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    Abstract - This paper demonstrates a simplified approach 
for reversible logic synthesis based on direct translation of 
the circuit VHDL description into virtual Fredkin gates.  
We investigate the size and speed of such a reversible logic 
implementation of the Brent-Kung Parallel Prefix Adder 
(PPA) in comparison to a standard logic implementation. 
Using the Altera Corporation’s Quartus II synthesis and 
simulation tool, we show that our virtual reversible logic 
implementation follows the O(log2n) delay and O(n) cost of 
the standard logic implementation. 

 
I. INTRODUCTION 

 
   Pioneering work by Bennet, Feynman, Fredkin, and 
Toffoli investigated the potential of reversible logic to 
create circuits that theoretically achieve zero internal 
power dissipation [16].  Accordingly, futuristic logic 
design based on quantum devices must be based on such 
reversible logic where the circuit has the same number of 
inputs and outputs, all with fan-in and fan-out of 1.  A 
variety of basic reversible gates have been proposed in 
the past three decades. Such gates are combined in a 
cascade fashion using various complex synthesis methods 
that aim to minimize garbage outputs and ancillary inputs 
[15].  The synthesis of quantum reversible circuits is 
generally regarded as a hard research problem. The 
synthesis tools that have been developed so far are able to 
work only with relatively small (< 25 inputs) reversible 
circuits.   
   This paper presents a simplified synthesis and 
simulation approach for reversible circuits of moderate 
complexity. We use direct translation of the circuit 
VHDL description into virtual Fredkin gates.  While our 
approach is not suitable (nor is it intended) to replace the 
gate cascade based synthesis techniques for quantum 
circuits, it enables us to obtain some preliminary insights 
into synthesis issues for future reversible circuits of 
meaningful sizes.  
  Our goal is to investigate the cost and delay of addition 
circuits as they are implemented in our virtual reversible 
logic and to compare the resulting reversible logic  
circuits with their classic logic implementation. We use 
the QuartusII tool (from the Altera Corporation [1]) to 
synthesize and simulate the VHDL files representing 
reversible circuits.   

   In this work, we are particularly interested in the 
Parallel Prefix Adder (PPA) architecture that was 
pioneered by Ladner and Fischer [11]. This approach was 
later improved by Brent and Kung [3] for reduced fan-
out, thus making it potentially suitable for future use in 
reversible logic.  Therefore, our benchmark for this 
research is the Brent-Kung parallel prefix adder with 
operand sizes up to 32 bits. 
  Zimmerman [19] developed an extensive VHDL library 
that conveniently implements the Ladner and Fischer, the 
Brent and Kung, and many other PPA architectures using 
standard logic.  The Zimmerman library is parameterized, 
allowing the user to create PPAs of arbitrary size. We 
have modified the Zimmerman library to produce a 
VHDL translation into reversible logic, which is then 
used as input to the Quartus II tool for virtual 
implementation and simulation.  
  This paper is organized as follows. Section II discusses 

the basic concepts of reversible logic and introduces the 
fundamental architecture of PPAs.  Section III describes 
our approach in modeling the reversible Fredkin gate 
based on CMOS transmission gates and discusses the 
tools we use.  Section IV provides our experimental 
results and we conclude in Section V. 
  

II. PRELIMINARIES 
 
A.    Reversible Logic  
  Classical logic circuits provide outputs that result in a 
loss of information and hence, corresponding power 
dissipation. For example, an n-bit input decision circuit 
obtains a one-bit yes or no result from which there is no 
way to reconstruct the original input set. Landauer’s 
principle states that the erasure of a single bit of 
information dissipates at least KBTln2 energy, where KB is 
Boltzmann’s constant and T is the temperature [6, 20]. 
This places a firm theoretical lower bound on the power 
consumption of computation based on information 
entropy. It prompted the development of reversible logic 
circuits by Bennet [2], Fredkin, Toffoli [7], and others. 
Reversible logic circuits allow the full reconstruction of 
the circuit’s input information at any time from the output 
since such circuits can be modeled as bijective functions.  

