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Abstract: Side channels are data sources that adversaries can exploit to carry out cyber security attacks. Alternatively,
side channels can be used as data sources for techniques to predict the presence of an attack. Typically, the
identification of side channels requires domain-specific expertise and it is likely that many side channels are
present within systems that are not readily identified, even by a subject matter expert. We are motivated to
develop methods that automatically recognize the presence of side channels without requiring the need to use
detailed or domain-specific knowledge. Understanding cause and effect relationships is hypothesized to be a
key aspect of determining appropriate side channels; however, determining such relationships is generally a
problem whose solution is very challenging. We describe a time-series clustering approach for identifying side
channels using the statistical model of Granger causality. Since our method is based upon the Granger causality
paradigm in contrast to techniques that rely upon the identification of correlation relationships, we can identify
side channels without requiring detailed subject matter expertise. A Granger-based data clustering technique
is described in detail and experimental results of our prototype algorithms are provided to demonstrate the
efficacy of the approach using an industrial control system model comprised of commercial components.

1 INTRODUCTION

In general, a side channel is a data source that
provides unintended information leakage through a
medium that was not intended to serve as a communi-
cation channel. Side channels can be characterized
by signal type such as acoustical, electromagnetic,
electrical, or others (Anderson, 2020). Side chan-
nel data is acquired and typically preprocessed using
signal processing algorithms, statistical methods, and
more recently, machine learning predictive and clas-
sification models (Ibing, 2012). Although modern
data science methods are beginning to be used more
in processing and exploiting side channel data, it is
noted that such models, particularly machine learn-
ing approaches, have been shown to be vulnerable to
cyber security attacks including those based on side
channel attacks (Dubey et al., 2021). A large amount
of prior research concerns the use of side channels
in the field of cryptanalysis. For a history and re-
view of such methods, see (Quisquater and Samdye,
2002). Past work includes RSA key extraction using
acoustic cryptanalysis (Genkin et al., 2014), electro-
magnetic analysis for smart cards (Quisquater and

Samdye, 2001), and many others.
One class of side channels that popularized their

use in cyber security is referred to as power analysis
wherein monitoring and processing the fluctuations in
power ports of an integrated circuit or electronic sys-
tem can reveal information such as the cryptographic
keys employed in encryption/decryption circuits or
the machine instructions being executed on a CPU
core (Mangard et al., 2010; Ambrose et al., 2010;
Khadem et al., 2021). A well known side channel
attack utilized timing information in connection with
monitoring the power signal fluctuations on a device
that implements a public-key encryption algorithm
(Kocher, 1996). Essentially, this method exploited the
structure of software that processes a secret key’s ex-
ponent one bit at time. When the exponent bit was
a one, a multiply instruction is executed. Thus, by
measuring the timing characteristics of the power sig-
nal and using the knowledge that multiply instructions
incur more power and a longer time to execute, it was
possible to extract the value of the secret key exponent
value.

Indeed, most side channel methods in cyber secu-
rity are time-based and we focus upon time series data



in our research regarding side channel identification.
A more recent example of a timing-based side channel
attack is the set of exploits referred to as Meltdown
(Lipp et al., 2018) and SPECTRE (Kocher et al.,
2019). The general concept underlying the Melt-
down and SPECTRE attacks is to use certain perfor-
mance enhancing features of modern CPU cores such
as the cache, branch predictor, and speculative execu-
tion circuitry to access higher privileged data. An im-
portant component of both attacks is the use of cache
timing information as a side channel since differences
in memory access times are present in CPU cores with
modern memory hierarchies. For certain microarchi-
tectures, an attacker can estimate the time required
to reload cache data by intentionally causing certain
cache operations to occur. This timing information
serves as side channel information that provides an
attacker with the knowledge required to determine if
data is loaded into the cache by another process. This
class of attacks is particularly troubling since they ex-
ploit hardware-level vulnerabilities that are not easily
patched. Generally, to guard against this class of at-
tacks, the performance-enhancing hardware must be
disabled. There are a few cases where vulnerability
to this class of attacks can be determined, but only
for specific use-cases such as web browsers (Shou
et al., 2021). Side channel attacks based upon the ex-
ploitation of microarchitectural design choices have
motivated the cyber security community to begin in-
vestigating other performance enhancing subsystems
such as the instruction prefetching unit (Chen et al.,
2021) and it is likely that new hardware-based side
channel attacks will continue to emerge.

