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Abstract—A common model of quantum computing is the
gate model with binary basis states. Here, we consider the
gate model of quantum computing with a non-binary radix
resulting in more than two basis states to represent a quantum
digit, or qudit. Quantum entanglement is an important phe-
nomenon that is a critical component of quantum computation
and communications algorithms. The generation and use of
entanglement among radix-2 qubits is well-known and used
often in quantum computing algorithms. Quantum entanglement
exists in higher-radix systems as well although little is written
regarding the generation of higher-radix entangled states. We
provide background describing the feasibility of multiple-valued
logic quantum systems and describe a new systematic method
for generating maximally entangled states in quantum systems
of dimension greater than two. This method is implemented in
a synthesis algorithm that is described. Experimental results are
included that demonstrate the transformations needed to create
specific forms of maximally entangled quantum states.

I. INTRODUCTION

We are at an exciting age for quantum computation. Noisy
intermediate-scale quantum (NISQ) technology is becoming
more robust and larger in scale. We are beginning to see exper-
iments, such as those involving molecular structure and linear
algebra, that demonstrate the power of quantum machines.
While the development of a fault-tolerant quantum computer
(QC) is still in progress, promising research causes many
people to eagerly anticipate the future of quantum information
science (QIS).

Current QIS technology is in an elementary and emerging
form. The QC paradigm differs greatly in many aspects from
classical computation. When comparing the two models, it is
popularly argued that most significant difference is quantum
information’s ability to demonstrate quantum superposition
and entanglement. In particular, quantum entanglement is an
important phenomenon that is a critical component of most
quantum computational and communications algorithms. The
ability to experimentally demonstrate entanglement is signif-
icant because this phenomenon enables quantum computing
algorithms that exhibit a computational advantage as com-
pared to their classical counterparts. Another very important
application of entanglement is that it allows for the imple-
mentation of ultra-secure quantum communications protocols.
For example, entanglement is necessary for some variations of
quantum key distribution (QKD) [1], [2], quantum factoring
of composite prime numbers [3], quantum radar [4], quantum
teleportation [5], and many other applications.

Most well-known quantum algorithms such as Shor’s fac-
toring, Grover’s search, and many others depend upon and
exploit the properties of entanglement in their implementation.
Additionally the entire concept of many QIS systems such
as teleportation, quantum communication channels, and others
are based on the property of entanglement. The well-known
recent Chinese experiments based upon their Micius satellite
demonstrated that a quantum channel could be created between
the earth and space. The Micius experiments utilized quantum
entanglement generators as a key function [6]. The ability to
create entangled quantum states for non-binary systems would
directly enable these very well-known and accepted results
in QIS to be generalized and applied to higher-radix qudit
systems.

Most of the emphasis in the literature has been placed on
radix r = 2 entanglement among qubits. Many of the funda-
mental characteristics used to represent information are binary
in nature, such as particle spin and photon polarization. How-
ever, there are also other quantum phenomena that can be used
to support information representation with a higher-radix digit
set. The advantages of using higher-radix discrete systems for
information representation are well-known for conventional
information computation and communication systems. In con-
ventional electronics, the use of radices greater than two allow
for multiple bits of information to be transmitted and processed
per conductor on an integrated circuit, increasing processing
bandwidth while simultaneously decreasing on-chip routing
congestion due to a decreased number of required conductors.
In conventional data communications, it is very common to
transmit symbols in modulation schemes such as quadrature-
amplitude modulation (QAM) that allow for multiple bits to
be communicated per transmitted symbol thus significantly
increasing data rates. These and other improvements enjoyed
in higher-radix conventional electronic systems can also be
advantageous in some QIS systems; however, there is a need
for common operations to be specified such as those that
generate entanglement.

It is possible to create entangled states in higher-radix
systems in a systematic way where qudits initialized to basis
states are evolved to a state of entanglement. We present
the feasibility of using multiple-valued logic (MVL) quantum
systems and provide a novel contribution of a methodology for
generating entanglement that we implemented in a synthesis
algorithm. The prototype implementation produces entangle-



ment generator circuits that yield maximally-entangled qudits
of dimension greater than two. Thus our result can be viewed
as a particular form of a quantum state generator. We use op-
erators for creating entanglement in quantum systems of r > 2
that were presented in [7], [8]. This work builds on concepts
from [7], [8], and the new contribution is a methodology for
synthesizing the cascade of gates required to prepare entangled
higher-radix states from a fixed starting basis. The techniques
described in our work have been prototyped, and the algorithm
outputs a description of operators required for entanglement.
Experimental results are included that demonstrate the trans-
formations needed to create algorithm-specific quantum states.
In previous work, the required structure for entanglement gen-
eration was introduced [7]. Although the generalized circuit for
a maximally entangled qudit pair was previously described, the
choice and placement of Ah,k gates from those available to
create a particular entangled state was left undefined. Such a
methodology for determining the gates required for entangled
state preparation and the accompanying prototype synthesis
tool used to generate the quantum algorithm or circuit is a
new finding in this paper.

