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Abstract

Methods based on AND/OR graph representations of Boolean relations provide a promising new way of
approaching VLSI CAD design automation problems. AND/OR graphs can represent any Boolean network
and they allow for systematic reasoning through the application of the technique of recursive learning. An
approach to build and analyze AND/OR graphs that makes use of hashing techniques in a way similar to
that for modern Decision Diagram (DD) packages is described. Additionally, the problem of extracting
spectral information from AND/OR graphs is also examined. Spectral information can be used for many
CAD system tasks including synthesis, veri"cation and test vector generation. It is shown that spectral
information may be calculated directly from output probabilities and a method for estimating output
probabilities from AND/OR graphs is presented. Experimental results regarding the AND/OR graph
package e$ciency and the extraction of spectral information are provided. ! 2000 Elsevier Science B.V.
All rights reserved.

1. Introduction

In order to solve a large class of problems in the area of VLSI CAD, an e$cient underlying data
structure is required. In the last few years several methods based on decision diagrams (DDs) have
been proposed and used in industrial applications [1,2]. The most popular data structure in this
area is the Ordered Binary Decision Diagram (OBDD) [3]. Typically, DD based methods allow this
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class of problems to be easily solved if the corresponding DD can be completely constructed. This
is mainly due to the fact that a DD is a canonical representation of a corresponding Boolean
function. The property of canonicity allows for the formulation of e$cient DD manipulation
algorithms.

An important problem in design automation is the determination of Boolean satis"ability. To
solve this problem, it must be determined if a variable assignment exists such that a Boolean
function can assume the logic value 1. Many problems in design automation as they occur in the
context of formal veri"cation, logic synthesis and VLSI testing can be mapped to the satis"ability
problem. Since this problem can be solved e$ciently if the DD has been constructed, DDs have
become an integral part of many algorithms in VLSI CAD.

The major drawback of DDs is that they cannot represent all functions e$ciently (i.e., the size of
the DD grows exponentially with the number of variables of the Boolean function). In some cases,
this characteristic holds for functions with high practical relevance such as multipliers [4].

When it is intractable to build a DD for the circuit under consideration, serious problems for DD
based approaches arise. It is generally not possible to work with only partially constructed DDs
since many methods require a completely speci"ed representation. An e$cient method for repres-
enting a Boolean function is mandatory for a CAD tool to be practically useful. Although many
representations have been used in the past, each type has its own disadvantages.

Recently, the AND/OR decision graph has been proposed for representing functions in CAD
tools. The use of AND/OR graphs as a new data structure in reasoning and logic synthesis was
introduced in Ref. [5]. In Ref. [6] the main di!erence between the traditional approach based on
DDs and the newer AND/OR approach is outlined. Since AND/OR graphs preserve the structural
information of a given circuit, their size is proportional to a corresponding Boolean network. For
some cases the network can also be too large to be easily handled. Therefore, it is necessary to
represent AND/OR graphs in as compact a manner as possible. The need for reducing these graphs
has been already pointed out in Ref. [7]. A package using AND/OR graphs as Boolean network
representations has been developed that exploits the presence of isomorphism for reduction in
required memory resources. Our experimental results indicate that sub-graph isomorphism
frequently occurs in the AND/OR graph representations of logic networks. The method used
for identifying and sharing the isomorphic sub-graphs using an open hashing technique is
described.

While the AND/OR graph is a desirable representation since it can provide a more compact
representation as compared to DDs, it is also bene"cial in that it can allow for the representation of
Boolean relationships whose detailed functionality is not yet known. However, for this character-
istic to be useful, it is imperative that methods which allow for relevant information to be extracted
from the graph are also be formulated. Here, we propose a method for determining spectral
information from a AND/OR representation of a Boolean function. The use of spectral methods in
digital logic dates back several years. There has been a recent renewal in the interest of these
techniques largely due to new methods for the e$cient computation of the spectra. The spectrum of a
logic function imparts data concerning functionality and other characteristics.

We show how the computation of output probabilities is su$cient for determining several
di!erent types of spectra since the probability values and the spectral coe$cients are related by
simple algebraic expressions. A technique to approximate the probabilities from a general graph
representation that includes the AND/OR case as a subset is described.
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The remainder of the paper is organized as follows. First, we discuss the types of symmetry
present in AND/OR representations of logic functions and how this is used to reduce the overall
storage requirements. The approach is validated by comparing the sizes of several benchmark
circuit representations with and without the use of the isomorphism information. Next, we show
how spectral information is algebraically related to the notion of output probabilities. Techniques
for the exact and estimated output probabilities are described and results are given that show the
relative error of the estimation technique versus the exact computation are provided. Finally,
conclusions drawn from this work are given.

2. AND/OR graphs and the reasoning technique

AND/OR graphs can be used for a wide variety of problems and e$cient techniques for
traversing these graphs have been reported in the AI literature. In the area of VLSI CAD these
graphs have been already successfully applied for algorithms for sequential error diagnosis [8,9].
But AND/OR graphs can also be used to represent Boolean functions since any Boolean
expression can be understood as an AND/OR tree.