  



  All quantum logic circuits are necessarily reversible 
since the fan-in and fan-out of 1 characteristic occurs due 
to the principle of conservation of matter and thus also 
obeys the theoretical elimination of energy loss. We note 
that the first computers based on molecular level quantum 
devices are just recently beginning to be realized and 
there exists an intense research interest for the future of 
computing [16]. Adiabatic circuits are based on 
traditional CMOS technology that achieve ultra low 
power loss due to reversibility. Lim et al. [13] produced a 
16-bit Carry-Lookahead adder employing Reversible 
Energy Recovery Logic (RERL), which is a dual-rail 
adiabatic logic style.  While the RERL device is not a full 
implementation of reversible logic, it uses partial 
reversible features which contribute to the achievement of 
low power loss.  
  A variety of basic reversible gates have been proposed 

that are realizable using quantum devices including the 
Toffoli, Fredkin, Controlled-NOT, Controlled-V, and 
controlled V+. The use of Toffoli and Fredkin gates 
shown in Fig. 1 illustrate how common classical 
functions (NAND, AND, NOT, and fan-out duplication) 
may be implemented. It is clear that once the NAND gate 
or the equivalent set of AND and NOT gates are 
achievable, any arbitrary logic function can be 
implemented. Note that these implementations require the 
extra cost of auxiliary inputs (also called ancilla inputs), 
which are crucial to the operation of the gates. For 
example, the Fredkin NOT and Fan-out implementation 
uses only one input for the input variable x, while the 
remaining gate inputs become ancillary inputs, initialized 
to either 0 or 1.  
 

 
Fig. 1. Classical Logic Functions using the Toffoli and Fredkin 

Reversible gates 
 

  Since the number of outputs for reversible logic gates 
must equal the number of inputs, we find that reversible 
circuits can create a large number of unused or “garbage” 
outputs. Therefore, a major constraint in the synthesis, 
specification, and simulation of quantum circuits is the 
need to minimize the garbage outputs and the ancillary 
inputs. 
Research efforts attempt to develop techniques to 

synthesize reversible quantum circuits using a cascade of 
gates like the example shown in Fig. 2. This circuit is the 
5-variable hidden weighted bit “hwb5tc.tfc” benchmark 
from Maslov’s benchmarks web page and was captured 
using Maslov’s Reversible Circuit Viewer [14]. The 

circuit is comprised of generalized Tofolli gates with one 
to four control lines. 
   Reversible logic synthesis techniques that create 
circuits such as the one shown in Fig. 2 are still at an 
infancy stage and can currently tackle only small circuits.  
Interested readers should refer to recent work by Shende 
et al. [17], Kerntopf [10], Iwama et al. [9], and the 
“MMD” template based synthesis by Miller et al. [15].  
Such synthesis techniques are not mature enough to 
implement complex arithmetic circuits such as the PPAs 
we focus on here. 
 

 
 

Fig. 2. The 5-variable hwb Function Implemented as a Cascade of 
Generalized Toffoli Gates  

 
B.   Prefix Parallel Adders  
  Research in binary adders focuses on the problem of fast 
carry generation.  A naïve adder circuit implementation is 
the Carry Ripple Adder (CRA), where the carry 
information propagates linearly along the entire structure 
of full adders. As a result, while the CRA achieves the 
lowest cost (size) of O(n), its operation is very slow, with 
a worst case delay of O(n), where n is the number of 
added bits.  We note that in quantum logic it is still 
desirable to minimize cost (the number of gates) but the 
underlying reason is to reduce the possibility of 
decoherence rather than delay minimization as is the case 
in classical logic circuit implementations. 
  The parallel prefix adder suggested by Ladner and 
Fischer [11] in 1980 pioneered a stream of solutions that 
treat the carry generation problem as a prefix 
computation.    
  Prefix computation deals with computing compositions 
of operators. The composition operator * must be 
associative, that is  
 
           (x *y) * z= x * (y * z).                                         (1) 
 
   The prefix computation problem can be defined as 
follows: 
Given a set S and an associative composition operator  
*: S x S→S with input x0, x1,…, xn-1, compute 
y0,…,yn-1∈S so that y0= x0 and yi= x0*x1* x2*…* xi.
By the above definition, it is clear that yi= yi-1 * xi. 
 

  



 
 

Fig. 2. Parallel prefix product with associative operator * 
 

   Fig. 2 demonstrates a simple product circuit that 
computes, in a parallel prefix fashion, the following set of 
values: 

X1 * X2 * X2 * X3 * X2  
X1 * X2 * X2 * X3 
X1 * X2 
X2 * X3                                                                                             (2) 
 

  Following the discussion in [11] we demonstrate how 
the general parallel prefix operation Pk(n) is performed on 
a set of n-inputs at the k level. Fig. 3a shows how P0(n) is 
constructed recursively from P1(n/2) and P0(n/2).  The 
left recursive construction P1(n/2) has its’ subscript k 
equal to 1 since it is connected in the second level to 
P0(n/2). 
 

