
BOD-based spectral approach for Reed-Muller circuit
realisation

M.A. Thornton
V.S.S.Nair

Indexing terms: Spectral coefficients, Reed-Muller circuits, Binary decision diagram

Abstract: In the past, the use of spectral
coefficients for the realisation of Reed-Muller
circuits led to computational difficulties for
functions of even moderate size, due to large
memory requirements. A new approach is
presented that overcomes these difficulties by
allowing the function to be represented using a
binary decision diagram, thus reducing the
storage requirements. In addition, the
computational requirements are also reduced
since an efficient method for computing the
spectral coefficients is employed. Furthermore,
the approach is illustrated with examples.

1 Introduction

The well-known properties of the generalised Reed­
Muller (GRM) canonical form make it an attractive
candidate for logic circuit implementations. It has been
shown that exclusive-OR sum of product (ESOP) forms
generally require fewer logic gates than the more tradi­
tional sum-of-products forms [1]. For symmetric func­
tions it has been proven that the ESOP circuit form
will never require more product terms than the number
needed for the corresponding SOP realisation [2].
Many FPGAs are now being manufactured that utilise
the XOR gate as a basic cell component. This requires
ESOP implementations to be considered when an
FPGA implementation is desired. Also, the ESOP form
allows all single stuck-at faults to be tested with a min­
imal number of test vectors [3]. Finally, recent develop­
ments in layout technology have reduced the layout
a~ea required for XOR gates so that it is comparable
with that of the other basic logic gates [4].

The Reed-Muller (RM) transformation matrix can
be used to realise a circuit given its output vector.
Although this deterministic technique is very attractive
for computer-aided design (CAD) applications, it is not
a practical method for reasonably sized circuits due to
the large storage requirements that spectral transforma­
tion methods demand. In this paper we describe a

©IEE, 1996

IEE Proceedings online no. 19960067

Paper first received 6th January 1995 and in final revised form 4th August
1995

!'J.A. J?1o~ton is with the Department of Computer Systems Engineer­
ing, Uruvers1ty of Arkansas, Fayetville, AR 72701, USA

V.S.S. Nair is with the Department of Computer Science & Engineering,
Southern Methodist University, Dallas, TX 75275, USA

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 2, March 1996

means for the realisation of a RM circuit by using its
binary decision diagram (BDD) representation instead
of a truth table description. This methodology uses the
principles of RM transformations coupled with a novel
method for obtaining the coefficients.

Recently we developed an efficient methodology for
the computation of the Walsh coefficients using output
probability expressions (OPEs) [5]. This methodology
was not directly applicable to the RM spectrum since it
does not use the required modulo-2 arithmetic. The
results presented here show that all calculations may be
performed by using real-valued arithmetic and then
applying an isomorphic transformation afterwards.
This result allows the recently discovered efficient
method for the computation of the Walsh spectrum to
be applied to the RM spectra as well.

2 Mathematical formulation

This Section provides the development of two impor­
tant points. First, we provide the mathematical proper­
ties that allow the RM spectra to be computed using
real arithmetic instead of the modulo-2 arithmetic that
is used when the definition is applied. Second, the rela­
tionship between the coefficients as computed using
real arithmetic and the output probability of a logic
function are developed. This relationship will lead to
the formation of a method for computing a RM coeffi­
cient using efficient BOD-based algorithms.

2. 1 Isomorphic relation of GF(2) and the real
field
This Section will prove that an isomorphic mapping
function exists between the Galois field containing two
numbers, GF(2), and the real field. Furthermore, it is
proven that the isomorphic function maps into equiva­
lence classes containing single elements and hence may
be used to determine a unique value. Since the RM
transform is defined over GF(2), the existence of an
isomorphism that provides a unique mapping is crucial
because it will allow the transform calculations to be
performed in the real field. To develop the isomorphic
relation, the concept of an algebraic ring and, hence, a
ring morphism is utilised.