This paper is organized as follows. Important background
information that is needed to understand the contribution of
this work can be found in Section II. In Section III, the viabil-
ity of higher-radix quantum computation will be discussed and
example realizations of this technology are given. Section IV
provides a discussion of the types of operators or gates that
we use for higher-radix maximally entangled state preparation.
Section V discusses the methodology for developing the gen-
erator functions for entangled state preparation and examples
and results from our prototype algorithm are included. Finally,
Section VI provides a summary and conclusions.

II. QUANTUM INFORMATION PRELIMINARIES

A. Information Representation and Manipulation

The most common unit of quantum information is the radix-
2 quantum bit or “qubit.” Qubits represent a linear combination
of the basis states |02〉 =

[
1 0

]T
and |12〉 =

[
0 1

]T
where

the subscripts are used to refer to the radix value r to avoid
confusion when multiple values of r are of discussion. In
general, a qubit is represented as

|φ2〉 = α |02〉+ β |12〉 . (1)

Here, α and β are probability amplitudes with complex values,
c ∈ C, that take the form of c = x + iy where i is the
imaginary number satisfying i2 = −1. The probability that
|φ2〉 is measured as |02〉 is α∗α = |α|2 and the probability
that |φ2〉 is measured as|12〉 is β∗β = |β|2 as per the principle
known as Born’s rule in quantum mechanics.

Generalizing the qubit construct, higher-radix quantum dig-
its of r > 2 are known as “qudits.” A radix-r qudit is a linear
combination of r basis states expressed as

|φr〉 =
r−1∑
i=0

ai |ir〉 . (2)

Because the probabilities of occupying any state must sum to
unity, the complex-valued coefficients, ai ∈ C, satisfy

r−1∑
i=0

|ai|2 =

r−1∑
i=0

a∗i ai = 1. (3)

The mathematical model of an overall pure quantum state
of a quantum algorithm or circuit is represented as a single
vector formed using the individual qubit or qudit states. The
vector is of dimension rn where r is the radix and n is
the number of individual qubits or qudits in the system. The
quantum state vector, |φr〉, is thus an element of a finite
discrete Hilbert vector space also of dimension rn denoted
as |φr〉 ∈ Hrn . The formulation of the overall quantum state
vector is accomplished by combining the quantum parallel
state of individual qubits or qudits with a tensor or outer
product operation. For example, the states |φr〉 and |θr〉 would
be denoted and combined as |φr〉 |θr〉 = |φθr〉 = |φr〉 ⊗ |θr〉.

A particular algorithm or circuit represents a set of trans-
formation operators that cause the quantum state to evolve
in time until the state is eventually collapsed via measurement
operations. To preserve Born’s rule before measurement, quan-
tum operations that preserve state must allow for a unity sum
of the probability values that derive from the wavefunction’s
probability amplitudes. Thus, from a mathematical point of
view, the quantum gates that compose an algorithm or circuit
can be described as a square unitary transformation matrix,
U, of size rn × rn. Quantum state evolution is typically
specified in terms of a series or cascade of common operators
that are usually in the form of one- or two-qudit operations.
The one- or two-qudit operators are expanded to be in the
form of unitary rn × rn matrices by forming the tensor
product with appropriate identity matrices so that they become
transformation operators over the entire quantum state vector.
These individual rn × rn transformation matrices are applied
in a serial order to the initial quantum state vector resulting in
the final evolved state vector. The direct matrix product of the
individual serial operations yields the overall transformation
matrix for the algorithm or circuit. It should be mentioned that
in the gate-model of QIS as used here, the actual implementa-
tion can be in the form of application specific hardware, or as
the atomic operations in a programmable quantum computer.
Thus, our methodology is equally applicable in a QIS circuit
synthesis tool or as a technique to be used in a QC compiler.
The evolution of a quantum state by a quantum operator is
described mathematically as

|φr(tn)〉 = U |φr(t0)〉 . (4)

