networks, consolidates ac-
tivations into fixed-length representations. Traditionally, this en-
tails mean, variance, and higher-ordered statistics pooling defined
as fixed hyperparameters. By enabling the statistics layer to become
differentiable, networks are able to optimize the method of statis-
tical aggregations, transcending predefined hyperparameters. With
our approach, the statistical moment order is differentiable. Our re-
sults demonstrate learned statistical moments are able to outperform
fixed-moments—improving modulation classification performance
of a time-domain signal.!

Index Terms— Statistical moments, automatic modulation clas-
sification, deep learning, learnable pooling

1. INTRODUCTION

Neural networks specializing in automatic modulation classification
(AMC) have become increasingly prevalent in recent years. Sig-
nificant attention has focused on improving performance through
employing various neural network architectures. Given the inher-
ent variability of radio transmission data, often received in transient
bursts, many approaches have proposed architectures that naturally
handle variable-length sequences without retraining, cropping, or
padding [1-4].

Addressing the intricacies of variable-length data, the use of
global statistical moments are often employed. Moments capture
distribution characteristics including location, spread, and shape.
Three forms of statistical moments are raw, central, and standard-
ized moments. In convolutional neural networks (CNNs), global
average pooling, the first-order raw moment, and variance pooling,
the second-order central moment, are often utilized. Transformer
based approaches often invoke global average pooling and max
pooling on output sequences [5, 6].

Using aggregate statistics has a few fundamental purposes. First,
these statistics distill activations into a fixed-length representation
amenable to processing by dense or fully-connected layers. Because
global aggregation collapses the time dimension, the output shape
is only dependent on the number of channels enabling predictions
without network alterations. Second, the statistics aim to character-
ize the distribution of intermediate activations that aid classification
performance. Aggregation has the potential to amalgamate inherent
signal details, ultimately emphasizing characteristics specific to a

Ihttps://github.com/caharper/learnable_moments_
pooling

8981

,,,,,,,,,,,,,,,,,,,,,,,, { : VO
: _ + }‘7

| ¢ . )

C )

i Maxindex 777777

o sum where >0

x®

Max power
elements

I th Moment

-
Statistics Pooling | _______________ |
N J

T

Proposed Layer

| I
Output 1 i Backward Pass

Fig. 1: Overview of the utilized method enabling differentiable sta-
tistical moment pooling for central and standardized moments.

particular class. Third, feature aggregation can increase generaliza-
tion performance and reduce computational requirements. Aggrega-
tion collapses the input features into single statistics describing the
distribution of the input features. This possibly introduces a form
of regularization that reduces the chances of overfitting by remov-
ing extraneous activations. Additionally, aggregation decreases the
number of values the network has to maintain in memory, leading to
a more computationally efficient model.

In deep learning, mean and variance are often utilized such as
d-vector [7] and x-vector [8] architectures because they are compu-
tationally efficient. Other works in speaker recognition have inves-
tigated the use of higher-ordered moments [9, 10], namely skewness
and kurtosis, to provide additional measures of aggregation that may
help characterize the distribution of intermediate activations. Skew-
ness, the third order standardized moment, and kurtosis the fourth
order standardized moment, estimate the asymmetry and peakedness
of the distribution respectively. However, most existing architectures
use fixed-statistical moments as aggregation methods. These mo-
ments are essentially treated as hyperparameters that do not evolve
during training. Therefore, these statistics may not be optimal mea-
sures of latent statistical aggregations for improved AMC perfor-
mance.

Statistical moments have long been found to be discriminating
factors for AMC. Normalized standard deviation has been shown to
be effective in distinguishing constant amplitude signals like FM,
FSK, and BPSK, while skewness and kurtosis have been found to be
useful features for classifying broader modulation schemes [11]. In
particular, kurtosis and joint moments are adept at classifying PSK



and QAM schemes [12—-14]. Although features are abstracted into
high-dimensional latent spaces in deep learning, we argue that ex-
ploring additional statistical moments can likewise increase predic-
tive performance of deep AMC models.

Conventional pooling approaches pose a limitation of applying
the same aggregation to all channels. To capture channel-specific
traits effectively, applying different statistical moment aggregations
to different channels might be beneficial. However, optimizing such
an approach would involve an onerous hyperparameter search, espe-
cially in high-dimensional architectures as statistical moment order
is not directly differentiable.

