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Abstract: In the past, the use of spectral 
coefficients for the realisation of Reed-Muller 
circuits led to computational difficulties for 
functions of even moderate size, due to large 
memory requirements. A new approach is 
presented that overcomes these difficulties by 
allowing the function to be represented using a 
binary decision diagram, thus reducing the 
storage requirements. In addition, the 
computational requirements are also reduced 
since an efficient method for computing the 
spectral coefficients is employed. Furthermore, 
the approach is illustrated with examples. 

1 Introduction 

The well-known properties of the generalised Reed­
Muller (GRM) canonical form make it an attractive 
candidate for logic circuit implementations. It has been 
shown that exclusive-OR sum of product (ESOP) forms 
generally require fewer logic gates than the more tradi­
tional sum-of-products forms [1]. For symmetric func­
tions it has been proven that the ESOP circuit form 
will never require more product terms than the number 
needed for the corresponding SOP realisation [2]. 
Many FPGAs are now being manufactured that utilise 
the XOR gate as a basic cell component. This requires 
ESOP implementations to be considered when an 
FPGA implementation is desired. Also, the ESOP form 
allows all single stuck-at faults to be tested with a min­
imal number of test vectors [3]. Finally, recent develop­
ments in layout technology have reduced the layout 
a~ea required for XOR gates so that it is comparable 
with that of the other basic logic gates [4]. 

The Reed-Muller (RM) transformation matrix can 
be used to realise a circuit given its output vector. 
Although this deterministic technique is very attractive 
for computer-aided design (CAD) applications, it is not 
a practical method for reasonably sized circuits due to 
the large storage requirements that spectral transforma­
tion methods demand. In this paper we describe a 
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means for the realisation of a RM circuit by using its 
binary decision diagram (BDD) representation instead 
of a truth table description. This methodology uses the 
principles of RM transformations coupled with a novel 
method for obtaining the coefficients. 

Recently we developed an efficient methodology for 
the computation of the Walsh coefficients using output 
probability expressions (OPEs) [5]. This methodology 
was not directly applicable to the RM spectrum since it 
does not use the required modulo-2 arithmetic. The 
results presented here show that all calculations may be 
performed by using real-valued arithmetic and then 
applying an isomorphic transformation afterwards. 
This result allows the recently discovered efficient 
method for the computation of the Walsh spectrum to 
be applied to the RM spectra as well. 

2 Mathematical formulation 

This Section provides the development of two impor­
tant points. First, we provide the mathematical proper­
ties that allow the RM spectra to be computed using 
real arithmetic instead of the modulo-2 arithmetic that 
is used when the definition is applied. Second, the rela­
tionship between the coefficients as computed using 
real arithmetic and the output probability of a logic 
function are developed. This relationship will lead to 
the formation of a method for computing a RM coeffi­
cient using efficient BOD-based algorithms. 

2. 1 Isomorphic relation of GF(2) and the real 
field 
This Section will prove that an isomorphic mapping 
function exists between the Galois field containing two 
numbers, GF(2), and the real field. Furthermore, it is 
proven that the isomorphic function maps into equiva­
lence classes containing single elements and hence may 
be used to determine a unique value. Since the RM 
transform is defined over GF(2), the existence of an 
isomorphism that provides a unique mapping is crucial 
because it will allow the transform calculations to be 
performed in the real field. To develop the isomorphic 
relation, the concept of an algebraic ring and, hence, a 
ring morphism is utilised. 

A Boolean ring satisfies all of the properties of a gen­
eral ring along with the idempotence property [6]. The 
familiar Boolean algebra can be formulated with 
respect to the Boolean ring, 9\, defined as follows: 

lR : {O, 1, EB,·} (1) 

where O and l denote the logic values of zero and one, 
the addition operator, EB, denotes the binary XOR 
operation, and the multiplicative operator, ·, denotes 
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the binary AND function. Clearly, the set, 9', forms a 
Boolean ring since all of the properties of a general 
ring are satisfied [7] along with the idempotence prop­
erty. Next, consider an alternative set, 9''. This set con­
tains the following elements: 

)R' : {0, I,+, x} (2) 
where 

0 = {O, ±2, ±4, ±6, ... , ±2j, ... } (3) 
and 

I= { ±1, ±3, ±5, ... , ±(2i + 1), ... } (4) 
Thus, 0 and / are the sets of all even integers (including 
0) and all odd integers (excluding 0), respectively. The 
two operators in the set, 9t', are the additive operator, 
+, and the multiplicative operator, x. These operators 
perform real addition and real multiplication, respec­
tively. 9'' also satisfies the properties of a Boolean ring 
[6]. 