The SPECTRE and Meltdown exploits underscore
one of the central motivations for the research pre-
sented in this paper. Namely, that very detailed
and domain-specific knowledge is required to identify
side channels. In the case of cache timing side chan-
nels, the attacker must have detailed knowledge of the
CPU core microarchitecture as well as subject mat-
ter expertise in CPU and memory subsystem archi-
tecture. When such expertise is not present, the iden-
tification of potential side channel signals is virtually
impossible for all but the simplest of victim systems.
Furthermore, merely possessing such subject-domain
expertise is not sufficient to guarantee that all possible
side channels can be identified. In most cases, cause
and effect chains must be identified such that hypo-
thetical side channel data can be theorized to possibly
exist in accessible signals. When the cause and ef-
fect chains have multiple levels, that is, the chain of
causal events becomes lengthy, even seasoned experts
can find it challenging to determine if a set of given
signals can be processed to extract useful side channel

information. For these reasons, a technique to auto-
matically determine causal relationships among a set
of signals in the form of indexed or “time” series is
desirable.

The field of data science and analytics has seen
tremendous growth in recent years through the devel-
opment of more sophisticated models for automatic
prediction and classification. Common approaches
are the use of Bayesian, regression, neural network,
clustering, and other models. In particular, there ex-
ist a plethora of data clustering techniques; however,
in a general sense, most of the data clustering meth-
ods are based upon the identification of correlation
patterns or characteristics among a set of data. It is
a generally accepted mantra that “correlation is not
equivalent to causation.” This is particularly true with
respect to the identification of side channels whereby
a desired event in the form of computing useful side
channel information results from a lengthy chain of
causal events. Furthermore, it is generally appreciated
that the automatic computation, or even identification,
of a true ”cause and effect” relationship cannot be
proven nor actually computed. However, given cer-
tain assumptions regarding the underlying theoretical
model of a time series ensemble, a very restricted type
of causality can be statistically inferred. This model
of causal behavior was first specified by Granger in
1969 and is hence referred to as “Granger causal-
ity” (Granger, 1969). Here, we adapt the concept of
Granger causality to serve as the theoretical basis of
a new type of data clustering called “Granger cluster-
ing” and we apply it to the problem of identifying side
channels within a set of observed time series data.

In the remainder of this paper, we summarize
the concepts behind Granger causality and describe
how it can be used to support our Granger cluster-
ing method for the identification of side channels. We
describe the assumptions and conditions required for
a candidate time series ensemble to be applicable to
the approach including a description of preprocess-
ing techniques before the clustering method is ap-
plied. We show that conventional correlation-based
clustering is unsuitable for the purpose of side chan-
nel identification. To demonstrate the use of our tech-
nique, we constructed a simple industrial control sys-
tem (ICS) model using commercial ICS components
and we collected time series data during operation
from a set of nearby motion sensors. The Granger
clustering method is demonstrated to correctly iden-
tify side channels that can be used to exfiltrate data
whereas the use of conventional clustering methods
fail to properly identify the side channels.



2 SIDE CHANNELS AND ICS
SECURITY

An introduction and summary of pertinent topics that
support the remainder of the paper are presented here.
For more details, the reader should refer to general
textbooks regarding cyber security such as (Ander-
son, 2020) and control systems (Dorf and Bishop,
2017).