In this work, we present a novel approach enhancing AMC per-
formance using differentiable statistical moment aggregations allow-
ing the statistical moment order to be learned. Additionally, we
explore channel-specific statistical moment aggregation, providing
a more nuanced latent representation of the employed modulation
scheme. Our method demonstrates promising results for enhanc-
ing the expressive performance of statistical moment aggregations
in machine learning architectures and improves AMC performance.

2. STATISTICAL MOMENTS

Statistical moments are functions describing distribution character-
istics of an input sequence. Consider a single-channel sequence for
channel i as x(*) = [21, 22, ..., xn] Where i € RY, C'is the number
of channels, and N is the total number of elements. The expected
value is given by Equation (1).

Statistical moments materialize in three forms—raw, central, and
standardized, each delineating distinct aspects of the distribution. To
optimize neural networks with gradient descent, it is necessary for
the loss space to be differentiable. However, the statistical moment
order, k, is not directly differentiable. Traditional fixed-aggregation
methods do not face gradient issues as k is static and has no corre-
sponding gradient. However, to enable learnable k, it is necessary to
address these gradient calculation challenges.

2.1. Raw Moments

The kth raw moment is shown in Equation (2). When k£ = 1, the
location, or mean, of a distribution is defined. The corresponding
gradient with respect to k can be seen in Equation (3).
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Given In(-) is only defined for values greater than 0, {x;” Yien >
0 must hold. To satisfy this constraint, we utilize the rectified linear
unit (ReLU) [15] such that the learned raw kth moment is computed
over ReLU (V) + ¢ where € is a small, positive constant. In our
work, we clip the value of k such that k € [ex, 6.0] where € is also a
small, positive constant. This preserves the non-negativity requisite
for statistical moments. Notably, £ = 0 yields a constant output
regardless of the input. 6.0 is chosen as the maximum value to
avoid the exploding gradient problem. We found that higher-ordered

moments are rarely found to be optimal during training. Thus, this
is a reasonable upper bound for AMC.

2.2. Central and Standardized Moments

Central moments, or moments about the mean, (i, describe the shape
of the distribution independent of translation (Equations (4) and (5)
show the function and gradient).
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Standardized moments (see Equations (6) and (7)) are normal-
ized by the standard deviation, o, allowing the measure to be scale
invariant describing the tailedness of distributions.
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Several challenges must be overcome to allow k to be dif-
ferentiable for central and standardized moments. Ug;) must be
greater than O to avoid a division by zero for standardized moments.
Because the variance, and therefore standard deviation, are non-
negative, adding a small, positive perturbation factor, ¢, avoids this
problem. Given k € R, for both central and standardized moments
to have strictly real outputs, one would have to ensure the centering
operation (; () ,ug?) > 0. For k € Z, this is not required; how-
ever, sequences of integers are not differentiable. Even if complex
values could be utilized (e.g., k& € R), In(-) is only defined for
values greater than 0. ReLU activation could be utilized similarly to
raw moments. However, unlike raw moments, this would need to be
performed within the the computation of the moments, not prior to
the computation. This would produce a value that is not a genuine
statistical moment.

To overcome these challenges, we propose an architecture uti-
lizing the stop gradient operator [16]. Our approach simulates fixed-
moments while enabling a gradient-enabled k. A differentiable win-
dow function akin to [17,18] proposed in [ 1 9] facilitates this process.
A smoothness factor, 7, takes the value of the window function down
from 1 to O in r steps. In our work, we set r = 1. A two-branch
mechanism, as portrayed in Figure 1, encapsulates our proposed ar-
chitecture for central and standardized moments. The first branch,
enabled by the stop gradient operation, mirrors fixed-moment uti-
lization with the applied value of &, k, to overcome gradient insta-
bility posed by centering operations. Additionally, because ke z,

the network avoids complex values if (:chz) - ug?) < 0. This is
accomplished by finding the maximum index where the result of the
window function is greater than 0. In practice, this implements the
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Fig. 2: Overview of the base architecture.

floor operation, | k|. The second branch facilitates backward gradi-
ent flow, making k learnable. It aggregates window outputs to scalar

k, which is then added to input mgi) before statistical moment eval-

uation. Because the same value, k, is added to each 335-1), the result-
ing moments are unaffected due to the centering operation. That is,
e (x) = cp(x + k) and s;(x?) = 5;(x@ + k). To avoid
feature collapse to constant values and exploding gradient, we clip k
such that k € [2.0,5.0] and k& € (3.0, 6.0] for central and standard-
ized moments respectively.

