
Prefix Parallel Adder Virtual Implementation in
Reversible Logic

David Y. Feinstein, Mitchell A. Thornton and V.S.S. Nair
Department of Computer Science and Engineering, Southern Methodist University

{dfeinste, mitch, nair}@engr.smu.edu

 Abstract - This paper demonstrates a simplified approach
for reversible logic synthesis based on direct translation of
the circuit VHDL description into virtual Fredkin gates.
We investigate the size and speed of such a reversible logic
implementation of the Brent-Kung Parallel Prefix Adder
(PPA) in comparison to a standard logic implementation.
Using the Altera Corporation’s Quartus II synthesis and
simulation tool, we show that our virtual reversible logic
implementation follows the O(log2n) delay and O(n) cost of
the standard logic implementation.

I. INTRODUCTION

 Pioneering work by Bennet, Feynman, Fredkin, and
Toffoli investigated the potential of reversible logic to
create circuits that theoretically achieve zero internal
power dissipation [16]. Accordingly, futuristic logic
design based on quantum devices must be based on such
reversible logic where the circuit has the same number of
inputs and outputs, all with fan-in and fan-out of 1. A
variety of basic reversible gates have been proposed in
the past three decades. Such gates are combined in a
cascade fashion using various complex synthesis methods
that aim to minimize garbage outputs and ancillary inputs
[15]. The synthesis of quantum reversible circuits is
generally regarded as a hard research problem. The
synthesis tools that have been developed so far are able to
work only with relatively small (< 25 inputs) reversible
circuits.
 This paper presents a simplified synthesis and
simulation approach for reversible circuits of moderate
complexity. We use direct translation of the circuit
VHDL description into virtual Fredkin gates. While our
approach is not suitable (nor is it intended) to replace the
gate cascade based synthesis techniques for quantum
circuits, it enables us to obtain some preliminary insights
into synthesis issues for future reversible circuits of
meaningful sizes.
 Our goal is to investigate the cost and delay of addition
circuits as they are implemented in our virtual reversible
logic and to compare the resulting reversible logic
circuits with their classic logic implementation. We use
the QuartusII tool (from the Altera Corporation [1]) to
synthesize and simulate the VHDL files representing
reversible circuits.

 In this work, we are particularly interested in the
Parallel Prefix Adder (PPA) architecture that was
pioneered by Ladner and Fischer [11]. This approach was
later improved by Brent and Kung [3] for reduced fan-
out, thus making it potentially suitable for future use in
reversible logic. Therefore, our benchmark for this
research is the Brent-Kung parallel prefix adder with
operand sizes up to 32 bits.
 Zimmerman [19] developed an extensive VHDL library
that conveniently implements the Ladner and Fischer, the
Brent and Kung, and many other PPA architectures using
standard logic. The Zimmerman library is parameterized,
allowing the user to create PPAs of arbitrary size. We
have modified the Zimmerman library to produce a
VHDL translation into reversible logic, which is then
used as input to the Quartus II tool for virtual
implementation and simulation.
 This paper is organized as follows. Section II discusses

the basic concepts of reversible logic and introduces the
fundamental architecture of PPAs. Section III describes
our approach in modeling the reversible Fredkin gate
based on CMOS transmission gates and discusses the
tools we use. Section IV provides our experimental
results and we conclude in Section V.

II. PRELIMINARIES

A. Reversible Logic
 Classical logic circuits provide outputs that result in a
loss of information and hence, corresponding power
dissipation. For example, an n-bit input decision circuit
obtains a one-bit yes or no result from which there is no
way to reconstruct the original input set. Landauer’s
principle states that the erasure of a single bit of
information dissipates at least KBTln2 energy, where KB is
Boltzmann’s constant and T is the temperature [6, 20].
This places a firm theoretical lower bound on the power
consumption of computation based on information
entropy. It prompted the development of reversible logic
circuits by Bennet [2], Fredkin, Toffoli [7], and others.
Reversible logic circuits allow the full reconstruction of
the circuit’s input information at any time from the output
since such circuits can be modeled as bijective functions.