B. Quantum Superposition

The state of a qubit or qudit is generally specified as a
linear combination of a set of r basis functions that span the
discrete Hilbert space, Hrn . Each basis function is scaled by
a complex-valued probability amplitude, ai. A quantum state
is said to be in a basis state when all but one of its probability
amplitudes are zero-valued. Alternatively, when two or more



probability amplitudes are non-zero, the quantum state is ex-
hibiting the characteristic known as quantum “superposition.”
Superposition is convenient since it allows a set of qudits to
represent more than one value simultaneously. Superposition
is responsible for many of the performance enhancements that
quantum algorithms exhibit as compared to conventional al-
gorithms for electronic computers since it essentially provides
parallelism of information representation. A single qubit or
qudit is is said to be “maximally superimposed” when its state
vector can be expressed as a linear combination of all basis
vectors such that the magnitude of each probability amplitude
is equal to 1√

r
. Likewise, the overall quantum state of an

algorithm or circuit can be maximally superimposed when
each constituent qubit or qudit is maximally superimposed.
In this case, the maximally superimposed overall state vector
is expressed as a sum of scaled basis states where each scalar
is 1√

rn
and the magnitude squared of the probability amplitude

is 1
rn . States of partial superposition exist when some qubits

or qudits in a quantum algorithm are in a basis state and
others are superimposed. Furthermore, if all magnitudes of
the probability amplitudes, |ai|, are non-zero but also unequal,
then we consider the quantum state to be in superposition,
but not maximal superposition. An alternative definition of
maximal superposition is in terms of measurement. A quantum
state vector is maximally superimposed when a measurement
would yield any of the rn basis states with equal probability.

C. Quantum Entanglement

Entanglement is one of the most unique and significant
aspects of QIS because entangled individual quantum elements
interact and behave as a single system, even when they are
separated by a large distance. Operations and measurements
performed on one portion of an entangled group directly
influence the state of the other members. With the Hilbert
vector space model, it is impossible to describe any single
element of an entangled set independently. As an example, the
state |αβ2〉 = a0 |002〉 + a1 |112〉 where |ai| 6= 0, represents
an entangled state comprised of the two qubits |α2〉 and |β2〉.
Mathematically, this state is cannot be factored and is therefore
inseparable. Measurement of the first qubit, |α2〉, gives insight
to the value of the second qubit, |β2〉, without needing a second
observation to occur. That is, if the measurement of qubit |α2〉
resulted in |02〉, then one would automatically know that the
value of |β2〉 simultaneously collapsed to |02〉 although it was
not directly measured. This must be the case because it is
impossible for |β2〉 to be any value other than |02〉 if it is
known that |α2〉 = |02〉.

When the values of |ai|2 are equivalent in an entangled state,
the state demonstrates maximal entanglement. The example
state |αβ2〉 would be maximally entangled if a0 = a1 = 1√

2
.

Note this is quite different from the definition of maximal
superposition since some of the probability amplitude values
are zero.

III. HIGHER-RADIX QUANTUM REALIZATIONS

The nature of MVL systems allows for higher density
transmission and computation of data because with r > 2,
more information is stored in each fundamental unit of in-
formation [9]. Despite this advantage, classical computing is
primarily implemented in binary due to the bistable nature of
transistors. For example, MOSFETs can be in saturation or
cutoff when they are treated as switching elements. If MVL
were to be implemented using MOSFET transistors, it would
be necessary to define voltage values in the active region that
correspond to specific information values. Thus, an r = 3
ternary system would require voltages corresponding to the
digits {0, 1, 2}. From a practical point of view, there would
need to be voltage ranges specified, commonly characterized
as “noise margins,” that define how much a particular voltage
can vary from a specified nominal voltage that represents
a logic level. Thus, implementing higher-radix systems in
conventional electronics is theoretically possible, but it is
rarely done in practice because the advantages of maximizing
the number of transistors per unit area that act as binary
switches outweighs the advantage gained by using larger tran-
sistors that implement switching among r different voltages
representing a higher-valued, non-binary radix system. Smaller
transistors require smaller rail voltages to operate properly and
subdividing these small rail-to-rail voltage intervals into more
than two discrete ranges would result in noise margins that
are impractical to implement. This is the primary reason that
conventional digital electronics has continued to use binary
switching models although the advantages of higher-radix
information representation are well-known. However, in terms
of data communication, it is common to use higher values of
radices. As mentioned, QAM is a common example where
radices of value 4, 8, 16, 32, and 64 are realized. Generally,
these radices are powers of two to allow for simple conversion
between transmitted data and the binary processors present in
conventional electronic computers.