A Boolean ring satisfies all of the properties of a gen­
eral ring along with the idempotence property [6]. The
familiar Boolean algebra can be formulated with
respect to the Boolean ring, 9\, defined as follows:

lR : {O, 1, EB,·} (1)

where O and l denote the logic values of zero and one,
the addition operator, EB, denotes the binary XOR
operation, and the multiplicative operator, ·, denotes

145

the binary AND function. Clearly, the set, 9', forms a
Boolean ring since all of the properties of a general
ring are satisfied [7] along with the idempotence prop­
erty. Next, consider an alternative set, 9''. This set con­
tains the following elements:

)R' : {0, I,+, x} (2)
where

0 = {O, ±2, ±4, ±6, ... , ±2j, ... } (3)
and

I= { ±1, ±3, ±5, ... , ±(2i + 1), ... } (4)
Thus, 0 and / are the sets of all even integers (including
0) and all odd integers (excluding 0), respectively. The
two operators in the set, 9t', are the additive operator,
+, and the multiplicative operator, x. These operators
perform real addition and real multiplication, respec­
tively. 9'' also satisfies the properties of a Boolean ring
[6].

The following lemma establishes the relationship
between the two rings 9t and 9'':
Lemma 1: The function, fix) = x(mod2), forms a ring
morphism from 9'' to R.

Proof To prove this lemma, we demonstrate that the
following relationships exist:

f(a + b) = f(a) EB f(b)

f(a x b) = f(a) • f(b)

for the following three exhaustive cases:
Case 1: (a, b) E 0'
Case 2: (a, b) E /

Case 3: a E ,0 ,b E /

(5)

(6)

Each case is easily seen to be satisfied by observing
that the following elementary properties of number the­
ory hold:
Case 1 is a statement that the sum and product of two
even integers always yield values that are also even.
Case 2 is a statement that the sum of two odd integers
is always even and the product of two odd numbers is
always odd.
Case 3 is a statement that the sum of an even integer
and an odd integer always results in an odd value while
their product is always even. D

Next, the RM form is presented with a 3-variable
example as motivation for the following mathematical
results. The generalised RM formulation for a three­
variable function may be expressed as

F(x) = ro EB r1±1 EB r2±2 EB r3X3 EB r4x1±2 EB r5x1X3

EB T5X2X3 EB T7X1X2X3 (7)

where the dotted variables represent function inputs
that are either complemented or not complemented in
all occurrences. The r; terms are Boolean constants that
have value '1' or '0' and are members of the ring, 9'. In
fact, the r; terms are the RM spectral coefficients of the
GRM formulation of F(x). Eqn. 7 contains operations
and elements from the Boolean ring, 9t (the omission
of a binary operator between two consecutive variables
in eqn. 7 implies that the operation denoted by •
occurs). Eqn. 7 is rewritten in the following form:

F(x) = rogo EBr1g1 EBr2g2 ffir3g3 EBr4g4 EBrsgs EBr696 EBr1g1
(8)

146

Where the r; are Boolean constants as described above.
and each g; is the AND (modulo-2 product) of a subset
of the function's literals. Each particular realisation of
the GRM form is then a specified set of r; values that
will be referred to as the vector, R. The set of func­
tions, g;, will be referred to as the 'constituent func­
tions' of fix). It is convenient to express the
relationship in eqn. 8 in an alternative vector matrix
form as:

GR=F (9)

where the elements of the vector, F, and the constituent
function matrix, G, are known (or are easily com­
puted), and the elements of the R vector specify the
spectrum of a GRM canonical form. The column vec­
tors formed from all possible outputs of the constituent
functions, g;, are concatenated to form the coefficient
matrix, G, and the corresponding function outputs are
concatenated to form the function vector, F.

There are 2n possible versions of eqn. 7 since all pos­
sible combinations of complemented and uncomple­
mented variables may be used. A convenient way to
classify the various forms of GRM expressions is to use
the concept of polarity [8]. Typically, the polarity
number is obtained by assigning a 'l' to all uncomple­
mented primary inputs and a '0' to all complemented
primary inputs. These bits are then ordered according
to descending subscripts of the corresponding primary
inputs. The resulting binary number is then the polarity
number.