2.1 Side Channels

Side Channels Attacks are a well known avenue for
malicious actors to identify and exploit vulnerabil-
ities through the collection of non-functional data.
This non-functional data can be utilized to infer sen-
sitive or critical information about the system of in-
terest. One example of such non-functional data is
accelerometer and gyroscope data. When collected
in environments like Android smartphones, this side
channel can be exploited to infer a user’s keystrokes
(Cai and Chen, 2011; Javed et al., 2020). In simi-
lar experiments, a proof of concept was demonstrated
with measuring perturbations in the voice during a
phone call, instead of keystrokes, via smartphone ac-
celerometer sensors (Griswold-Steiner et al., 2021).
When measurements were recorded in a controlled
environment, digit prediction was shown to be possi-
ble. In another case, smartphone acoustic and mag-
netic sensor data were collected in factory settings
allowing for the identification of manufacturing de-
vices and their processes. When collected in a 3D-
printing environment, it was shown that these data can
be utilized to reproduce the objects themselves (Hoj-
jati et al., 2016). In this paper we utilize accelerom-
eter and gyroscope data in industrial control systems
(ICS). In ICS settings side channels can be used not
only for communicating network data but also for de-
tecting anomalous behavior in the ICS systems.

2.2 Industrial Control Systems (ICS)

Critical infrastructure, industrial and manufacturing
facilities rely on computer-controlled systems that
typically comprise electro-mechanical frameworks,
referred to as Industrial Control Systems (ICS), to
efficiently support production and processing objec-
tives. An ICS is responsible for coordinating indus-
trial operations so that they execute properly and on
schedule. Key attributes of an ICS include safety,
reliability, and in more recent years, resilience to
potential cyberattacks that can disrupt functionality.
In extreme cases, cyberattacks can cause damage or
harm to personnel supporting the facility (Pliatsios

et al., 2020; Stellios et al., 2018; Babu et al., 2017;
McLaughlin et al., 2016). Detecting anomalies in an
ICS can increase safety, reliability, and resilience to
cyberattacks or other errant behavior. ICS rely upon
numerous internal and external signals and they typ-
ically comprise a large suite of sensors, all of which
can serve as potential side channel sources

Man-in-the-Middle (MITM) attacks are especially
effective when carried out in an ICS environment and
have the potential to create anomalous operational
conditions which go undetected. ICS MITM attacks
are carried out by an adversarial third party that has
taken control of the communication channel between
two or more endpoints in the network. Once the
ICS communication channel has been successfully
exploited, any messages can be modified, discarded,
or replaced by an attacker. This family of attacks al-
low the attacker to gain complete control over an asset
in the network by dropping or modifying all commu-
nication from a controller (Lan et al., 2019). Ad-
ditionally, the attacker can drop or modify all com-
munication from the asset back to the controller in a
way that makes the asset appear to be operating as
expected. The repercussions of such an attack could
range anywhere from a small amount of downtime to
catastrophic damage to equipment, infrastructure, and
even personnel.

One type of ICS threat that is considered here
is the injection of control packets into one or more
of the networks comprising the ICS. These “packet-
injection attacks” are in the form of a MITM attack
that can be particularly effective for certain protocols
such as ModBus since thus network protocol is im-
plemented such that the first received control packet is
executed with subsequent control packets in the trans-
action being ignored. Packet injection attacks are par-
ticularly troublesome since they enable an attacker to
cause the ICS to perform functions desirable to the
attacker while also allowing the messages sent to the
Human Machine Interface (HMI) to appear to indicate
normal behavior. This type of MITM attack can be
carried out by inserting HMI packets that indicate nor-
mal operating conditions to accompany injected con-
trol message packets that cause undesired behavior to
occur at system actuators.

The protocols, connections, and devices that en-
able the communication between the components in
an ICS installation are supplied by various vendors
and are generally inter-operable due to the use of stan-
dardized computer interfaces and networking proto-
cols that support modern ICS implementations. In
general, an ICS will demonstrate state-like behavior
that characterizes its overall functionality. That is, the
ICS cycles through various operating points that can



Figure 1: An overview of the proposed method of time se-
ries clustering.

be classified as a particular state. However, in many
applications the state space is very large thus making
it impractical to capture the complete behavior with
traditional state-tracking methods.