Today’s quantum devices are noisy and error prone, but
this does not mean that higher-radix quantum systems that
implement qudits are infeasible. The issues preventing the
common use of higher-radix systems for conventional compu-
tation, namely the noise margin issue, are not as parasitic in
quantum computation. It remains to be seen if other issues will
arise that give preference to some computational radices versus
others. However, the “noise” present in today’s NISQ QCs has
to do with the undesired decoherence of a quantum state rather
than issues akin to voltage noise margins, and it is anticipated
that these decoherence rates will improve over time. Other
QIS research groups have written about the advantages of
implementing qudits rather than qubits in QCs that could
lead to more powerful quantum computation [10]. The use
of higher-radix systems for the representation and processing
of information in QIS is potentially viable because of the
discrete nature of certain quantum phenomena that is used
to carry or represent information. Qudit implementations have
been demonstrated experimentally as well as theoretically, and



they have the potential to increase in popularity as quantum
technology becomes more mature. Examples of non-binary
qudit-based QIP realizations based upon the photon include
orbital angular momentum (OAM) [11], time-energy [12],
frequency [13], time-phase [14], and location. Qudits imple-
mented with superconducting solid-state technology such as
transmon circuits have also been reported [15]. To accommo-
date to higher-dimensioned quantum systems, especially those
that are compatible with radix-2 technology, methodologies
for qudit control and readout have been developed [16], [17].

The implementation of higher-radix quantum computation
would allow for the compression of data. For example, number
of radix-r qudits, M , required to encode the information of
N qubits is equal to

M =
N

log2(r)
. (5)

Increasing the radix of a system greatly increases computation
and communication bandwidth. Although including more logic
levels provides a certain level of computational advantage,
an increase in dimension does increase system complexity
because of the added opportunity for introducing error [18].
This presents the question of determining the best radix for
quantum computation. This value will be heavily influenced by
the number of clearly defined and manipulatable logic levels
for a particular technology platform.

To perform meaningful QIP, it is critical to have the ability
to prepare higher radix states, such as those where informa-
tion is entangled, for the execution of quantum algorithms.
While there is a considerable amount of past work regard-
ing binary entanglement, there is a limited number of past
references regarding the entanglement of qudits. Properties
of maximum qudit entanglement have been studied in [19],
[20]. Qudit entangled states have also been experimentally
demonstrated [21]. However, a general methodology for the
synthesis of a state preparation algorithm to yield a maximally
entangled state from an arbitrary input state has not been
previously reported to the best of our knowledge.

IV. ENTANGLEMENT GENERATORS

A generator function is required for quantum entangled
state preparation. For binary or radix-2 quantum information,
the Bell state generator is widely known and used to create
entangled qubit pairs that are sometimes referred to as “EPR
pairs.” A Bell state generator consists of two key components:
a single-qubit Hadamard gate that evolves one of the qubit pair
into a state of maximal superposition, and a controlled-NOT,
CNOT , gate that acts as the entangling gate for the two qubits.
The typical use of a Bell state generator is to initialize the qubit
pair into one of the four basis states followed by evolving
them through the Hadamard and Controlled-NOT gate pair.
The Bell state generator can be used as inspiration for a
circuit structure that implements higher-radix entangled state
preparation. Two key components of such an entanglement
generator circuit are thus required to prepare entangled states
for any radix. First, one of the involved qudits must be

Fig. 1. Symbol of the radix-r Chrestenson gate, Cr .

transformed into maximal superposition. Second, multi-qubit
or qudit interaction is required to combine the states into
an mathematically inseparable and therefore entangled form.
These transformations can be accomplished with Chrestenson
and controlled modulo-add operations, respectively. Entangle-
ment generation with Chrestenson and controlled modulo-add
gates is demonstrated for radix-4 quantum systems in [7] and
radix-3 quantum systems in [8].

A. The Chrestenson Gate

The Hadamard operator,

H =
1√
2

[
1 1
1 −1

]
. (6)

evolves a qubit that is initially in a basis state into a state
of maximal superposition. With H, a basis state qubit is
transformed such that it has an equal probability of being
measured as either |02〉 or |12〉. For higher-radix systems,
the Chrestenson operator is the generalized version of the
Hadamard operator and is applied to generate a qudit in
maximal superposition. When a qudit in a basis state is applied
to a radix-r Chrestenson gate, it is transformed such that it has
an equal probability of observation with respect to any of its
basis states.

The radix-r Chrestenson transform, Cr, is

Cr =
1√
r


w0

0 w1
0 . . . w

(r−1)
0

w0
1 w1

1 . . . w
(r−1)
1

...
...