For illustrative purposes, two forms of the GRM
expressions will be considered for eqn. 7 and the two
transformation matrices will be derived. It should be
noted that any arbitrary polarity matrix could be
derived and the details for such derivations are given in
[9]. We will consider the polarity-0 and polarity-2n
matrices denoted by G and G', respectively. The
matrix, G, is used when all x; = X; and G' is used when
all x; = x((where ' indicates the application of the
complement function to a Boolean variable). In the fol­
lowing, we define the coefficient matrix, G.

Definition 1: The matrix, G, is a concatenation of the
output column vectors of the constituent functions, g;,
with no inverted inputs.

Consider the smallest possible G matrix, denoted as
G2, where the subscript indicates the number of func­
tion inputs.

9o 91 92 93

G, - [l i !]]
The constituent functions for G2 are defined as:

9o = 1

91 = Xo

92 = x1

93 = Xo. X1

Likewise, the matrix G{ is defined as:

9; 9~ 9i 9o

[~ i ~ il
0 0 1 1
0 0 0 1

(10)

(11)

IEE Proc.-Comput. Digit. Tech., Vol, 143, No. 2, March 1996

The constituent functions for G{ are defined as

go= 1

g~ = x~
I I

92 = X1
I I I

93 = Xo. X1

The following theorem shows the relationship between
the operations in the ring 9\' and those in 9\. This is
accomplished by establishing that the solution vector,
R, always contains components that are members from
the field of positive and negative integers, Z. Where Z
is defined as

Z = { ... ,-3,-2,-1,0,1,2,3, ... } (12)

In essence, it is shown that the solution of eqn. 9 is per­
formed over the Boolean ring, 9\'.

Theorem I: Given any Boolean function, F, and a
binary vector, BT = [b1, b2, b3 , bn] (where T denotes
the transpose) such that F = b1g 1 ffi b~ 2, ffi ... ffi b~m
then there exists a vector, R with each r; E Z, such that
GR = F and R (mod2) = B, where F is the binary vec­
tor formed from the output column of the truth table
of the function, F.

Proof- It is easily seen that R has the property that
each r; E Z since all the transformation matrices Gn
and G' n are triangular with diagonals consisting of all
ls. Hence, the following equations hold:

det(Gn) = det(G~) = 1

It is desired to solve the equation

G*R=F

(13)

(14)

where G* represents either Gm or G'n- The solution to
this equation is well known and may be expressed in
terms of the cofactors of G* as

R = G*- 1F

= [det(G*)]- 1 [cofactor (G*)]F

= [ll[cofactor (G*)]F

Since the cofactor matrices are formed with no division
operations, the matrix, [cofactor(G*)], contains only
integers. Since the matrix, G*, always has a determi­
nant of 1, the solution vector, R, is formed as a vector­
matrix multiplication of the integer matrix, [cofac­
tor(G*)], and the integer vector F. Therefore the solu­
tion vector, R, always contains integer components.

From lemma 1, the function, fix) = x(mod2) forms a
ring morphism between 9\' and 9\. Hence, the applica­
tion of fix) to each integer component in the vector, R,
isomorphically maps R to B. □

Although it is well known that the GRM forms are
unique, the result of theorem 1 allows this fact to be
proven succinctly and trivially in the following corol­
lary.

Corollary I: Every Boolean function has a unique form
of the GRM expansion.

Proof- From the definition given above, it is apparent
that all Gn and G'n matrices are triangular. From defi­
nition 1 it was noted that all g;; = g';; = 1. Hence the
determinant of the coefficient matrices is 1, guarantee­
ing a unique matrix inverse exists. Since R and B from
theorem 1 are isomorphic and R is unique due to the
existence of a unique inverse of G and G', then B also
is unique. □

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 2, Morch /996

This section has presented the mathematical justifica­
tion for the synthesis technique for the complement­
free RM forms. These results may easily be extended to
any of the generalised Reed-Muller (GRM) expansions
with any arbitrary polarity number. The following sec­
tion will provide a numerical example and a discussion
of implementation issues.