 
 

a. The First Recursive Step 
 

 
b. The Recursive Step at Level k 

Fig. 3. The Recursive Steps for the Parallel Prefix Computation 

 
 
  Fig. 3b illustrates schematically how Pk(n) is created 
recursively at level k of a PPA. It can be seen that each 
additional level (increase in k) will increase the depth of 
the circuit.  Ladner and Fischer found that Pk(n) solves 
the general prefix problem in parallel for n inputs with 
 
        Depth (delay) = D(Pk(n)) ≤ K+ log2n                    (3) 
 
and 
 
        Cost (size) = C(Pk(n)) ≤ 2(2+1/2k) n – 4              (4) 
 
for n ≥ 1 and 0 ≤ K ≤  log2n.  Therefore, the parallel 
prefix computation has a delay of O(log2n) and size of 
O(n).  While asymptotically the O(n) size is similar to 
that of the CRA, the resulting delay is significantly less 
[11].  

The PPA quickly dominated adder design, with various 
architectures proposed by Brent and Kung [3], Kogge and 
Stone, Knowels [18], Han and Carlson, and more [8]. 
Interested readers also are referred to the detailed 
discussion in [5]. 
 

 
 

a. White Processor                      b. Black Processor 
 

 
 

c. Carry Computation of the MSb. 
Fig. 4. Brent and Kung’s PPA 

 
As we were looking for a PPA architecture that is 

suitable for our demonstration of a virtual simulation of 
reversible logic, we found much interest in the Brent and 
Kung adder [3].  Originally developed to achieve regular 
layout rules suitable for existing VLSI design 
methodology, this architecture provides a consistent 

  



fanout of one on all outputs. This single fanout is crucial 
for reversible logic and thus seemed to be a good 
candidate for our study.   

 A simplified illustration of the Brent-Kung PPA is 
shown in Fig. 4, showing only the carry computation of 
the most significant carry bit during an 8-bit addition. 
The carry calculation uses two sub-functions, g (carry 
generate) and p (carry propagate). The architecture uses 
two types of nodes dubbed the white and black 
processors.  The white processor (Fig. 4a) is merely a 
routing node, with Gout=Gin and Pout=Pin. The black 
processor performs the following computation: 

 

.'
)'(
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GPGG

∪=
∩∪=                                   (5) 

 
The Brent-Kung PPA design incurs a cost (size) of O(n) 

and exhibits a delay of O(log2n), where n is the number 
of bits in the addition function. The ease of 
implementation made it one of the first popular PPAs.  

 
III. OUR APPROACH 

 
 In this paper we are concerned with a virtual 

implementation of reversible circuits that use a direct 
translation of relatively complex binary functions into 
circuits composed of Fredkin reversible gates. We note 
that the Fredkin gate forms a complete set (with 
constants) so that any Boolean function can be realized 
with only Fredkin gates.  Since a classical logic n-bit PPA 
requires 2n inputs and n outputs (neglecting the carry-in 
and the carry-out bits), a reversible counterpart will 
require at least 2n variables or lines.  Current reversible 
logic synthesis based on gate cascading reported various 
size limits of 8-25 varaibles [15]. In fact very few 
benchmarks for reversible circuits with more than 25 
variables are listed in the Maslov page[14]. Therefore, it 
is fair to assume that 32 and 16 bit adders are beyond the 
scope of current reversible logic synthesis based on gate 
cascading.  Therefore, we follow a direct translation 
approach similar to the work in [4]. This results in an 
output VHDL file that is ready for Field Programmable 
Gate Array (FPGA) implementation.  The emphasis is on 
circuit regularity as opposed to emphasis on minimization 
of the number of garbage outputs and ancillary inputs that 
is very crucial in the synthesis of reversible logic circuits. 
We recognized a priori that our results will include a 
large number of such garbage outputs and ancillary 
inputs, and are therefore useful only for the purpose of 
virtual implementation in our current investigation. Our 
implementation maintains direct correlation between the 
sub-modules of the reversible result to their standard 
logic counterpart. 
The Altera Corporation’s Quartus II software is a 

comprehensive suite of tools for the synthesis, simulation, 
and implementation of complex logic circuits. It 

conveniently accepts various formats of design source 
files, including standard VHDL and Verilog descriptions. 
The source files are synthesized into an RTL database, 
which is then optimized and minimized for target FPGA 
devices.  A convenient feature of the Quartus II program 
for our research purposes is the ability to view RTL data 
prior to the optimization and minimization step. 
We first modeled and implemented the basic Fredkin 

gate using CMOS transmission gates as shown in Fig. 5. 
VHDL implementation of the transmission gate is not a 
trivial matter [12]. We found that the approximation of a 
one-way transmission gate using the built-in Altera “TRI” 
primitive is useful for our application. 
 