. . .
...

w0
(r−1) w

1
(r−1) . . . w

(r−1)
(r−1)

 (7)

where each element in the transformation matrix is a rth

root of unity raised to an integral power in the form of
wj

k = e(i
2π
r ×k)×j where j, k = 0, 1, . . . , (r − 1) [22]. The

column index sets the value of j while the row index sets
the value for k. The symbol for Cr is pictured in Fig. 1.
If the radix-2 Chrestenson transform, C2, is derived using
Eqn. 7, the Hadamard matrix results, confirming that Cr

acts as a generalized superposition operator. More details
concerning the theory of Chrestenson transforms can be found
in references [22], [23] and an example implementation of a
radix-4 Chrestenson gate for location-encoded photonic qudits
can be found in references [24], [25].

B. The Controlled Modulo-Add Gate

The NOT operation, also known as the Pauli-X operator,



X =

[
0 1
1 0

]
, (8)

can be generalized into a modulo-r addition-by-k operator
where r = 2 and k = 1. This is demonstrated by the
evolution of qubit |02〉 to be |((0 + 1)mod 2)2〉 = |12〉 and
|12〉 to be |((1 + 1)mod 2)2〉 = |02〉. This alternate viewpoint
of the Pauli-X is useful in the generalization of the Bell
state generator into a qudit entanglement generator for radix-r
qudits. The controlled version of the Pauli-X or NOT gate
is denoted as the CNOT gate,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (9)

With respect to modulo-r addition-by-k operators, the CNOT

or controlled-X gate can be referred to as a controlled-modulo-
2 addition-by-1 transformation where the control value is |12〉.
This viewpoint is directly applicable to controlled modulo-
r addition-by-k operators with activation values from the
set {0, 1, · · · , (r − 1)} for the development of higher-radix
maximal entanglement generators.

In the case of radix-2 systems, only two different modulo-
2 additions are possible since there are two computational
basis vectors, |02〉 and |12〉. Furthermore, one of these is the
trivial case of modulo-2 addition-by-zero that results in the
identity transformation matrix. Additionally, although most
past work in binary QIS consider only the single CNOT

operator wherein the target is activated when the control is
|12〉, another variation of a controlled-modulo-add operation
could be constructed where the control logic level is |02〉. This
variation of the CNOT operation can also be used in a Bell
state generator to prepare entangled qudit states. In general,
any value from the set {0, 1, · · · , (r− 1)} can be used as the
activation or control value for a modulo-r addition-by-k gate.

Single qudit modulo-addition operations are represented by
r×r transfer matrices denoted as Mk for transformations that
cause a modulo-k addition with respect to modulus r, as used
in [26]. These modulo-addition operators that cause a change
of basis are also referred to in the literature as Heisenberg-
Weyl operators [27]. The Mk matrices are all in the form of a
permutation matrix and the modulo-0 addition operation is the
identity function, or M0 = Ir where Ir is the r × r identity
matrix. For qudit systems with radix-r, r > 2, there are r− 1
different single non-trivial modulo-r additions. Because the
modulo-addition operation can have a controlled form with
r available control levels, there exist a total of r(r − 1) =
r2 − r non-trivial controlled-modulo-addition operators. The
controlled-modulo-addition transformation is denoted as Ah,k,
where h is the control value that enables the modulo-addition
by k operation to occur. Ah,k operates over two qudits of
radix r, and its transfer matrix takes the form of the r2 × r2
matrix

Fig. 2. Symbol of the controlled modulo-add gate, Ah,k .

Ah,k =



D0 0r · · · · · · · · · · · · 0r

0r D1 0r · · · · · · · · · 0r

... 0r
. . . 0r · · · · · · 0r

...
... 0r Dj 0r · · · 0r

...
...

... 0r
. . . 0r

...
...

...
...

... 0r
. . . 0r

0r 0r 0r 0r · · · 0r D(r−1)


,

where, Di =

{
M0 = Ir, i 6= h

Mk, i = h.

(10)

In Eqn. 10, each submatrix along the diagonal is denoted as
Di and is of dimension r×r. The Ah,k operation only allows
the modulo-addition by k transformation to occur on the target
whenever the control qudit is in state, |hr〉. For a radix-2
system, the A1,1 gate derives the CNOT transformation of
Eqn. 9 when Eqn. 10 is applied. The generalized symbol of
Ah,k is pictured in Fig. 2.