2.2 Relationship of output probabilities and
the RM spectra
The output probability of a circuit is the probability
that the output of the circuit is a logic 1 given the
probabilities that each of the inputs are at a logic 1
value. In the work of [IO] OPEs were used to evaluate
the effectiveness of random testing. Two methods were
developed for computing the OPE in algebraic form in
[IO]. One method used the Boolean logic equation and
the other used logic diagrams. In [5] we noted that for
all possible input combinations, each input is equally
likely to be O or 1, and thus if 0.5 is used as the proba­
bility value for all inputs, the resulting evaluation of
the OPE will yield the overall percentage of times that
the function output is at logic 1.

Following this observation, we presented a method­
ology for computing this quantity directly from a BDD
representation of a logic function without resorting to
using symbolic algebraic manipulations to form the
actual OPE. This technique is called the probability
assignment algorithm (PAA), and is summarised as fol­
lows: Probability assignment algorithm

1: Assign probability = 1 for the input node.

2: If the probability of node j = Pj, assign a probabil­
ity of (I/2)Pj to each of the outgoing arcs fromj.

3: The probability, Pb of node k is the sum of the
probabilities of the incoming arcs.

In the development given in the preceding subsection,
we have proven that a RM spectral coefficient may be
obtained by first computing a value in 9\' (denoted as r'
henceforth) and then mapping it to 9\. Unfortunately,
the formation and solution of the matrix equation to
compute the values in 9\' has a complexity similar to
computing the coefficient directly using GF(2) arithme­
tic. However, the r' value can be computed without
resorting to solving a matrix equation by exploiting its
relation to the output probability of a circuit. Before
this result is proven, the following definition is helpful:

Definition 2: A Boolean function, f • gc, which is com­
posed as the AND of a function to be transformed, f,
and a constituent function, gc, is termed the composi­
tion function and is denoted by fcomr

Definition 2 allows lemma 2 to be easily stated and
proven.
Lemma 2: The real value, r', is directly proportional to
the output probability of a Boolean function.

Proof' As noted in the previous subsection, r', can be
viewed as the inner product of the output vector of the
function to be transformed, f, and some constituent
function, gc. Since each element in these two output
vectors is either 1 or 0, each partial product of the
inner product is also 1 or 0. In fact, the partial product
value of 1 only occurs when both f and gc produce an
output of 1 for a common given set of input values.
Thus, r' is the total number of times the composition
function, fcomp = f • gc, produces an output of 1. If the
output probability of fcomp is known (denoted by

147

((<J ifcomp}) then r' is easily computed as shown in
eqn. 15.

(15)

Therefore r' is directly proportional to the output prob­
ability of the composition function with a constant of
proportionality of 2n where n is the number of primary
inputs. □

It is now clear that the value of r' can be obtained
without computing an inner product if the output
probability is known. This leads to the main result of
this paper and is given in theorem 2.
Theorem 2: A RM spectral coefficient is a function of
the output probability of the function being trans­
formed.
Proof From lemma 1 it was proven that a particular
RM coefficient can be computed from a real value as

r = r' (mod 2) (16)

From lemma 2, the value r' is related to the output
probability, ((<J ifcomp}-Substituting eqn. 15 into eqn. 16
yields the final result as given in eqn. 17

r = (2n p{f · 9c}) (mod 2) (17)
D

Theorem 2 provides the necessary theory for the
implementation of a method for computing the RM
spectra without requiring storage resources propor­
tional to the size of a functions' truth table.

3 Implementation

The mathematical basis for the synthesis of GRM com­
binational logic circuits discussed in the previous Sec­
tion is used as a basis for the implementation of a
behavioural to structural translation tool. This tool
allows the designer to specify the logic functions of a
system in a compact behavioural form without having
to translate the BDDs into a structural form.