 
 

Fig. 5. VHDL Model of a Fredkin Gate 
 

Zimmerman’s PhD dissertation [19] on PPAs is an 
excellent research resource. He developed a 
comprehensive VHDL library for the implementation and 
investigation of various PPA architectures. The 
Zimmerman PPA VHDL library is parameterized to allow 
for the synthesis of adders with various data widths. His 
web site also includes a graphic interface applet that 
produces graphical representations of various PPA 
architectures. 
 

 
 

Fig. 6. Simulation of 8-bit Brent-Kung PPA Implemented with Fredkin 
Gates 

 
  We modified the Zimmerman VHDL files to create the 
Brent-Kung PPA using our Fredkin gate models. We 
used direct translation by replacing each original standard 
logic equation with a corresponding Fredkin 
implementation corresponding to the mappings in Fig. 1. 
The resulting files were then used as input to the Quartus 
II tool for synthesis and simulation. Fig. 6 shows the 
results of the timing simulation of our 8-bit 

  



implementation of the reversible Brent-Kung PPA.  This 
simulation tool was useful for debugging translation 

errors occurring during the design decomposition into 
Fredkin gates. 

 

  
Fig. 7. Place and Route Map of a 16-bit Brent-Kung PPA 

   
 Our research methodology was to compare the size and 
the delay simulation results between reversible and 
standard logic versions of the Brent-Kung PPA of various 
sizes. An interesting pitfall of our approach quickly 
appeared when we tried to place and route the resulting 
synthesis of both reversible and classic logic versions into 
Altera’s FPGA chips. Our motivation was to use the 
number of Logic Element (LE) units reported at the end 
of device compilation as a measure of size [1]. Fig. 7 
shows the Place and Route map result when a reversible 
16-bit Brent-Kung PPA is implemented in an Altera 
EP20K30E FPGA device.  Each small square within the 
chip map represents one LE unit. 
  When we placed and routed comparable reversible and 
standard logic versions of same operand size PPAs, the 
compilation tool reported a similar number of LEs (see 
Table 1).  This clearly indicates an information loss 
problem since the extra logic required by the reversible 
circuits must result with more size. It seems that the 
problem lies in the optimization and minimization phase 
of the synthesis operation that the design undergoes 
within the Quartus II tool prior to the Place & Route 
phase. It turns out that the optimization phase simply 
converts the reversible logic files back to a similar set of 
optimized equations that were obtained for the standard 
logic implementation.  While this in fact validates our 

translation process, it is of course undesirable for our size 
comparison purposes. This problem was avoided with the 
RTL viewer which allows us to view the non-optimized 
VHDL files and to manually count the number of Fredkin 
gates required in order to compare sizes. 
 

IV. EXPERIMENTAL RESULTS 
 

  We obtained our initial results shown in Table 1 using 
the LE count provided by the Quartus II compilation 
reports for operand sizes of 4, 8, 16, 32, and 64.  As 
discussed in the previous section, there is a loss of 
information due to the optimization and minimization of 
both the reversible and the standard logic source files. 
This results in very similar LE counts for each operand 
size comparison.  

 
TABLE 1 

INFORMATION LOSS DUE TO PLACE AND ROUTE OPTIMIZATION OF THE RTL 
DATA 

 
OPERAND 
SIZE N 

I/O 
PINS 

REVERSIBLE LOGIC 
IN LE UNITS  

STANDARD LOGIC
IN LE UNITS 

4 12 16  18  
8 24 45  44  
16 48 71  72 
32 96 103 99 
64 192 222 212 

 

  