The following lemma establishes the relationship 
between the two rings 9t and 9'': 
Lemma 1: The function, fix) = x(mod2), forms a ring 
morphism from 9'' to R. 

Proof To prove this lemma, we demonstrate that the 
following relationships exist: 

f(a + b) = f(a) EB f(b) 

f(a x b) = f(a) • f(b) 

for the following three exhaustive cases: 
Case 1: (a, b) E 0' 
Case 2: (a, b) E / 

Case 3: a E ,0 ,b E / 

(5) 

(6) 

Each case is easily seen to be satisfied by observing 
that the following elementary properties of number the­
ory hold: 
Case 1 is a statement that the sum and product of two 
even integers always yield values that are also even. 
Case 2 is a statement that the sum of two odd integers 
is always even and the product of two odd numbers is 
always odd. 
Case 3 is a statement that the sum of an even integer 
and an odd integer always results in an odd value while 
their product is always even. D 

Next, the RM form is presented with a 3-variable 
example as motivation for the following mathematical 
results. The generalised RM formulation for a three­
variable function may be expressed as 

F(x) = ro EB r1±1 EB r2±2 EB r3X3 EB r4x1±2 EB r5x1X3 

EB T5X2X3 EB T7X1X2X3 (7) 

where the dotted variables represent function inputs 
that are either complemented or not complemented in 
all occurrences. The r; terms are Boolean constants that 
have value '1' or '0' and are members of the ring, 9'. In 
fact, the r; terms are the RM spectral coefficients of the 
GRM formulation of F(x). Eqn. 7 contains operations 
and elements from the Boolean ring, 9t (the omission 
of a binary operator between two consecutive variables 
in eqn. 7 implies that the operation denoted by • 
occurs). Eqn. 7 is rewritten in the following form: 

F(x) = rogo EBr1g1 EBr2g2 ffir3g3 EBr4g4 EBrsgs EBr696 EBr1g1 
(8) 
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Where the r; are Boolean constants as described above. 
and each g; is the AND (modulo-2 product) of a subset 
of the function's literals. Each particular realisation of 
the GRM form is then a specified set of r; values that 
will be referred to as the vector, R. The set of func­
tions, g;, will be referred to as the 'constituent func­
tions' of fix). It is convenient to express the 
relationship in eqn. 8 in an alternative vector matrix 
form as: 

GR=F (9) 

where the elements of the vector, F, and the constituent 
function matrix, G, are known (or are easily com­
puted), and the elements of the R vector specify the 
spectrum of a GRM canonical form. The column vec­
tors formed from all possible outputs of the constituent 
functions, g;, are concatenated to form the coefficient 
matrix, G, and the corresponding function outputs are 
concatenated to form the function vector, F. 

There are 2n possible versions of eqn. 7 since all pos­
sible combinations of complemented and uncomple­
mented variables may be used. A convenient way to 
classify the various forms of GRM expressions is to use 
the concept of polarity [8]. Typically, the polarity 
number is obtained by assigning a 'l' to all uncomple­
mented primary inputs and a '0' to all complemented 
primary inputs. These bits are then ordered according 
to descending subscripts of the corresponding primary 
inputs. The resulting binary number is then the polarity 
number. 

For illustrative purposes, two forms of the GRM 
expressions will be considered for eqn. 7 and the two 
transformation matrices will be derived. It should be 
noted that any arbitrary polarity matrix could be 
derived and the details for such derivations are given in 
[9]. We will consider the polarity-0 and polarity-2n 
matrices denoted by G and G', respectively. The 
matrix, G, is used when all x; = X; and G' is used when 
all x; = x( (where ' indicates the application of the 
complement function to a Boolean variable). In the fol­
lowing, we define the coefficient matrix, G. 