This tool is implemented in two main modules. The
first module receives the BDD description and the
polarity number of the desired GRM form as input.
Upon receiving these inputs, a BDD representation of
each composition function is formed sequentially. After
the formation of the gc BDD, the APPLY algorithm
[l l] is invoked thus forming the BDD representing the
comp?siti?n function, fcomp-Next, the PAA is invoked
resultmg m the output probability which is converted
to the RM spectral coefficient according to eqn. 17.
Each time a coefficient is computed, it is passed to the
second module which generates the output netlist.

Many logic functions are represented in a very com­
pact form when they are expressed as BDDs [12] in
contrast to to the exponentially large (in terms of
number of inputs) size required by a truth table, and
hence an output vector. This fact allows the methodol­
ogy implemented here to compute a RM coefficient to
be on the order of O(IIEcompll) where IIEcompll is the
number of edges in the BDD representing fcomp· How­
ever, there are some functions that have a number of
BDD nodes that are comparable to the number of
truth table values [13,14]. For these cases, our method­
ology degenerates to having a complexity equivalent to
performing the matrix calculations. Fortunately, many
functions of practical importance are described with far
fewer BDD nodes than truth table entries.

The overall time complexity of our approach is
O(IIE;ll x IIEgclD for each RM coefficient since each

148

application of the apply algorithm visits each node in
the BDD representing f and Jc. However, it should be
noted that the constituent functions for the RM trans­
form are extremely simple and result in very small
BDDs. Most of the time IIEcompll < IIE_tll x IIEgcll so the
PAA algorithm requires relatively little computation
time. The storage requirement is also of the order
O(IIEcompll) since all that is required is the storage of the
composition function BDD which is generally much
smaller than that required for storing the RM transfor­
mation matrix.

The second portion of this tool is also written using
the C programming language and its function is to pro­
duce the resulting netlist. We chose to use the Verilog
hardware description language (HDL) as the output
medium for this tool, but any netlist format would
have been possible. An overall block diagram of this
tool is given in Fig. 1.

The translator is divided into these two components
for various reasons. Chiefly, by separating the synthesis
calculations, we could easily interchange other codes
for this purpose. This will allow us to utilise the exist­
ing front-end for synthesis of functions that produce
circuit types other than GRM. The two modules were
implemented in the C programming language since the
computations in the tool are of a numerical and string
manipulation nature. The C library that contains
'string' functions was especially handy for the back-end
of the tool that produces the Verilog netlist output.

input: behavioural description
(binary decision diagram)

spectral
computations

C-language

netlist
generator

C-language

output: structural description
(Verilog netlist)

Fig.1 Block diagram of the translation tool

Fig.2 Binary decision diagram of fimction in example J

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 2, March /996

4 Experimental results

There are different ESOP forms of realisation for a
given logic function. However, for a specific set of of
product terms (i.e. a set that can be used to formulate a
coefficient matrix, G, of full rank), there is a single
unique GRM form. For this reason, there is no concept
of minimisation for a particular GRM form although
some GRM forms are smaller than others. Finding the
minimal GRM form efficiently is currently an open
problem and is beyond the scope of this paper.

For the sake of simplicity, the first example is a small
six-input function. This allows a diagram of the BDD
and the full netlist to be given. To illustrate that the
program is capable of computing results for larger cir­
cuits, the second example consists of a table containing
a subset of RM spectral coefficients for th~ ISCAS85
benchmark circuit, c432.
Example 1: The example circuit is a six-input function
described by the BDD shown in Fig. 2.