3 GRANGER CAUSALITY FOR
CLUSTERING

Our side channel detection method relies on a combi-
nation of Granger Causality and hierarchical cluster-
ing. Here we introduce Granger Causality and how it
can be used to cluster time series.

3.1 Primer on Granger Estimation

The method we employ for determining measures of
influence is known as Granger Causality (Granger,
1969). In general terms, Granger causality uses statis-
tical hypothesis testing to determine if one time series
is useful in forecasting another. Furthermore, Granger
causality assumes that the two time series under con-
sideration have a linear relationship with time-lagged
values and additive noise present. The mathematical
model for Granger causality among two time series,
x(t) and y(t), is given in the following equation.

[
x(t)
y(t)

]
=

τ

∑
i=1

[
θ11(i) θ12(i)
θ21(i) θ22(i)

][
x(t− i)
y(t− i)

]
+

[
ε11(t)
ε21(t)

]
The basic idea behind the Granger model is to

model the time series as linearly regressed stochas-
tic processes. The maximum number of lagged ob-
servations determines the model order denoted by τ.
The model coefficients that relate the two time series
are the θ jk values. The model prediction errors, also
known as residuals, are denoted by the ε jk terms. The

model coefficients are random variables that are the
focus of statistical inference tests to determine if they
are jointly significantly different from the value zero
as compared to their values when the off diagonal el-
ements are forced to zero. We refer to the full model
as unrestricted when the θ jk are fully specified and
the case where the off-diagonal elements are zero as
the restricted model. If the prediction capability is
identical for the restricted and unrestricted models,
then the two time series are said to be Granger causal.
Because the prediction is calculated across the entire
time series, both input time series must remain sta-
tionary over time for the result to be valid.

Once the prediction parameters are estimated, an
inference test is applied (typically an F-test of the
residual variances between the two models). The
application of the inference testing can vary, one
approach is to use an F-test of the residual vari-
ances between the two models. The F-test com-
pares variances of the residuals from each model, with
wider variation in one model implying that the in-
teraction variables are significant predictors. In gen-
eral, the magnitude of Granger causality can be es-
timated by the logarithm of the corresponding F-
statistic for this F-test comparison. An alternative
definition called Sims Causality (Sims, 1972) can be
formulated by testing the off-diagonal elements, θ jk,
against the null hypothesis that they are zero (practi-
cally, their confidence interval includes zero). Sims
and Granger causality were once thought to be equiv-
alent, but it has been proven that Granger causality
is a stronger assertion and does not necessarily imply
Sims Causality. Sims causality does imply Granger
causality. Practically, this distinction is subtle, and the
two terms can be used interchangeably without much
chance of error.

A simple extension of Granger causality can be
achieved by allowing the θ coefficients to be matri-
ces and the X(t) and Y(t) time series to be multi-
variate, such that each model becomes a vector auto-
regressive model (VAR) (Engle and Granger, 1987).
The residual error across the variables is often used
to understand predictive capabilities. However, the
multivariate X and Y allowance comes with a compu-
tational cost. To investigate each variable, the VAR
models must be created with and without each ele-
ment of the vector before the F-statistics are calcu-
lated. The interpretation of the results is also further
complicated. Alternatively, the variables can be in-
vestigated in aggregate or by groups (e.g., grouped by
a domain expert). The Sims causality inference test
can be used in a single modeling pass because each
element in the matrix θ jk can be null tested for sig-
nificance difference from 0. When multivariate time



series include numerous variables, this test is often
preferred for computational efficiency. An extension
to each Causality estimate is to use an L1 regulariza-
tion term (Arnold et al., 2007) or mixed L1 and L2
regularization (Furqan and Siyal, 2016), incentiviz-
ing the values of each model toward zero. An ex-
tension of this was also proposed using forward and
backward passes upon the VAR model, extending it to
time series reversals (Cheng et al., 2014), though this
procedure typically only has applicability in sequence
estimation outside of time series.