C. Demonstration of Higher-Radix Entanglement

A higher-radix maximal entanglement generator for two
radix-r qudits takes the form of a Chrestenson gate, Cr, on
the control qudit of r − 1 different Ah,k gates that operate
after the Cr gate [7]. Each of the control values, h, of the
r−1 Ah,k gates has a separate and distinct value from the set
{0, 1, · · · , (r − 1)} and each of the modulo-add-by-k target
operations, k, of the r−1 Ah,k gates, takes on a separate and
distinct value from the set {1, · · · , (r − 1)}.

An example radix-3 entanglement generator is pictured in
Fig. 3. This circuit includes C3 calculated with Eqn. 7 to be

C3 =
1√
3

w0
0 w1

0 w2
0

w0
1 w1

1 w2
1

w0
2 w1

2 w2
2


=

1√
3

1 1 1

1 e
i2π
3 ×1 e

i2π
3 ×2

1 e
i2π
3 ×2 e

i2π
3 ×4

 .
(11)

The r− 1 = 3− 1 = 2 gates in the Ah,k cascade are derived
from Eqn. 10 as



A1,1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(12)

and

A2,2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0


. (13)

In Eqns. 12 and 13, the dashed lines are present to show the
placement of the M1 in the center sub-matrix and M2 in the
lower right sub-matrix, respectively. Using the transformation
matrices above, the transfer function for the example maxi-
mum entanglement generator is

Tmax = A(2,2)A(1,1)(C3 ⊗ I3). (14)

To demonstrate the preparation of a fully entangled state with
the generator of Fig. 3, the value of the input state |φθ3〉 is
initialized to the ground state of |003〉. The resulting fully
entangled output is

Tmax |003〉 = A(2,2)A(1,1)(C3 ⊗ I3) |003〉

=
1√
3
(|003〉+ |113〉+ |223〉) .

(15)

In Eqn. 15, the output state is in the form of a maximally
entangled state since the basis states present with non-zero
probability amplitudes have magnitudes that are equal and
are mathematically inseparable by factorization. Therefore, the
state is entangled. As another demonstration, an entangled
output can be produced with a generator circuit where h 6= k
in the controlled modulo-add operations. Consider the trans-
formation matrices of

A1,2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(16)

Fig. 3. Example radix-3 maximal entanglement generator.

Fig. 4. Generalized structure of circuit needed for radix-r maximal entangle-
ment among n qudits where j = n− 1 and m = r − 1.

and

A2,1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


. (17)

These Ah,k operators can be combined in order to form the
maximal entanglement generator

Tmax = A(2,1)A(1,2)(C3 ⊗ I3). (18)

If the value of the input state is fixed at |003〉, the transformed
state becomes the fully entangled output of

Tmax |003〉 = A(2,1)A(1,2)(C3 ⊗ I3) |003〉

=
1√
3
(|003〉+ |123〉+ |213〉) .

(19)

Multiple qudits may be transformed into entangled groups
if additional cascades of Ah,k operators acting on different
targets are added. In these cascades, the rules for h and k
values, as defined earlier, are followed. Each group is treated
as an independent set where h and k values are appropriate
and must not repeat. An illustration of an n qudit maximal
entanglement generator structure is included in Fig. 4. In this
schematic, each Ah,k operator is characterized by two index
values in the form of ji : mi where ji indicates the qudit that
acts as the target and mi is the operator’s index within the
cascade. The generator of Fig. 4 could be considered a higher-
radix generalization of the circuitry needed for the preparation
of GHZ states whenever the number of involved qudits, n, is
greater than 2.



Data: Radix (r), qudits, input state (input), and
desired entangled state (basis)

Result: Gate sequence, Gi, and associated controls, ci,
and targets, ti

Set G← [ ], c← [ ], t← [ ];
G.append(Chrestenson(radix));
c.append(NULL);
t.append(0);
for i : 1 ≤ i < qudits do

for item in basis do
h← item[0];
k ← item[i] + (r − input[i])%r;
if k 6= 0 then

G.append(A(h, k));
c.append(0);
t.append(i);

end
end
Algorithm 1: Find entangled state generator circuit

V. NON-BINARY ENTANGLED STATE PREPARATION

It is common knowledge that the Bell state generator can
be implemented for radix-2 entangled state preparation. As
the dimension of a quantum system grows in size, however,
it becomes less intuitive what set of operators are required
to prepare a entangled set of basis states where r > 2. In
addition, it may be necessary to generate a specific entangled
state using qudits that are initialized to fixed basis values. For
example, many quantum implementations initialize quantum
information into a ground state, |000 . . . 00r〉, that must be
used as input to the state preparation generator circuit. For
this reason, it is desirable to develop a synthesis technique
that derives the gate cascade required to evolve an arbitrary
quantum state into a targeted entangled state.