The behavioral description supplied by the BDD was
used as input to the translator along with a polarity
value of 0. For the sake of clarity, the minimised AND/
OR form of this function is given in equation form in
eqn. 18 and the corresponding canonical SOP form is
given in eqn. 19.

f(x) = i1i2X5 + i1i2X5X5 + i1X2X4X5 + X1X2X4X5X5

+ X1X2X4X5 + X1X3X4X5 + X1X3X4X5X5

(18)

J(x) = ~(0,1,2,4,5,6,8,9,10,12,13,14,16,17,18,

20,22,24,25,26,28,30,32,33,34,36,38,40,

42,44,46,48,49,50,52,54,56,58,60,62) (19)

The netlist generator portion of the tool created the
following output. Since the circuit was relatively small
it was easily verified exhaustively and found to be cor­
rect.

module rmcircuit (f, inp I , inp2 , inp3 , inp4 , inp5 , inp6);
output f;
input inp l ,inp2,inp3,inp4,inp5,inp6;
and g_O (wirO, inpl, inp2);
and g_l (wirl , inp2, inp5);
and g_2 (wir2, inpl, inp5);
and g_3 (wir3, inpl, inp4, inp5);
and g_ 4 (wir4 , inp2, inp4, inp5);
and g_5 (wir5 , inpl, inp3, inp5);
and g_6 (wir6, inpl, inp2, inp5);
and g_ 7 (wir7 , inp2, inp4, inp6);
and g_8 (wir8 , inpl, inp2, inp4, inp5);
and g_9 (wir9, inpl, inp3, inp4, inp5);
and g_lO (wirlO, inpl, inp3, inp5, inp6);
and g_ll (wirll , inpl, inp4, inp5, inp6);
and g_l2 (wir12, inpl, inp2, inp3, inp6);
and g_l3 (wirl3 , inpl, inp2, inp3, inp5, inp6);
and g_14 (wirl4, inpl, inp3, inp4, inp5, inp6);
and g_l5 (wirl5, inpl, inp2, inp4, inp5, inp6);
and g_l6 (wirl6, inpl, inp2, inp3, inp4, inp6);
and g_l7 (wirl7, inpl, inp2, inp3, inp4, inp5, inp6);
xor g_l8 (f, inpl, inp2, wirl, wir2, wir3, wir4, wir5, wir6,
wir7, wir8, wir9, wirlO, wirl 1, wirl2, wir13, wirl4, wir15,
wir16, wirl 7);
endmodule

TEE Proc.-Comput. Digit. Tech .. Vol. 143. No. 2, March 1996

For the purposes of illustration, the equivalent polar­
ity-0 RM equation is given in eqn. 20.

f(x) = x1 EB x2 EB x1x2 EB x2xs EB x1x5 EB x1X4X5 EB X2X4X5

EB X1X3X5 EB X2X4X5 EB X1X2X4X5 EB X1X3X4X5

EB X1X3X5X5 EB X1X4X5X5 EB X1X2X3X6

EB X1X2X3X5X5 EB X1X3X4X5X5 EB X1X2X4X5X5

EB X1X2X3X4X5 EB X1X2X3X4X5X5 (20)

Example 2: The example circuit is the standard bench­
mark circuit named c432 which is part of the ISCAS85
set. Table 1 contains a subset of the polarity-0 RM
coefficients corresponding to the output labeled 329gat.
The 329gat output of circuit c432 depends upon 14
inputs. Table 1 contains only the first-order RM coef­
ficients, that is those coefficients that correspond to the
products consisting only of the primary inputs. The
first column of the table contains the product term, the
second contains the size of the composition BDD in
terms of vertices, and the third column contains the
RM spectral coefficient. The product terms are given
using the corresponding labels in the ISCAS85 netlist
for designation.

Table 1: First order RM coefficients for output 329gat of
Circuit c432

Product 11' • 9cll Coefficient

1gat 1387 0

4gat 2156 1

11gat 1389 0

17gat 2160 1

24gat 1393 0

30gat 2168 1

37gat 1401 0

43gat 2184

50gat 1417 0

60gat 1488

73gat 1558

86gat 1712

99gat 2028

112gat 2027

The netlist for this example has a similar structure to
that in the first example. For those coefficients that arc
0-valued, no output is generated in the netlist, for those
that are I-valued, a product term is output to the
netlist file.