3.2 Granger Clustering Methodology

To apply Granger estimation in the context of time
series clustering, we use the inference estimates of
Granger causality as a measure of affinity between
two groups of time series referred to as the “α group”
and the “β group” as outlined in Figure 1. While the
exact relationship between the α and β time series will
vary between applications, our proposed method re-
lies on a natural dichotomy between the two groups.
For datasets that do not have a natural dichotomy,
Granger clustering may not be an appropriate method.

Our proposed clustering method consists of the
following steps:

1. We test the stationarity of each time series using
a Dickey-Fuller test (Dickey and Fuller, 1979). If
necessary, higher-ordered difference versions are
substituted to achieve stationarity.

2. We partition the stationary time series into two
groups, Xα and Xβ that can be identified through
any means. For side channel identification, a nat-
ural choice is grouping according to signal type or
origin of the signals.

3. We use VAR Granger estimation to calculate the
inference statistic, according to Sims causality,
between each time series in Xα and each time se-
ries in Xβ. This results in what we coin as the
“Granger influence matrix” G = [gi j], which is
formed using the inference statistics between each
pair of time series (Figure 1, upper right). Each
row of G relates a time series in Xα to each time
series in Xβ, where each column corresponds to
an Xβ time series.

4. The Granger influence matrix is comprised of in-
ference statistics (p-values) and therefore is trans-
formed before further computation. We transform
each element of the Granger influence matrix by
the logistic function, where Ĝ = [ĝi j]:

ĝi j = 1− 1
1+ e−γ(gi j−t)

Where γ controls the steepness of the logistic
mapping and t controls the desired significance
threshold. In our experiments we use t = 0.05
which indicates a statistical test with 95% con-
fidence. In our experiments the range of γ =
[1,100] tended to work well. Practically, this
transformation is applied because inference statis-
tics are “inverted” from their proper statistical
interpretation—a small value indicates that two
time series are related, but a large value indicates
there might not be a strong relationship. This lo-
gistic transformation ensures that strong relation-
ships, with p < t, have a ĝi j value near unity and
weaker relationships are mapped to values near
zero. The γ parameter enables users to specify
confidence in the models: large γ parameters re-
sult in a hard cutoff at p < t; small γ parameters
allow for a smoother transition region, incorporat-
ing weaker relationships (p > t) in the clustering.

5. To facilitate clustering, we calculate the pairwise
cosine distance for each row of Ĝ, resulting in
a measure of affinity between each time series
in Xα. Alternatively, we can calculate the co-
sine distance between each column, resulting in a
measure of affinity between the time series in Xβ.
Strictly speaking, any measure of vector similar-
ity can be applied in this step. We choose cosine
distance as an affinity measure because it is robust
to the exact magnitude of two vectors (being most
sensitive to the angle between vectors) and works
well in our tested evaluations. The pairwise ma-
trix of affinities is denoted as A.

6. Finally, we use a static clustering method to clus-
ter the time series based on A. In our evalua-
tions, we use hierarchical agglomerative cluster-
ing (HAC) with complete linkage (Defays, 1977).
Practically, most any static clustering method may
be chosen, but we find HAC provides compelling
results and hierarchical relationships that are eas-
ily interpreted through a dendrogram—a method
most researchers are familiar with.

3.3 Illustrative Example

To evaluate the performance of our Granger cluster-
ing method, we create a dataset of time series with
known clustering, as shown in Algorithm 1. In this
formulation, α group time series are generated using
random distributions, and thus do not have any un-
derlying relationship that can be used by correlation
based clustering methods. We clustered these raw
time series using complete-linkage HAC with a Eu-
clidean distance measurement in order to verify this
independence. For each time series, a sinc function



Data: Time series to generate, per group
Result: Groups of time series with known

influences
1. Generate Nα time series from Gaussian

distribution, each with 1000 points;
2. Randomly add “spikes” in each time series

via sinc function (for structure);
3. Set σ = 0.1;
while Total in β group < Nβ do

Using a subset of time series from α

group;
i = 0;
while i < 4 do

Randomly shift each time series and
take weighted sum;

Add noise N (0,σ);
Append to β group, i = i+1;

end
σ = σ+0.5

end
Algorithm 1: Synthetic generation algorithm of
six clusters, with increasing additive noise in each
cluster.

is added at random positions to add structure to the
α time series. Using subsets of four time series in
this α group, β time series are systematically gener-
ated, allowing known relationships among clusters of
α group time series to influence time series in the β

group.