 All quantum logic circuits are necessarily reversible
since the fan-in and fan-out of 1 characteristic occurs due
to the principle of conservation of matter and thus also
obeys the theoretical elimination of energy loss. We note
that the first computers based on molecular level quantum
devices are just recently beginning to be realized and
there exists an intense research interest for the future of
computing [16]. Adiabatic circuits are based on
traditional CMOS technology that achieve ultra low
power loss due to reversibility. Lim et al. [13] produced a
16-bit Carry-Lookahead adder employing Reversible
Energy Recovery Logic (RERL), which is a dual-rail
adiabatic logic style. While the RERL device is not a full
implementation of reversible logic, it uses partial
reversible features which contribute to the achievement of
low power loss.
 A variety of basic reversible gates have been proposed

that are realizable using quantum devices including the
Toffoli, Fredkin, Controlled-NOT, Controlled-V, and
controlled V+. The use of Toffoli and Fredkin gates
shown in Fig. 1 illustrate how common classical
functions (NAND, AND, NOT, and fan-out duplication)
may be implemented. It is clear that once the NAND gate
or the equivalent set of AND and NOT gates are
achievable, any arbitrary logic function can be
implemented. Note that these implementations require the
extra cost of auxiliary inputs (also called ancilla inputs),
which are crucial to the operation of the gates. For
example, the Fredkin NOT and Fan-out implementation
uses only one input for the input variable x, while the
remaining gate inputs become ancillary inputs, initialized
to either 0 or 1.

Fig. 1. Classical Logic Functions using the Toffoli and Fredkin

Reversible gates

 Since the number of outputs for reversible logic gates
must equal the number of inputs, we find that reversible
circuits can create a large number of unused or “garbage”
outputs. Therefore, a major constraint in the synthesis,
specification, and simulation of quantum circuits is the
need to minimize the garbage outputs and the ancillary
inputs.
Research efforts attempt to develop techniques to

synthesize reversible quantum circuits using a cascade of
gates like the example shown in Fig. 2. This circuit is the
5-variable hidden weighted bit “hwb5tc.tfc” benchmark
from Maslov’s benchmarks web page and was captured
using Maslov’s Reversible Circuit Viewer [14]. The

circuit is comprised of generalized Tofolli gates with one
to four control lines.
 Reversible logic synthesis techniques that create
circuits such as the one shown in Fig. 2 are still at an
infancy stage and can currently tackle only small circuits.
Interested readers should refer to recent work by Shende
et al. [17], Kerntopf [10], Iwama et al. [9], and the
“MMD” template based synthesis by Miller et al. [15].
Such synthesis techniques are not mature enough to
implement complex arithmetic circuits such as the PPAs
we focus on here.

Fig. 2. The 5-variable hwb Function Implemented as a Cascade of
Generalized Toffoli Gates

B. Prefix Parallel Adders
 Research in binary adders focuses on the problem of fast
carry generation. A naïve adder circuit implementation is
the Carry Ripple Adder (CRA), where the carry
information propagates linearly along the entire structure
of full adders. As a result, while the CRA achieves the
lowest cost (size) of O(n), its operation is very slow, with
a worst case delay of O(n), where n is the number of
added bits. We note that in quantum logic it is still
desirable to minimize cost (the number of gates) but the
underlying reason is to reduce the possibility of
decoherence rather than delay minimization as is the case
in classical logic circuit implementations.
 The parallel prefix adder suggested by Ladner and
Fischer [11] in 1980 pioneered a stream of solutions that
treat the carry generation problem as a prefix
computation.
 Prefix computation deals with computing compositions
of operators. The composition operator * must be
associative, that is

 (x *y) * z= x * (y * z). (1)

 The prefix computation problem can be defined as
follows:
Given a set S and an associative composition operator
*: S x S→S with input x0, x1,…, xn-1, compute
y0,…,yn-1∈S so that y0= x0 and yi= x0*x1* x2*…* xi.
By the above definition, it is clear that yi= yi-1 * xi.