In this work, we outline a methodology for determining
the circuit structure needed to create a maximally-entangled,
radix-r state with a desired set of basis states from a particular
input of qudits. For radix-r, up to r qudits may become
maximally entangled so that each qubit index in each linearly-
combined basis has a unique value ranging from [0 : r − 1].
For this reason, the state preparation circuits generated by this
tool can include between two and r qudits. The entangled
state generator algorithm has been developed in Python as
a prototype synthesis tool that outputs the necessary cascade
of Chrestenson and controlled-modulo-add gates to act as the
generator for the desired entangled quantum state distribution.
The pseudocode that finds the required generator circuit to
transform a fixed input basis state into an entangled state is
included in Algorithm 1.

Finding the entangled state generator circuit requires the in-
put parameters of radix, number of qudits, input state, and de-
sired entangled basis states. The input basis state is in the form
of a list while the desired entangled state is a list of sublists
that each represent a basis state in the linear combination. For
instance, an input of |φθr〉 = |003〉 is passed as input = [0, 0]

and an entangled state of |φθr〉 = 1√
3
(|003〉+ |113〉+ |223〉)

would be passed as basis = [[0, 0], [1, 1], [2, 2]]. It should be
noted that the probability amplitude for each of the entangled
basis values is set by the column of the Cr matrix with
an index equal to the control level in the input qudit state.
Therefore, each basis will be multiplied by a radix-r root
of unity along with the scale factor of 1√

r
. For example, if

the output entangled state in Eqn. 15 is examined where the
superimposed control qudit is |03〉, it is clear that each of the
basis states has a probability amplitude equal to an element
from the 0th index column of the C3 transform.

Following the structure pictured in Fig. 4, if n total qudits
are to be entangled, the first qubit, indexed as |φ(0)r〉 will
always be the superimposed qubit that acts as the control for
the Ah,k gates. Therefore, the Cr operator will act on this
qubit before any other operators. Next, n−1 cascades of Ah,k

gates with appropriate h and k values needed to target each
of the remaining qudits must be determined. As a note, to
maximally entangle n qudits, (n − 1)(r − 1) total Ah,k are
required. These gates will always have qudit |φ(0)r〉 as the
control qudit and each of the remaining qudits will act as a
target for an Ah,k cascade in order to become entangled as a
group. It is known that each cascade will contain r− 1 gates.

Preparing the desired entangled state requires the generation
of n − 1 Ah,k cascades. Each qudit that will act as a target,
the qudits ranging from |φ(1)r〉 to |φ(j)r〉, will be iterated
through. As seen in the algorithm pseudocode, value of h is de-
rived from the basis in the output state that becomes entangled.
The value of k determines the extent of entanglement because
it controls what modulo-add-k operation is implemented.

Fig. 5. Sample output of generator circuit synthesis to prepare
1√
3
(|003〉+ |113〉+ |223〉) from ground state |003〉.

A demonstration of generator circuit synthesis is included
in Fig. 5. In this example, the structure of the radix-3 maxi-
mal entanglement generator from Fig. 3 is determined using
the parameters of the circuit input, |003〉, and the desired
entangled quantum state basis values of |003〉 , |113〉 , |223〉.



TABLE I
REQUIRED GENERATOR CIRCUIT COMPONENTS FOR TWO-QUDIT MAXIMALLY ENTANGLED STATE PREPARATION

Input Basis States of Maximally Cr Ah,k Operators
Entangled Output Operator (|φ(0)r〉 control and |φ(1)r〉 target)

|002〉 |002〉 , |112〉 C2 A1,1

|112〉 A0,1

|003〉 |003〉 , |113〉 , |223〉 C3 A1,1,A2,2

|113〉 A0,2,A2,1

|223〉 A0,1,A1,2

|004〉 |004〉 , |114〉 , |224〉 , |334〉 C4 A1,1,A2,2 , A3,3

|114〉 A0,3,A2,1,A3,2

|334〉 A0,1,A1,2 ,A2,3

|005〉 |005〉 , |115〉 , |225〉 , |335〉 , |445〉 C5 A1,1,A2,2 , A3,3 , A4,4

|225〉 A0,3,A1,4,A3,1,A4,2

|445〉 A0,1,A1,2 ,A2,3 , A3,4

|006〉 |006〉 , |116〉 , |226〉 , |336〉 , |446〉 , |556〉 C6 A1,1,A2,2 , A3,3 , A4,4, A5,5,
|226〉 A0,4,A1,5,A3,1,A4,2,A5,3

|556〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5

|007〉 |007〉 , |117〉 , |227〉 , |337〉 , |447〉 , |557〉 , |667〉 C7 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6