 Fig. 8 demonstrates the RTL viewer display for the 8-bit 
reversible Brent-Kung PPA. Each of the small square 
elements represents a Fredkin gate.  The large square is a 
higher hierarchy sub-circuit which is comprised of 
additional Fredkin gates. During the tedious manual 
counting process, we must analyze all such sub-circuits in 
order to accurately count all the Fredkin gates of the 
benchmark.  Similar efforts are needed in counting the 
classical gates in the RTL views of the standard logic 
implementations. It should be noted that other 
commercial modules for the Quartus II, like the Mentor 
Graphics Leonardo Spectrum tool, allow users to treat a 
module as a black box.  Such a tool can be used to 
eliminate the tedious manual counting process. However, 
this tool was not available to us during this research. 
  Table 2 summarizes our results for operand sizes of 4, 8, 
16, and 32. Here we see a consistent size cost increase 
when comparing the reversible and standard logic 
implementations.  The I/O count column relates only to 
the lines connected to the FPGA pads for time delay 
simulation. Currently our interface to the Altera tool does 
not provide an automatic means to count the internally 
unused inputs and outputs required by the Fredkin gates.  
Since our simplified translation synthesis technique does 
not minimize these extra inputs and outputs, a rough 
empirical estimate for the total I/O is approximately 2.5 
times the number of the Fredkin gates in addition to the 
actual pad I/Os listed in the second column of Table 1.  
 

 
Fig. 8. The RTL Viewer Output for the 8-bit Brent-Kung PPA of Fig. 6 

 
 
 

TABLE 2 
REVERSIBLE AND STANDARD LOGIC COMPARISON BY THE RTL VIEWER 

 
Operand  
Size N 

I/O 
pins 

Reversible Logic 
in Fredkin Gates 

Standard Logic 
gates 

4 12 53 26 
8 24 120 62 
16 48 259 135 
32 96 547 312 
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Fig. 9. Comparison of Number of Fredkin and Classical Logic Gate 
Requirements for each Operand Wordsize 

 
   Fig. 9 illustrates the size comparison.  As predicted by 
equation (4), the size grows linearly with respect to the 
operand size increase for both implementations. Of 
course, additional results with larger circuits will be 
needed to confirm this trend beyond our current range of 
64 bits. The number of Fredkin gates in the reversible 
implementations seems to be about two times that of the 
implementation using classical logic gates.  
Approximating the silicon size of a Fredkin gate to be 
about twice that of a standard logic gate, we conclude that 
our reversible virtual implementations require about four 
times the cost of the standard logic implementations. 
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Fig. 10. Comparison of Time Delay Results for Reversible and Classical 
Logic Implementations  

 
  Using the Quartus II simulation tool, we have compared 
the time delay for the reversible and standard logic 
implementation for different operand sizes.  The results 
appear in Fig. 10 and they generally follow the expected 
O(log2n) time for the Brent-Kung PPA in (3).  There is a 
slight delay overhead for our reversible virtual 
implementations.  While these results are important to 
validate our model, the actual delay with future quantum 
circuits are likely to exhibit different variances. 
 

V. CONCLUSIONS  
 

  In view of the small size limitation of current gate 
cascade synthesis tools for reversible logic, we 
demonstrate a simplified synthesis technique based on 

  



direct logic block translation into reversible gates. While 
our approach clearly cannot achieve the efficient 
synthesis of the gate cascade synthesis, it allows us to 
peek into the behavior of moderately complex reversible 
arithmetic circuits such as the Brent-Kung PPA.  
Comparison of our virtual reversible logic 
implementation of the Brent and Kung PPA with the 
standard logic implementation shows that it still follows 
the O(log2n) delay and O(n) cost of the standard logic 
implementation. Due to the complexity of the Fredkin 
gate as compared to a standard logic gate, the cost of our 
reversible logic implementation is roughly four times that 
of the standard logic implementation.   
This result demonstrates how a state-of-the-art 

commercial platform like the Quartus II can be adapted to 
investigate futuristic technology like reversible logic. In 
particular, we show how to overcome the loss of 
information due to optimization by using the RTL viewer.  
More importantly, the problems we encountered in using 
this tool for synthesizing and modeling reversible logic 
circuits underscores the need for the development of new 
synthesis and simulation tools specifically for quantum 
device based circuits.  Since classical logic synthesis 
tools exploit characteristics such as reconvergent fanout 
(which is not permissible in quantum circuits) and the 
optimization techniques automatically remap low-level 
structures into those inappropriate for quantum logic, 
altogether new approaches for quantum logic CAD tools 
are required.  
Future work includes the investigation of the use of 

Toffoli gates instead of (or together with) Fredkin gates 
and will involve arithmetic architectures other than PPAs.  
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