Definition 1: The matrix, G, is a concatenation of the 
output column vectors of the constituent functions, g;, 
with no inverted inputs. 

Consider the smallest possible G matrix, denoted as 
G2, where the subscript indicates the number of func­
tion inputs. 

9o 91 92 93 

G, - [l i ! ]] 
The constituent functions for G2 are defined as: 

9o = 1 

91 = Xo 

92 = x1 

93 = Xo. X1 

Likewise, the matrix G{ is defined as: 

9; 9~ 9i 9o 

[~ i ~ il 
0 0 1 1 
0 0 0 1 

(10) 

(11) 
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The constituent functions for G{ are defined as 

go= 1 

g~ = x~ 
I I 

92 = X1 
I I I 

93 = Xo. X1 

The following theorem shows the relationship between 
the operations in the ring 9\' and those in 9\. This is 
accomplished by establishing that the solution vector, 
R, always contains components that are members from 
the field of positive and negative integers, Z. Where Z 
is defined as 

Z = { ... ,-3,-2,-1,0,1,2,3, ... } (12) 

In essence, it is shown that the solution of eqn. 9 is per­
formed over the Boolean ring, 9\'. 

Theorem I: Given any Boolean function, F, and a 
binary vector, BT = [b1, b2, b3 .... , bn] (where T denotes 
the transpose) such that F = b1g 1 ffi b~ 2, ffi ... ffi b~m 
then there exists a vector, R with each r; E Z, such that 
GR = F and R (mod2) = B, where F is the binary vec­
tor formed from the output column of the truth table 
of the function, F. 

Proof- It is easily seen that R has the property that 
each r; E Z since all the transformation matrices Gn 
and G' n are triangular with diagonals consisting of all 
ls. Hence, the following equations hold: 

det(Gn) = det(G~) = 1 

It is desired to solve the equation 

G*R=F 

(13) 

(14) 

where G* represents either Gm or G'n- The solution to 
this equation is well known and may be expressed in 
terms of the cofactors of G* as 

R = G*- 1F 

= [det(G*)]- 1 [cofactor (G*)]F 

= [ll[cofactor (G*)]F 

Since the cofactor matrices are formed with no division 
operations, the matrix, [cofactor(G*)], contains only 
integers. Since the matrix, G*, always has a determi­
nant of 1, the solution vector, R, is formed as a vector­
matrix multiplication of the integer matrix, [cofac­
tor(G*)], and the integer vector F. Therefore the solu­
tion vector, R, always contains integer components. 

From lemma 1, the function, fix) = x(mod2) forms a 
ring morphism between 9\' and 9\. Hence, the applica­
tion of fix) to each integer component in the vector, R, 
isomorphically maps R to B. □ 

Although it is well known that the GRM forms are 
unique, the result of theorem 1 allows this fact to be 
proven succinctly and trivially in the following corol­
lary. 

Corollary I: Every Boolean function has a unique form 
of the GRM expansion. 

Proof- From the definition given above, it is apparent 
that all Gn and G'n matrices are triangular. From defi­
nition 1 it was noted that all g;; = g';; = 1. Hence the 
determinant of the coefficient matrices is 1, guarantee­
ing a unique matrix inverse exists. Since R and B from 
theorem 1 are isomorphic and R is unique due to the 
existence of a unique inverse of G and G', then B also 
is unique. □ 
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This section has presented the mathematical justifica­
tion for the synthesis technique for the complement­
free RM forms. These results may easily be extended to 
any of the generalised Reed-Muller (GRM) expansions 
with any arbitrary polarity number. The following sec­
tion will provide a numerical example and a discussion 
of implementation issues. 

2.2 Relationship of output probabilities and 
the RM spectra 
The output probability of a circuit is the probability 
that the output of the circuit is a logic 1 given the 
probabilities that each of the inputs are at a logic 1 
value. In the work of [IO] OPEs were used to evaluate 
the effectiveness of random testing. Two methods were 
developed for computing the OPE in algebraic form in 
[IO]. One method used the Boolean logic equation and 
the other used logic diagrams. In [5] we noted that for 
all possible input combinations, each input is equally 
likely to be O or 1, and thus if 0.5 is used as the proba­
bility value for all inputs, the resulting evaluation of 
the OPE will yield the overall percentage of times that 
the function output is at logic 1. 