Fig. 2. Parallel prefix product with associative operator *

 Fig. 2 demonstrates a simple product circuit that
computes, in a parallel prefix fashion, the following set of
values:

X1 * X2 * X2 * X3 * X2
X1 * X2 * X2 * X3
X1 * X2
X2 * X3 (2)

 Following the discussion in [11] we demonstrate how
the general parallel prefix operation Pk(n) is performed on
a set of n-inputs at the k level. Fig. 3a shows how P0(n) is
constructed recursively from P1(n/2) and P0(n/2). The
left recursive construction P1(n/2) has its’ subscript k
equal to 1 since it is connected in the second level to
P0(n/2).

a. The First Recursive Step

b. The Recursive Step at Level k

Fig. 3. The Recursive Steps for the Parallel Prefix Computation

 Fig. 3b illustrates schematically how Pk(n) is created
recursively at level k of a PPA. It can be seen that each
additional level (increase in k) will increase the depth of
the circuit. Ladner and Fischer found that Pk(n) solves
the general prefix problem in parallel for n inputs with

 Depth (delay) = D(Pk(n)) ≤ K+ log2n (3)

and

 Cost (size) = C(Pk(n)) ≤ 2(2+1/2k) n – 4 (4)

for n ≥ 1 and 0 ≤ K ≤ log2n. Therefore, the parallel
prefix computation has a delay of O(log2n) and size of
O(n). While asymptotically the O(n) size is similar to
that of the CRA, the resulting delay is significantly less
[11].

The PPA quickly dominated adder design, with various
architectures proposed by Brent and Kung [3], Kogge and
Stone, Knowels [18], Han and Carlson, and more [8].
Interested readers also are referred to the detailed
discussion in [5].

a. White Processor b. Black Processor

c. Carry Computation of the MSb.
Fig. 4. Brent and Kung’s PPA

As we were looking for a PPA architecture that is

suitable for our demonstration of a virtual simulation of
reversible logic, we found much interest in the Brent and
Kung adder [3]. Originally developed to achieve regular
layout rules suitable for existing VLSI design
methodology, this architecture provides a consistent

fanout of one on all outputs. This single fanout is crucial
for reversible logic and thus seemed to be a good
candidate for our study.

 A simplified illustration of the Brent-Kung PPA is
shown in Fig. 4, showing only the carry computation of
the most significant carry bit during an 8-bit addition.
The carry calculation uses two sub-functions, g (carry
generate) and p (carry propagate). The architecture uses
two types of nodes dubbed the white and black
processors. The white processor (Fig. 4a) is merely a
routing node, with Gout=Gin and Pout=Pin. The black
processor performs the following computation:

.'
)'(

ininout

inininout

PPP
GPGG

∪=
∩∪= (5)

The Brent-Kung PPA design incurs a cost (size) of O(n)

and exhibits a delay of O(log2n), where n is the number
of bits in the addition function. The ease of
implementation made it one of the first popular PPAs.

III. OUR APPROACH

 In this paper we are concerned with a virtual

implementation of reversible circuits that use a direct
translation of relatively complex binary functions into
circuits composed of Fredkin reversible gates. We note
that the Fredkin gate forms a complete set (with
constants) so that any Boolean function can be realized
with only Fredkin gates. Since a classical logic n-bit PPA
requires 2n inputs and n outputs (neglecting the carry-in
and the carry-out bits), a reversible counterpart will
require at least 2n variables or lines. Current reversible
logic synthesis based on gate cascading reported various
size limits of 8-25 varaibles [15]. In fact very few
benchmarks for reversible circuits with more than 25
variables are listed in the Maslov page[14]. Therefore, it
is fair to assume that 32 and 16 bit adders are beyond the
scope of current reversible logic synthesis based on gate
cascading. Therefore, we follow a direct translation
approach similar to the work in [4]. This results in an
output VHDL file that is ready for Field Programmable
Gate Array (FPGA) implementation. The emphasis is on
circuit regularity as opposed to emphasis on minimization
of the number of garbage outputs and ancillary inputs that
is very crucial in the synthesis of reversible logic circuits.
We recognized a priori that our results will include a
large number of such garbage outputs and ancillary
inputs, and are therefore useful only for the purpose of
virtual implementation in our current investigation. Our
implementation maintains direct correlation between the
sub-modules of the reversible result to their standard
logic counterpart.
The Altera Corporation’s Quartus II software is a

comprehensive suite of tools for the synthesis, simulation,
and implementation of complex logic circuits. It

conveniently accepts various formats of design source
files, including standard VHDL and Verilog descriptions.
The source files are synthesized into an RTL database,
which is then optimized and minimized for target FPGA
devices. A convenient feature of the Quartus II program
for our research purposes is the ability to view RTL data
prior to the optimization and minimization step.
We first modeled and implemented the basic Fredkin

gate using CMOS transmission gates as shown in Fig. 5.
VHDL implementation of the transmission gate is not a
trivial matter [12]. We found that the approximation of a
one-way transmission gate using the built-in Altera “TRI”
primitive is useful for our application.