In total, 24 time series were generated in the α

group and 18 time series in the β group, spread among
six clusters marked A-F. Notice that the σ parameter
determines how much noise is added between the α

and β groups for each cluster (increasing by 0.5 for
each cluster). This resulted in signal-to-noise ratios
(in dB) of 10, 3.5, -3.5, -7, -10 and -12.5 for clusters
A-F, respectively. That is, clusters C, D, E, and F have
greater noise magnitude than α time series. Thus,
each cluster of time series becomes increasingly dif-
ficult to find amid the noise. Figure 2 (left) shows the
generated time series for the α and β groups and the
absence of of any underlying relationships between
the time series in each group. Figure 2 (right) shows
the affinity matrix and clustering of the synthesized
dataset. That is, HAC has been applied to reorder the
affinity matrix such that the most meaningful time se-
ries cluster along the diagonal.

We see six distinct clusters in the affinity diagram
and the dendrogram. Recall that six clusters were
formed (A-F) with each cluster having an increased
amount of additive noise. Looking at the cluster la-
bels for the α time series reveals clusters of time se-
ries which all belong to the same known cluster, ex-

Figure 2: Evaluation of baseline dataset. Heatmaps of the
time series are shown on the left and the Granger affinity
matrix (after clustering) is shown on the right. Clustering is
performed with γ = 100 and t = 0.05 for baseline data.

cept one point, as marked on the diagram. This point
is a noisy time series generated from cluster F (with
the largest noise magnitude). Despite the α time se-
ries group having no discernible correlation among
one another, our method is able to find the six clus-
ters, even amidst noise with intensity greater than its
own magnitude.

Having introduced and demonstrated our method
for clustering time series using Granger causality, we
now introduce the specific data set with which we uti-
lized this method for side channel detection.

4 DATASET SELECTION AND
PROCESSING

To investigate the utility of our model for identify-
ing side channels, we leverage an existing industrial
control systems dataset that uses a ModBus protocol
to control the speed of a conveyor belt (Sinha et al.,
2021). The dataset is ideal for investigating side chan-
nels as it contains time-series Modbus packet data
along with peripheral motion sensors. These mo-
tion sensors may leak information about the state of
the ICS. The network includes a Tolomatic indus-
trial motor connected to a human-machine interface
(HMI) controller with an integrated programmable
logic controller (PLC), an Arduino 101 microcon-
troller board with integrated accelerometer/gyroscope
for acceleration and gyrometric data, and an inline
Raspberry Pi with two USB ethernet adapters. The
Raspberry Pi acquires side channel data by handling
packet collection, controlling the arduino, collecting
motion data, and logging event times from data syn-



Figure 3: Examples of packet (top) and sensor (bottom) time series.

chronization. The HMI sends commands to the mo-
tor, which can turn it on or off, change or reverse its
speed, etc. The HMI sends a continual stream of com-
mands. All user input by way of the HMI is logged
by the Raspberry Pi and the command is passively for-
warded to the appropriate motor. The Arduino motion
sensors and network traffic are continually collected
by the Raspberry Pi with timestamps in order to syn-
chronize all of the data with HMI user activity.