These results show the input and output of our trans­
lation tool. The output in these examples is in GRM
form with all inputs uncomplemented. This is the
polarity-0 GRM form. Other unique GRM forms can
also be computed by providing alternate polarity
number inputs.

5 Conclusions

We have presented a behavioural to structural transla­
tor that utilises the Verilog HDL for output. The trans­
lator produces a netlist in GRM form offering the
many advantages present in this class of circuits such
as ease of testability and a reduced logic gate count.
The tool is constructed in a modular manner so that
other synthesis functions may be used as they become
available.

149

The mathematical methodology used as a basis for
the implementation of the synthesis function in this
tool has been presented. Further, an example circuit
has been translated and the results provided.

Further work is planned to incorporate heuristics for
estimating an optimal polarity number in the front end
of this tool based upon the structure of the input BDD.
The goal will be to estimate polarity numbers that min­
imise the number of AND gates resulting in the output
netlist. We also plan to extend this technique to use
shared BDDs such as those proposed in [15] so that
multi-output netlists may be generated.

6 Acknowledgments

This project was supported in part by NSF under grant
MIP-9410822.

7 References

SASAO, T., and BESSLICH, P.: 'On the complexity of mod-2
sum PLAs', IEEE Trans., 1990, C-39, (2), pp. 262-266

2 ROLLWAGE, U.R.: 'The complexity of mod-2 sum PLA's for
symmetric functions'. Proceedings IFIP WG 10.5 Workshop on
Applications of the Reed-Muller Expansion in Circuit Design, Sep­
tember 1993, pp. 6-12

3 REDDY, S.M.: 'Easily testable realizations for logic functions',
IEEE Trans., 1972, C-21, (11), pp. 1183-1188

ISO

4 SARABI, A., and PERKOWSKI, M.: 'Fast exact quasi-minimal
minimization of highly testable fixed-polarity ANDXOR canoni­
cal networks'. Proceedings of the IEEE Design Automation Con­
ference, 1992, pp. 30-35

5 THORNTON, M.A., and NAIR, V.S.S.: 'Efficient spectral coef­
ficient calculation using circuit output probabilities', Digital Sig.
Proc.: Rev. J., 1994, pp. 245-254

6 BARTEE, T.C., LEBOW, I.L., and REED, I.S.: 'Theory and
design of digital machines' (McGraw-Hill, New York, 1962)

7 LARNEY, V.H.: 'Abstract algebra a first course' (Prindle,
Weber, and Schmigt, Boston, MA, 1975)

8 GREEN, D.: 'Modem logic design' (Addison-Wesley, Reading,
MA, 1986)

9 DAVIO, M., DESCHAMPS, J.-P., and THA YSE, A.: 'Discrete
and switching functions' (McGraw-Hill, New York, 1978)

10 PARKER, K.P., and MCCLUSKEY, E.J.: 'Probabilistic treat­
ment of general combinational networks', IEEE Trans., 1975, C-
24, pp. 668-670

11 BRYANT, R.E.: 'Graph-based algorithms for Boolean function
manipulation', IEEE Trans., 1986, C-35, (8), pp. 677-691

12 AKERS, S.B.: 'Binary decision diagrams', IEEE Trans., 1978, C-
27, (6), pp. 509-516

13 DEV ADAS, S.: 'Comparing two-level and ordered binary deci­
sion diagram representations of logic functions', IEEE Trans.
CAD Integrated Circuits and Systems, 1993, 12, (5), pp. 722-723

14 BRYANT, R.: 'On the complexity of VLSI implementations and
graph representations of Boolean functions with applications to
integer multiplication', IEEE Trans. Comput., 1991, 40, (2), pp.
205-213

15 MINATO, S., ISHIURA, N., and YAJIMA, S.: 'Shared binary
design diagram with attributed edges for efficient Boolean func­
tion manipulation'. Proceedings of the ACM/IEEE Design Auto­
mation Conference, 1990, pp. 52-57

IEE Proc.-Comput. Digit. Tech., Vol. 143. No. 2. March /996