Fig. 5. VHDL Model of a Fredkin Gate

Zimmerman’s PhD dissertation [19] on PPAs is an
excellent research resource. He developed a
comprehensive VHDL library for the implementation and
investigation of various PPA architectures. The
Zimmerman PPA VHDL library is parameterized to allow
for the synthesis of adders with various data widths. His
web site also includes a graphic interface applet that
produces graphical representations of various PPA
architectures.

Fig. 6. Simulation of 8-bit Brent-Kung PPA Implemented with Fredkin
Gates

 We modified the Zimmerman VHDL files to create the
Brent-Kung PPA using our Fredkin gate models. We
used direct translation by replacing each original standard
logic equation with a corresponding Fredkin
implementation corresponding to the mappings in Fig. 1.
The resulting files were then used as input to the Quartus
II tool for synthesis and simulation. Fig. 6 shows the
results of the timing simulation of our 8-bit

implementation of the reversible Brent-Kung PPA. This
simulation tool was useful for debugging translation

errors occurring during the design decomposition into
Fredkin gates.

Fig. 7. Place and Route Map of a 16-bit Brent-Kung PPA

 Our research methodology was to compare the size and
the delay simulation results between reversible and
standard logic versions of the Brent-Kung PPA of various
sizes. An interesting pitfall of our approach quickly
appeared when we tried to place and route the resulting
synthesis of both reversible and classic logic versions into
Altera’s FPGA chips. Our motivation was to use the
number of Logic Element (LE) units reported at the end
of device compilation as a measure of size [1]. Fig. 7
shows the Place and Route map result when a reversible
16-bit Brent-Kung PPA is implemented in an Altera
EP20K30E FPGA device. Each small square within the
chip map represents one LE unit.
 When we placed and routed comparable reversible and
standard logic versions of same operand size PPAs, the
compilation tool reported a similar number of LEs (see
Table 1). This clearly indicates an information loss
problem since the extra logic required by the reversible
circuits must result with more size. It seems that the
problem lies in the optimization and minimization phase
of the synthesis operation that the design undergoes
within the Quartus II tool prior to the Place & Route
phase. It turns out that the optimization phase simply
converts the reversible logic files back to a similar set of
optimized equations that were obtained for the standard
logic implementation. While this in fact validates our

translation process, it is of course undesirable for our size
comparison purposes. This problem was avoided with the
RTL viewer which allows us to view the non-optimized
VHDL files and to manually count the number of Fredkin
gates required in order to compare sizes.

IV. EXPERIMENTAL RESULTS

 We obtained our initial results shown in Table 1 using
the LE count provided by the Quartus II compilation
reports for operand sizes of 4, 8, 16, 32, and 64. As
discussed in the previous section, there is a loss of
information due to the optimization and minimization of
both the reversible and the standard logic source files.
This results in very similar LE counts for each operand
size comparison.