Following this observation, we presented a method­
ology for computing this quantity directly from a BDD 
representation of a logic function without resorting to 
using symbolic algebraic manipulations to form the 
actual OPE. This technique is called the probability 
assignment algorithm (PAA), and is summarised as fol­
lows: Probability assignment algorithm 

1: Assign probability = 1 for the input node. 

2: If the probability of node j = Pj, assign a probabil­
ity of (I/2)Pj to each of the outgoing arcs fromj. 

3: The probability, Pb of node k is the sum of the 
probabilities of the incoming arcs. 

In the development given in the preceding subsection, 
we have proven that a RM spectral coefficient may be 
obtained by first computing a value in 9\' (denoted as r' 
henceforth) and then mapping it to 9\. Unfortunately, 
the formation and solution of the matrix equation to 
compute the values in 9\' has a complexity similar to 
computing the coefficient directly using GF(2) arithme­
tic. However, the r' value can be computed without 
resorting to solving a matrix equation by exploiting its 
relation to the output probability of a circuit. Before 
this result is proven, the following definition is helpful: 

Definition 2: A Boolean function, f • gc, which is com­
posed as the AND of a function to be transformed, f, 
and a constituent function, gc, is termed the composi­
tion function and is denoted by fcomr 

Definition 2 allows lemma 2 to be easily stated and 
proven. 
Lemma 2: The real value, r', is directly proportional to 
the output probability of a Boolean function. 

Proof' As noted in the previous subsection, r', can be 
viewed as the inner product of the output vector of the 
function to be transformed, f, and some constituent 
function, gc. Since each element in these two output 
vectors is either 1 or 0, each partial product of the 
inner product is also 1 or 0. In fact, the partial product 
value of 1 only occurs when both f and gc produce an 
output of 1 for a common given set of input values. 
Thus, r' is the total number of times the composition 
function, fcomp = f • gc, produces an output of 1. If the 
output probability of fcomp is known ( denoted by 
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((<J ifcomp}) then r' is easily computed as shown in 
eqn. 15. 

(15) 

Therefore r' is directly proportional to the output prob­
ability of the composition function with a constant of 
proportionality of 2n where n is the number of primary 
inputs. □ 

It is now clear that the value of r' can be obtained 
without computing an inner product if the output 
probability is known. This leads to the main result of 
this paper and is given in theorem 2. 
Theorem 2: A RM spectral coefficient is a function of 
the output probability of the function being trans­
formed. 
Proof From lemma 1 it was proven that a particular 
RM coefficient can be computed from a real value as 

r = r' (mod 2) (16) 

From lemma 2, the value r' is related to the output 
probability, ((<J ifcomp}-Substituting eqn. 15 into eqn. 16 
yields the final result as given in eqn. 17 

r = (2n p{f · 9c}) (mod 2) (17) 
D 

Theorem 2 provides the necessary theory for the 
implementation of a method for computing the RM 
spectra without requiring storage resources propor­
tional to the size of a functions' truth table. 

3 Implementation 

The mathematical basis for the synthesis of GRM com­
binational logic circuits discussed in the previous Sec­
tion is used as a basis for the implementation of a 
behavioural to structural translation tool. This tool 
allows the designer to specify the logic functions of a 
system in a compact behavioural form without having 
to translate the BDDs into a structural form. 

This tool is implemented in two main modules. The 
first module receives the BDD description and the 
polarity number of the desired GRM form as input. 
Upon receiving these inputs, a BDD representation of 
each composition function is formed sequentially. After 
the formation of the gc BDD, the APPLY algorithm 
[l l] is invoked thus forming the BDD representing the 
comp?siti?n function, fcomp-Next, the PAA is invoked 
resultmg m the output probability which is converted 
to the RM spectral coefficient according to eqn. 17. 
Each time a coefficient is computed, it is passed to the 
second module which generates the output netlist. 