|337〉 A0,4,A1,5,A2,6,A4,1,A5,2,A6,3

|667〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6

|008〉 |008〉 , |118〉 , |228〉 , |338〉 , |448〉 , |558〉 , |668〉 , |778〉 C8 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6,A7,7

|338〉 A0,5,A1,6,A2,7,A4,1,A5,2,A6,3,A7,4

|778〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6,A6,7

|009〉 |009〉 , |119〉 , |229〉 , |339〉 , |449〉 , |559〉 , |669〉 , |779〉 , |889〉 C9 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6,A7,7,A8,8

|449〉 A0,5,A1,6 ,A2,7,A3,8,A5,1,A6,2,A7,3,A8,4

|889〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6,A6,7,A7,8

TABLE II
REQUIRED GENERATOR CIRCUIT COMPONENTS FOR MULTI-QUDIT MAXIMALLY ENTANGLED STATE PREPARATION

Input Basis States of Maximally Cr Target Qudit Ah,k Operators
Entangled Output Operator (|φ(0)r〉 control)

|0124〉 |0004〉 , |1114〉 , |2224〉 , |3334〉 C4 |φ(1)4〉 A0,3,A2,1,A3,2

|φ(2)4〉 A0,2,A1,3,,A3,1

|01234〉 |00004〉 , |11114〉 , |22224〉 , |33334〉 C4 |φ(1)4〉 A0,3,A2,1,A3,2

|φ(2)4〉 A0,2,A1,3,,A3,1

|φ(3)4〉 A0,1,A1,2,,A2,3

|0125〉 |0005〉 , |1115〉 , |2225〉 , |3335〉 , |4445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|01235〉 |00005〉 , |11115〉 , |22225〉 , |33335〉 , |44445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|φ(3)5〉 A0,2,A1,3,A2,4,A4,1

|012345〉 |000005〉 , |111115〉 , |222225〉 , |333335〉 , |444445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|φ(3)5〉 A0,2,A1,3,A2,4,A4,1

|φ(4)5〉 A0,1,A1,2,A2,3,A3,4

As mentioned previously, all of these basis states will have a
probability magnitude of 1√

3
because that is the value of each

of the elements of the 0th column of the C3 transform.

When generating a maximally-entangled qudit state, it may
be necessary to begin with a set of qudits that are initial-
ized to a particular basis before transformation procedures.
Depending on the original quantum state, different cascades
of Ah,k operations must be implemented to achieve a targeted
entangled output. To address this scenario, additional examples
of synthesized circuit cascades for systems ranging from r = 2
to r = 9 can be found in Table I for the two-qudit case. This
table includes sample input circuit values, found in column
one, that target a set of maximally entangled basis states,

found in column two. The required Cr operator is in column
three and the synthesized Ah,k cascade needed to generate the
desired linear combination of basis states is found in column
four. Other input qudit and Ah,k operator combinations also
generate the Table I entangled outputs, but Table I is not all
inclusive in the interest of space. As a note, since only two
qudits become entangled only n − 1 = 2 − 1 = 1 cascade is
required. More examples of synthesis are included in Table II.
In these results, entangled states including more than two
qudits are analyzed for radix-4 and radix-5 systems. These
circuit descriptions would be constructed using the form of
Fig. 4.



VI. CONCLUSION

We have described how non-binary quantum computation
can potentially lead to advantages since more information
processing per atomic operation can occur. The technical diffi-
culties that prevented wide-spread adoption of MVL or higher-
radix computing with conventional electronic computers is
not present in the case of gate-model QCs. Thus, the use
of higher-radix computational models should be considered.
We also described the fundamental importance of the phe-
nomenon of quantum entanglement and the fact that it is
used in virtually all of the well-known QC algorithms and
communications protocols that are defined for binary QCs.
Next, we described how the bipartite entangled pair generator
known as a Bell state generator for binary systems can be used
to motivate analogous means of entanglement generation for
radix-r algorithms and circuits. The concept of entanglement,
and in particular, maximal entanglement, was described for
high-radix QIS both mathematically, with several physical
examples given. Finally, we derived a systematic methodology
for the synthesis of maximal entanglement generation circuits
and algorithms and provided an example with our prototype
synthesis tool.

In the future, we plan to extend the methodology to account
for various forms of partial entanglement such that circuits can
be generated that yield subsets of entangled qudits. We also
plan to incorporate this methodology into our existing general
purpose QC compiler and synthesis tool [28].
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