The sensor data is stored as Comma Separated
Values (CSVs) for X, Y, and Z rotation axes for both
the accelerometer and gyroscope. These axes rep-
resent the orientation of the attached sensors in the
three-dimensional space; this data is collected as a
constant stream as the sensor controller continuously
logs data from the motor at a fixed sample rate of
10 thousand samples per second. The sensor data is
logged as floating point values that represent angular
velocity as degrees per second. We treat these motion
time series as potential side channels that leak net-
work information. The main data that could be leaked
includes the ModBus payload. Rather than being a
constant stream of data input, each payload arrives at
different times to the controller. To process the data
for time series clustering, the network data was pre-
processed, saving each data word of the payload in
the packet as separate time series. In each individ-
ual data payload there were 53 data words, leaving
53 potential time series that could have their infor-
mation leaked from the side channels. However, we
filtered these time series further, removing payload
packets that did not change or were exactly periodic
(that is, always repeating). After filtering, four data
words from the 53 time series remained that encoded
the speed setting of the motors (from the HMI) and
the actual speed measured by the motors. Each pair of
data words formed a 16-bit value for the speed setting
and the measured speed—thus these four time series

Figure 4: Orientations of sensors on Arduino relative to the
motor.

could be reduced to two time series that encoded the
speed into 16-bit values. We then used a Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) to
upsample the packet time series to match the dimen-
sions of the higher sample rate physical sensors. Fig-
ure 3 shows these time series examples for the mo-
tor speed packets and the acceleration data. Figure 5
shows heatmaps of all time series data, with all trials
concatenated.

While the original setup also used a man-in-the-
middle (MITM) device to generate network anoma-
lies (Sinha et al., 2021), the portion of the data set
used in this paper was the baseline calibration data
with no anomalies. Thus we are able to use Granger
time series clustering to investigate if motion sensor
data can be used as a side channel to exfiltrate network
information. Specifically, this exfiltrated network in-
formation was related to the encoding and measure-
ment of motor speeds in Modbus packets.



Figure 5: Euclidean hierarchical clustering of raw sensor and packet time series. Time series scaled to [-1, 1].

5 RESULTS

We applied our method to the data set described above
from (Sinha et al., 2021) to test it’s effectiveness as a
side channel identifier. We also apply a traditional
clustering method for comparison.

5.1 Traditional Time Series Clustering

We first clustered the time series using Euclidean dis-
tance as a baseline. This form of clustering only re-
flects the similarity of the raw values in each time se-
ries. That is, the clusters represent time series which
have similar values at similar points in time. Figure
5 shows a normalized heatmap of each time series—
each row is one time series and colors reflect the value
of the time series. Moreover, we show a dendrogram
of the Euclidean cluster linkage on the left of the plot.
As we can see in Figure 5, the Target Speed and Ac-
tual Speed time series (from packet data) uniquely be-
long to their own cluster. This cluster is also dissim-
ilar to the sensor time series data. This indicates that
there is poor correlation between the packet data and
motion sensor data, from which we might infer that
these sensors do not contain any information about
the control packets and thus are poor side channels.
However, since feature-based clustering methods only
compare time series at a single point in time, they can
fail to pick up on relationships with a time lag or when
the features in each time series are dissimilar. Granger
causality, on the other hand, has the ability to account
for these kind of time series relationships, which al-
lows our Granger-based method to identify relation-

ships which traditional clustering methods do not, as
demonstrated in the next section.

5.2 Granger-Based Clustering

Our data set was made up of individual trials in which
sensor and packet data were recorded while the mo-
tor was operating at different speeds. In order to cre-
ate the continuous time series needed for our method,
we randomly shuffled and concatenated these trials to
form one continuous time series per sensor. Perform-
ing a Dickey-Fuller (Dickey and Fuller, 1979) station-
arity test on all time series revealed that all time series
were stationary (p < 0.01 for all cases). This satis-
fied the stationarity constraint of the Granger causal-
ity tests. These motion data time series served as our
Xα group (potential side channels). The correspond-
ing packet data was also concatenated to form our Xβ

group (data from the network that could potentially
be exfiltrated). The Xα time series contained six time
series (3 axes for acceleration and gyroscope) and the
Xβ time series contained two time series encoding the
speed, as discussed in Section 4.