Many logic functions are represented in a very com­
pact form when they are expressed as BDDs [12] in 
contrast to to the exponentially large (in terms of 
number of inputs) size required by a truth table, and 
hence an output vector. This fact allows the methodol­
ogy implemented here to compute a RM coefficient to 
be on the order of O(IIEcompll) where IIEcompll is the 
number of edges in the BDD representing fcomp· How­
ever, there are some functions that have a number of 
BDD nodes that are comparable to the number of 
truth table values [13,14]. For these cases, our method­
ology degenerates to having a complexity equivalent to 
performing the matrix calculations. Fortunately, many 
functions of practical importance are described with far 
fewer BDD nodes than truth table entries. 

The overall time complexity of our approach is 
O(IIE;ll x IIEgclD for each RM coefficient since each 
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application of the apply algorithm visits each node in 
the BDD representing f and Jc. However, it should be 
noted that the constituent functions for the RM trans­
form are extremely simple and result in very small 
BDDs. Most of the time IIEcompll < IIE_tll x IIEgcll so the 
PAA algorithm requires relatively little computation 
time. The storage requirement is also of the order 
O(IIEcompll) since all that is required is the storage of the 
composition function BDD which is generally much 
smaller than that required for storing the RM transfor­
mation matrix. 

The second portion of this tool is also written using 
the C programming language and its function is to pro­
duce the resulting netlist. We chose to use the Verilog 
hardware description language (HDL) as the output 
medium for this tool, but any netlist format would 
have been possible. An overall block diagram of this 
tool is given in Fig. 1. 

The translator is divided into these two components 
for various reasons. Chiefly, by separating the synthesis 
calculations, we could easily interchange other codes 
for this purpose. This will allow us to utilise the exist­
ing front-end for synthesis of functions that produce 
circuit types other than GRM. The two modules were 
implemented in the C programming language since the 
computations in the tool are of a numerical and string 
manipulation nature. The C library that contains 
'string' functions was especially handy for the back-end 
of the tool that produces the Verilog netlist output. 

input: behavioural description 
(binary decision diagram) 

spectral 
computations 

C-language 

netlist 
generator 

C-language 

output: structural description 
(Verilog netlist) 

Fig.1 Block diagram of the translation tool 

Fig.2 Binary decision diagram of fimction in example J 
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4 Experimental results 

There are different ESOP forms of realisation for a 
given logic function. However, for a specific set of of 
product terms (i.e. a set that can be used to formulate a 
coefficient matrix, G, of full rank), there is a single 
unique GRM form. For this reason, there is no concept 
of minimisation for a particular GRM form although 
some GRM forms are smaller than others. Finding the 
minimal GRM form efficiently is currently an open 
problem and is beyond the scope of this paper. 

For the sake of simplicity, the first example is a small 
six-input function. This allows a diagram of the BDD 
and the full netlist to be given. To illustrate that the 
program is capable of computing results for larger cir­
cuits, the second example consists of a table containing 
a subset of RM spectral coefficients for th~ ISCAS85 
benchmark circuit, c432. 
Example 1: The example circuit is a six-input function 
described by the BDD shown in Fig. 2. 

The behavioral description supplied by the BDD was 
used as input to the translator along with a polarity 
value of 0. For the sake of clarity, the minimised AND/ 
OR form of this function is given in equation form in 
eqn. 18 and the corresponding canonical SOP form is 
given in eqn. 19. 

f(x) = i1i2X5 + i1i2X5X5 + i1X2X4X5 + X1X2X4X5X5 

+ X1X2X4X5 + X1X3X4X5 + X1X3X4X5X5 

(18) 

J(x) = ~(0,1,2,4,5,6,8,9,10,12,13,14,16,17,18, 

20,22,24,25,26,28,30,32,33,34,36,38,40, 

42,44,46,48,49,50,52,54,56,58,60,62) (19) 

The netlist generator portion of the tool created the 
following output. Since the circuit was relatively small 
it was easily verified exhaustively and found to be cor­
rect. 