3. DATASET

To investigate the utility of these methods for AMC, we use the Ra-
dioML 2018.01A dataset that is comprised of 24 different modula-
tion types with a total of 2.56 million labeled signals S(7") sam-
pled at 900MHz [20,21]. Each signal contains 1024 time domain
digitized intermediate frequency (IF) samples of in-phase (I) and
quadrature (Q) signal components where S(T') = I(T) + jQ(T).
The data ranges between —20dB to +30dB signal to noise ratio
(SNR) with 106,496 observations per modulation scheme. We use
the same train and test splits as [3] with 1 million training observa-
tions and 1.5 million testing observations.

4. EXPERIMENTAL DESIGN

Our architecture is based on previous work [3] using 7 convolutional
layers, each followed by squeeze-and-excitation (SE) blocks [22] as
depicted in Figure 2. Each SE block is defined as temporal global av-
erage pooling across convolutional filters followed by two dense, or
fully-connected, layers. We use a dimensionality reduction ratio of
2 for each SE block adhering to the approach in [3]. Pooling strate-
gies are denoted by the components in the statistics pooling vector.
To signity fixed-moments, we employ lowercase notation, including
mean (1), variance (o), skewness (), and kurtosis (k). Upper-
case letters denote learned-moments, encompassing raw (U), central
(X), and standardized (I') moments. Statistics vectors containing
both fixed and learned-moments are denoted mixed-moments. Cen-
tral moments are uniformly initialized to £ = 2 and standardized
moments are uniformly initialized to k = 3.

Due to the volume of models, each is trained for total of 100
epochs. We use the Adam optimizer [23] with an initial learning
rate [r = le-4. A decay factor of 0.1 is applied to the learning rate

Table 1: RadioML2018.01A classification results. Best performers
for each grouping are shown in bold font. Std. stands for standard-
ized moment. Test accuracy is reported across the full SNR range
[—20, 30]dB with peak accuracy at the best performing SNR value.

Test Peak
Type  Statistics Sh?lre Accuracy Accuracy # Params
Weights (K)
(%) (%)
(1] v/ 62.93  97.45 200.72
Raw (U] v 63.15 97.82 200.721
[U] - 62.94  97.65 200.828
[, o] v 63.54 98.80 214.544
U, %] v 63.67  98.77 214.548
Central [U, X] - 63.49  98.67 214.762
U, 6%] v 63.68 98.75 214.545
(U, 0?1 - 63.51  98.62 214.652
[, 02, 7] v 62.96 98.84 228.368
[, o2 v, 6] 63.30  98.79 242.192
sg. U ST v 63.35 98.72 228.373
(U, =, T] - 62.76  97.68 228.694
[U,0% v, k] v 63.00 98.65 242.193
U,o2%, v, k] - 62.93  98.60  242.3

if training loss does not decrease after 7 epochs with a minimum
learning rate of le-7.

5. RESULTS AND DISCUSSION

Experimental results can be found in Table 1. We were able to
replicate similar results to [3] with our x-vector, [y, o], architec-
ture. However, differences in model performance can be attributed
to solely monitoring training loss and limiting the total number of
epochs to 100. Due to the scale of the test set, 1.5 million observa-
tions, even subtle differences in accuracy can indicate thousands of
additional correct classifications. Each grouping found the best per-
formers to contain learned-moments, supporting our hypothesis that
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Fig. 3: Convergence comparison of (a) raw, (b) central, and (c) standardized moment vectors.

networks can benefit from learning their own aggregation method.
While learned-moments proved advantageous, learning k for each
channel was outperformed by using using shared k£ weights. Allow-
ing each channel to learn individual aggregation methods may over-
complicate the loss space and disrupt the optimization. Sharing the
value of k across channels may provide a useful regularization al-
lowing the network to generalize. While our work focuses on learn-
ing a single raw, central, and standardized moment for our statistics
pooling layer (e.g., [U, X, T']), future work could investigate adding
multiple moments (e.g., [U, U, X, X, T, T']), perhaps capturing more
nuanced signal characteristics.