TABLE 1

INFORMATION LOSS DUE TO PLACE AND ROUTE OPTIMIZATION OF THE RTL
DATA

OPERAND
SIZE N

I/O
PINS

REVERSIBLE LOGIC
IN LE UNITS

STANDARD LOGIC
IN LE UNITS

4 12 16 18
8 24 45 44
16 48 71 72
32 96 103 99
64 192 222 212

 Fig. 8 demonstrates the RTL viewer display for the 8-bit
reversible Brent-Kung PPA. Each of the small square
elements represents a Fredkin gate. The large square is a
higher hierarchy sub-circuit which is comprised of
additional Fredkin gates. During the tedious manual
counting process, we must analyze all such sub-circuits in
order to accurately count all the Fredkin gates of the
benchmark. Similar efforts are needed in counting the
classical gates in the RTL views of the standard logic
implementations. It should be noted that other
commercial modules for the Quartus II, like the Mentor
Graphics Leonardo Spectrum tool, allow users to treat a
module as a black box. Such a tool can be used to
eliminate the tedious manual counting process. However,
this tool was not available to us during this research.
 Table 2 summarizes our results for operand sizes of 4, 8,
16, and 32. Here we see a consistent size cost increase
when comparing the reversible and standard logic
implementations. The I/O count column relates only to
the lines connected to the FPGA pads for time delay
simulation. Currently our interface to the Altera tool does
not provide an automatic means to count the internally
unused inputs and outputs required by the Fredkin gates.
Since our simplified translation synthesis technique does
not minimize these extra inputs and outputs, a rough
empirical estimate for the total I/O is approximately 2.5
times the number of the Fredkin gates in addition to the
actual pad I/Os listed in the second column of Table 1.

Fig. 8. The RTL Viewer Output for the 8-bit Brent-Kung PPA of Fig. 6

TABLE 2
REVERSIBLE AND STANDARD LOGIC COMPARISON BY THE RTL VIEWER

Operand
Size N

I/O
pins

Reversible Logic
in Fredkin Gates

Standard Logic
gates

4 12 53 26
8 24 120 62
16 48 259 135
32 96 547 312

0

100

200

300

400

500

600

N
um

be
r o

f g
at

es

4 8 16 32

Operand size in bits

Cost based on RTL viewer

Standard Logic
Reversible Logic

Fig. 9. Comparison of Number of Fredkin and Classical Logic Gate
Requirements for each Operand Wordsize

 Fig. 9 illustrates the size comparison. As predicted by
equation (4), the size grows linearly with respect to the
operand size increase for both implementations. Of
course, additional results with larger circuits will be
needed to confirm this trend beyond our current range of
64 bits. The number of Fredkin gates in the reversible
implementations seems to be about two times that of the
implementation using classical logic gates.
Approximating the silicon size of a Fredkin gate to be
about twice that of a standard logic gate, we conclude that
our reversible virtual implementations require about four
times the cost of the standard logic implementations.

Time delay at the I/O pads

10

100

8 16 32 64

Operand size in bits

To
ta

l c
ar

ry
 d

el
ay

 (n
S)

Standard Logic
Reversible Logic

Fig. 10. Comparison of Time Delay Results for Reversible and Classical
Logic Implementations

 Using the Quartus II simulation tool, we have compared
the time delay for the reversible and standard logic
implementation for different operand sizes. The results
appear in Fig. 10 and they generally follow the expected
O(log2n) time for the Brent-Kung PPA in (3). There is a
slight delay overhead for our reversible virtual
implementations. While these results are important to
validate our model, the actual delay with future quantum
circuits are likely to exhibit different variances.

V. CONCLUSIONS

 In view of the small size limitation of current gate
cascade synthesis tools for reversible logic, we
demonstrate a simplified synthesis technique based on

direct logic block translation into reversible gates. While
our approach clearly cannot achieve the efficient
synthesis of the gate cascade synthesis, it allows us to
peek into the behavior of moderately complex reversible
arithmetic circuits such as the Brent-Kung PPA.
Comparison of our virtual reversible logic
implementation of the Brent and Kung PPA with the
standard logic implementation shows that it still follows
the O(log2n) delay and O(n) cost of the standard logic
implementation. Due to the complexity of the Fredkin
gate as compared to a standard logic gate, the cost of our
reversible logic implementation is roughly four times that
of the standard logic implementation.
This result demonstrates how a state-of-the-art

commercial platform like the Quartus II can be adapted to
investigate futuristic technology like reversible logic. In
particular, we show how to overcome the loss of
information due to optimization by using the RTL viewer.
More importantly, the problems we encountered in using
this tool for synthesizing and modeling reversible logic
circuits underscores the need for the development of new
synthesis and simulation tools specifically for quantum
device based circuits. Since classical logic synthesis
tools exploit characteristics such as reconvergent fanout
(which is not permissible in quantum circuits) and the
optimization techniques automatically remap low-level
structures into those inappropriate for quantum logic,
altogether new approaches for quantum logic CAD tools
are required.
Future work includes the investigation of the use of

Toffoli gates instead of (or together with) Fredkin gates
and will involve arithmetic architectures other than PPAs.