module rmcircuit (f, inp I , inp2 , inp3 , inp4 , inp5 , inp6 ); 
output f; 
input inp l ,inp2,inp3,inp4,inp5,inp6; 
and g_O ( wirO, inpl, inp2); 
and g_l ( wirl , inp2, inp5); 
and g_2 ( wir2, inpl, inp5); 
and g_3 ( wir3, inpl, inp4, inp5); 
and g_ 4 ( wir4 , inp2, inp4, inp5); 
and g_5 ( wir5 , inpl, inp3, inp5); 
and g_6 ( wir6, inpl, inp2, inp5); 
and g_ 7 ( wir7 , inp2, inp4, inp6); 
and g_8 ( wir8 , inpl, inp2, inp4, inp5); 
and g_9 ( wir9, inpl, inp3, inp4, inp5); 
and g_lO ( wirlO, inpl, inp3, inp5, inp6); 
and g_ll ( wirll , inpl, inp4, inp5, inp6); 
and g_l2 ( wir12, inpl, inp2, inp3, inp6); 
and g_l3 ( wirl3 , inpl, inp2, inp3, inp5, inp6); 
and g_14 ( wirl4, inpl, inp3, inp4, inp5, inp6); 
and g_l5 ( wirl5, inpl, inp2, inp4, inp5, inp6); 
and g_l6 ( wirl6, inpl, inp2, inp3, inp4, inp6); 
and g_l7 ( wirl7, inpl, inp2, inp3, inp4, inp5, inp6); 
xor g_l8 ( f, inpl, inp2, wirl, wir2, wir3, wir4, wir5, wir6, 
wir7, wir8, wir9, wirlO, wirl 1, wirl2, wir13, wirl4, wir15, 
wir16, wirl 7); 
endmodule 
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For the purposes of illustration, the equivalent polar­
ity-0 RM equation is given in eqn. 20. 

f(x) = x1 EB x2 EB x1x2 EB x2xs EB x1x5 EB x1X4X5 EB X2X4X5 

EB X1X3X5 EB X2X4X5 EB X1X2X4X5 EB X1X3X4X5 

EB X1X3X5X5 EB X1X4X5X5 EB X1X2X3X6 

EB X1X2X3X5X5 EB X1X3X4X5X5 EB X1X2X4X5X5 

EB X1X2X3X4X5 EB X1X2X3X4X5X5 (20) 

Example 2: The example circuit is the standard bench­
mark circuit named c432 which is part of the ISCAS85 
set. Table 1 contains a subset of the polarity-0 RM 
coefficients corresponding to the output labeled 329gat. 
The 329gat output of circuit c432 depends upon 14 
inputs. Table 1 contains only the first-order RM coef­
ficients, that is those coefficients that correspond to the 
products consisting only of the primary inputs. The 
first column of the table contains the product term, the 
second contains the size of the composition BDD in 
terms of vertices, and the third column contains the 
RM spectral coefficient. The product terms are given 
using the corresponding labels in the ISCAS85 netlist 
for designation. 

Table 1: First order RM coefficients for output 329gat of 
Circuit c432 

Product 11' • 9cll Coefficient 

1gat 1387 0 

4gat 2156 1 

11gat 1389 0 

17gat 2160 1 

24gat 1393 0 

30gat 2168 1 

37gat 1401 0 

43gat 2184 

50gat 1417 0 

60gat 1488 

73gat 1558 

86gat 1712 

99gat 2028 

112gat 2027 

The netlist for this example has a similar structure to 
that in the first example. For those coefficients that arc 
0-valued, no output is generated in the netlist, for those 
that are I-valued, a product term is output to the 
netlist file. 

These results show the input and output of our trans­
lation tool. The output in these examples is in GRM 
form with all inputs uncomplemented. This is the 
polarity-0 GRM form. Other unique GRM forms can 
also be computed by providing alternate polarity 
number inputs. 

5 Conclusions 

We have presented a behavioural to structural transla­
tor that utilises the Verilog HDL for output. The trans­
lator produces a netlist in GRM form offering the 
many advantages present in this class of circuits such 
as ease of testability and a reduced logic gate count. 
The tool is constructed in a modular manner so that 
other synthesis functions may be used as they become 
available. 
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The mathematical methodology used as a basis for 
the implementation of the synthesis function in this 
tool has been presented. Further, an example circuit 
has been translated and the results provided. 

Further work is planned to incorporate heuristics for 
estimating an optimal polarity number in the front end 
of this tool based upon the structure of the input BDD. 
The goal will be to estimate polarity numbers that min­
imise the number of AND gates resulting in the output 
netlist. We also plan to extend this technique to use 
shared BDDs such as those proposed in [15] so that 
multi-output netlists may be generated. 
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