To prevent any possible bias in our results from
ordering effects we performed our clustering on 10
independent shuffles of the data (i.e., different con-
catenations of the time series trials) and averaged the
results. With our Xα and Xβ groups created, we per-
formed Granger clustering resulting in the Granger
maps, Ĝ, displayed in Figure 6 and the clusters, A,
displayed in Figure 7. Figure 6 shows the two speed
related values along the horizontal axis and the mo-
tion sensor data along the vertical axis. The color of



Figure 6: Clustermap of Granger matrix. Calculated as
mean of resulting granger matrices from 10 independent
shuffles of trials. Clustering is performed with γ = 10 and
t = 0.05 for ICS data.

the squares represent the strength of Granger causal-
ity found (after logistic transformation). Thus larger
values indicate a stronger relationship and therefore a
stronger potential for the sensor to be a side channel.
Outside the plot, a dendrogram is also shown and the
time series are ordered by their affinity in the dendro-
gram. Figure 7 shows the pairwise cosine distances
that are calculated from each row of Ĝ, thus reveal-
ing why the dendrogram linkages cluster. It is clear
from Figures 6 and 7 that there are two distinct clus-
ters, with the X gyroscope by itself in one cluster and
the rest of the sensors in the other. As we look fur-
ther down the dendrogram we see the X accelerom-
eter also begins to separate from the other sensors,
indicating that both sensors in the X direction have a
weaker Granger causal relationship with the control
packet data. This suggests that the X-axis gyroscope
is a poor side channel for the control system, whereas
significant network information is potentially leaked
through physical signals in the Y and Z directions,
and to some degree from the X acceleration time se-
ries.

We can corroborate this conclusion by observing
the ICS system from (Sinha et al., 2021). If we look
at the orientation of the sensors in Figure 4, we can
see that the X direction is parallel to the axis of ro-
tation of the motor. Thus, the speed related vibra-
tions of the ICS would mainly occur in the Y and Z
directions, corroborating that the X-axis acceleration
is less powerful than Y or Z axes. Even so, Granger
clustering reveals that the X-axis acceleration data can
leak some information as it is strongly clustered with
the other sensors. The gyroscope X direction, how-
ever, is a poor side channel. The speed of the motor

Figure 7: Granger affinity matrix. Calculated as pairwise
distances between rows of Granger matrix in Figure 6.

cannot be predicted by this time series as it is parallel
to the motion axis of the motor. This conclusion is in
stark contrast to Euclidean clustering, which revealed
that none of the sensor data were valid side channels.

It is important to note that the Granger cluster-
ing approach revealed these side channels without
any domain expertise regarding the ICS. Whether the
mechanism of data leakage was due to physical setup,
magnetic coupling with the sensors, or other means,
the analysis was able to reveal that packet informa-
tion was leaked by a subset of sensors. Moreover,
the analysis grouped the weaker response of the X-
acceleration with the other sensors, revealing that the
time series was potentially strong enough to be used
for exfiltration. Beyond data leakage, the identified
side channels could also potentially be used to define
normal operation for the ICS. That is, Granger clus-
tering reveals that a set of time series are strongly re-
lated to the ICS network operation. If a MITM attack
were to occur, this relationship might be severed—for
instance if the actual motor speed was spoofed, the
causal sensor relationship would cease to exist. In this
way, such a side channel can be used to verify normal
operation of the ICS.

6 CONCLUSIONS

Granger clustering holds vast potential for finding
side channels in ICS. In this work we showed how
physical sensors can be related to control packet in-
formation using Granger-based clustering even when
a correlation-based method fails to find these relation-
ships. Physical signals such as those used in this paper
as well as other non-functional information could be



evaluated with this method to determine if they pose a
risk as a side channel. Given the increase in complex-
ity of ICS and the ubiquity of physical sensors in ev-
eryday devices, identifying side channels like the ones
in this paper could significantly inform design and se-
curity of ICS. Future work could include the use of a
non-parametric Granger causality test (Candelon and
Tokpavi, 2016) and the use of non-hierarchical clus-
tering methods for the Granger matrix.
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