REFERENCES

[1] Altera Corporation, Quartus II Software. Available online:
http://www.altera.com/products/software/products/quartus2/qts-
index.html.

[2] C.H. Bennett, “Logical reversibility of computation,”IBM, J. Res.
Dev., Vol. 17, No. 6, pp. 525-532, 1973.

[3] R. P. Brent and H. T. Kung, “Regular layout for parallel adders",
IEEE Trans. Comp., Vol. C 31, no. 3, pp. 260-264, 1982.

[4] J.W. Bruce, M.A. Thornton, L. Shivakumaraiah, P.S. Kokate, and
X. Li, “Efficient adder circuits based on a conservative reversible
logic gate”, In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, pp. 83-88,April 2002

[5] M. D. Ercegovac and T. Lang, Digital Arithmetic, Morgan
Kaufmann, 2004.

[6] R. Feynman, “Quantum mechanical computers,” Optics News, vol.
11, pp. 11–20, 1985.

[7] E. Fredkin and T. Toffoli, “Conservative Logic,” Int, J. Theoretical
Physics, Vol. 21, Nos. 3/4, pp. 219-253, 1982.

[8] Z. Huang and M. D. Ercegovac “Effect of wire delay on the design
of prefix adders in deep-submicron technology”, Signals, Systems
and Computers, 2000. Volume 2, pp. 1713 - 1717.

[9] K. Iwama, Y. Kambayashi and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits”, In Proceedings of
the Design Automation Conference, 2002, June 2002, pp. 419-425.

[10] P. Kerntopf, “A new heuristic algorithm for reversible logic
synthesis”, In Proceedings of the 41st Annual Conference on
Design Automation, pp. 835-837, June 2004.

[11] R. Ladner and M. Fischer, “Parallel prefix computation", J. Assoc.
Comp. Mach., Vol 27, pp. 831-838, 1980.

[12] S. S. Leung, “Behavioral modeling of transmission gates in
VHDL”, In Proceedings of the 26th ACM/IEEE Conference on
Design Automation, June 1989, pp 746-749.

[13] J. Lim, D.-G. Kim, and S.-I. Chae, “A 16-bit Carry-Lookahead
Adder using Reversible Energy Recovery Logic for ultra-low-
energy systems”, IEEE Journal of Solid-State Circuits, Vol. 34,
No. 6, pp. 898-903, June 1999.

[14] D. Maslov. Reversible logic synthesis benchmarks page. Online:
http://www.cs.uvic.ca/~dmaslov/, Nov. 15, 2005.

[15] D. M. Miller, D. Maslov, and G. W. Dueck. ”A transformation
based algorithm for reversible logic synthesis”. In Proceedings of
the Design Automation Conference, 318-323 June 2003.

[16] M.A. Nielsen and I.L. Chuang, Quantum Computation and
Qunatum Information, Cambridge University Press, 2000.

[17] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
”Synthesis of reversible logic circuits”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol.
22, No. 6, pp. 710-722, June 2003.

[18] M. M. Ziegler and M. R. Stan, “A unified design space for regular
Parallel Prefix Adders”, In Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 2, Feb 2004,
IEEE Computer Society.

[19] R. Zimmermann, Binary adder architectures for cell-based VLSI
and their synthesis, PhD thesis, Swiss Federal Institute of
Technology (ETH) Zurich, Hartung-Gorre Verlag, 1998. Online:
http://www.iis.ee.ethz.ch/~zimmi/.

[20] R. Landauer, “Irreversibility and Heat Generation in the Computing
Process”, IBM J. Research and Development, vol. 3, pp. 183-191,
July 1961.

http://portal.acm.org.proxy.libraries.smu.edu/citation.cfm?id=996789&coll=portal&dl=ACM&CFID=57785169&CFTOKEN=37327919
http://portal.acm.org.proxy.libraries.smu.edu/citation.cfm?id=996789&coll=portal&dl=ACM&CFID=57785169&CFTOKEN=37327919
http://www.iis.ee.ethz.ch/~zimmi/