While standardized moments may contain more statistical mea-
sures and parameters, we found that central moments had the highest
classification accuracy overall. Because of their increased dimen-
sionality, standardized moment vectors may benefit from additional
dense neurons to capture non-linear relationships.

5.1. Convergence and Statistics of Intermediate Activations

We observe that the incorporation of standardized moments can po-
tentially accelerate model convergence rate. This could be due to the
additional information that standardized moments provide compared
to raw and central moments—increasing network capacity. How-
ever, despite the potential benefits of using standardized moments,
our experiments showed that centralized moment vectors outper-
formed other moment types in terms of overall performance.

To investigate this phenomenon, we record the distribution
statistics of intermediate activations in the networks during training.
Specifically, we record the mean (71), variance (cz2), skewness (s3),
and kurtosis (s4). These statistics are computed just prior to statis-
tics pooling for each model architecture. We use a random sample
of 1,000 input signals from the test set and record each statistic
at the end of each training epoch. The same randomly sampled
dataset is used across all epochs and models to ensure fairness and
comparability. To record single datapoints, we take the average of
the statistics across all channels and 1, 000 evaluation observations.
The results can be seen in Figures 3a to 3c.

Each model is color coded. The left y-axis denotes the test accu-
racy, shown as solid lines without markers. The right y-axis shows
the value of each recorded statistic. Because our learned statistics
introduce a small amount of additional parameters and are more
computational than fixed-moments, we investigate performance over
time instead of epochs to illustrate the viability of the approach.

Mean, variance, and skewness remained relatively stable through-
out the training process for all models. Kurtosis, however, behaved
differently for standardized moment vectors than raw and cen-
tral moment vectors. Figures 3a and 3b, raw and central moment

vectors, both illustrate increasing kurtosis over training iterations.
With the exception of [U, 3, T'] with k learned for each channel,
kurtosis remained very stable throughout the training process for
standardized moments. Our experiments uncovered a common trend
between the kurtosis of the sampled data and accuracy on the test
set. Generally, the more stable and consistent the value of kurtosis,
the faster the models converged. This trend is particularly evident
when comparing Figures 3b and 3c.

Consider [U, Y] using non-shared weights in Figure 3b. This
model had the slowest convergence rate and one of the most vari-
able kurtosis values for centralized moment vectors. Of the stan-
dardized moment vectors (Figure 3c), the slowest to converge was
[U, 3, T using non-shared weights. Notably, it had the most vari-
able kurtosis of the standardized moment vectors. [U, X, T'] using
shared weights was the second slowest to converge with the second
most variable kurtosis. Models using standardized moments tend to
converge faster with more stable kurtosis compared to raw and cen-
tral counterparts, possibly due to stabilized statistics. Specifically,
including standardized moments may ameliorate the covariate shift
problem by ensuring that the moments of the activations are con-
sistent across different training epochs. This could facilitate faster
generalization to the test set.

Covariate shift has been studied extensively in the field of deep
learning [24-28]. Covariate shift occurs when the distribution of
intermediate activations of the training set do not match the distribu-
tion of the activations of the testing set. Covariate shift can lead to
poor performance and reduced convergence rates as the weights of
the model are not aligned with the testing set. Including standard-
ized moments may reduce covariate shift in AMC and increase con-
vergence rates. While our proposed method has additional compu-
tational overhead and therefore takes more time to reach 100 epochs
(ranging from 1.1 to 2.1 times longer), our models containing stan-
dardized moments converge faster in terms of time. Nevertheless,
our methods are able to outperform their fixed counterparts further
justifying this additional cost.

6. CONCLUSION

In this work, we propose a novel method enabling differentiable sta-
tistical moment orders. Prior to our work, choosing moment orders
was non-differentiable, often relying on heuristics limiting the ex-
pressiveness of AMC architectures. Enabling models to learn sta-
tistical moment orders showed improved AMC performance over
fixed-moments without sacrificing convergence rates. While there
is a small additional computational overhead associated with our
method, the benefits of improved expressiveness and model perfor-
mance justify this cost.
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