However such general AND/OR trees do not solve the important satis"ability problem. Just as
DDs have to be constructed according to strict rules in order to have desired properties, it is also
important to construct AND/OR trees in a speci"c way to make them useful for a given
application. In Ref. [5] it has been shown that the nodes of an AND/OR graph can be associated
with the various steps of a speci"c reasoning technique presented in Ref. [10] based on the notion
of recursive learning. If AND/OR graphs are enumerated as described in Ref. [5] then they
represent Boolean functions and ful"ll two important properties,

! they solve the satis"ability problem and,
! they facilitate systematic reasoning in general multi-level Boolean networks (i.e. they allow us to

identify implicants and implications in an easy way).

A detailed description of the application of AND/OR graphs in VLSI CAD methods is given in
Ref. [7].

3. Reduction of AND/OR graphs

Enumeratio techniques that use AND/OR graphs for recursive learning have a tree-like struc-
ture. The space complexity of such graphs can become too large to be handled for some circuits (e.g.
c432) providing motivation for representing the graphs in their most compact form. Sharing
isomorphic sub-graphs in the AND/OR is one way to reduce the overall storage requirements.

In an AND/OR graph, AND and OR types of isomorphism can be found (i.e. isomorphic
sub-graphs rooted in AND and isomorphic sub-graphs rooted in OR nodes). Both types of
isomorphism are illustrated in Fig. 2 where the AND/OR graph represents the enumeration for
ISCAS benchmark c17 given the initial assignment 1gat"0 (c17 is given in Fig. 1). Two pairs of
isomorphic sub-graphs are denoted by the shaded areas. Sub-graphs rooted in 8"1 are of an OR
type. Both unjusti"ed OR root nodes (8"1) have exactly the same two justi"cation sets, 3gat"0
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Fig. 1. ISCAS Benchmark circuit c17 [11].

Fig. 2. Isomorphic sub-graphs of AND/OR graph for c17.

"OR type of local isomorphism is absent in AND/OR graph for c17.

and 6gat"0. An AND type of isomorphism is also present in the same "gure with regard
to the two shaded sub-graphs are rooted in AND nodes labeled with 8"0. It should be noted that
this is a case of a local isomorphism, while the other case (OR type) depicts a total isomorphism. The
lower sub-graph 22gat"xP23gat"xP10"1 di!ers from the other in the set of OR nodes. It
does not comprise two OR nodes labeled with 10"1 and 23gat"0. These two signals in the
circuit have already been assigned to the same values in the upper level of the AND/OR
enumeration.

By analyzing various AND/OR graphs it can be observed that this locality of isomorphism often
occurs. It can be present in the case of AND and OR types of isomorphism."

A complete reduction of the AND/OR graph in Fig. 2 through the sharing of isomorphic
sub-graphs and nodes is given in Fig. 3. The non-reduced AND/OR graph from the
Fig. 2 comprises 51 AND and OR nodes whereas the reduced graph only has 37 nodes. In practice,
reductions as large as 90% can be achieved (see Section 5).
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Fig. 3. Reduced AND/OR graph for c17.

4. Implementation

AND/OR graphs have alternating levels of AND and OR nodes, that is, each AND node
has a successive set of OR nodes. In order to reduce the space complexity of the graph, AND nodes
and their corresponding set of children OR nodes are combined into a single AND/OR node
referred to as an AO-node. Such an implementation allows for the sharing of isomorphic sub-
graphs rooted in AND nodes. In this way, sub-graphs rooted in OR nodes can be shared at lower
levels of the graph.

The management of isomorphism in AND/OR graphs is similar to that of sharing nodes
in BDDs [12,13]. The property of sharing isomorphic AND/OR graphs is preserved by
using a hashing technique (i.e. recording all nodes in a hash table). Each time there is a need to
create a new node, the hash table is accessed to determine if an instance of the new node is already
present.

A di$culty arises in e$ciently implementing shared, locally isomorphic, sub-graphs.
For example, in the graph from Fig. 2, the sub-graph rooted in 8"0 from the higher level (reached
by 22gat"xP9"1) is put into a hash table. When creating a sub-graph rooted in
8"0, 22gat"xP23gat"xP10"1, the AO-node with the same AND part but with the larger
OR part is found. The di!erence between two nodes can be realized with the masking technique.

A 1 class hsh+obj

AOnode* obj; /* pointer to the AOnode */
hsh}obj* next; /* pointer to the next object */
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4.1. Hash table for AND/OR graphs

The underlying structures used in the implementation of the hashing technique are given in
A 1 and A 2. A strategy of open hashing is used where the hash table is represented as an array of
lists of pointers to the AO-nodes in the graph. The AO-nodes that are addressed by the same list
hash to the same hash-key value.

In order to produce an even distribution of hash-keys among the cells in the hash table, a size
requirement of 3!the number of all nodes in the corresponding Boolean network results. Each
third of the hash table covers one logic value (logic-0, logic-1 and don't care). A hash function is
computed by decoding the values of AND part of the AO-node and its logic values. Each chain of
nodes in the hash table has the same justi"cation assignment node. Using such a function ensures
good hash table performance.

A 2 class hsh+table

private:
hsh}obj obj}ptr;
unsigned int hsh}max;
AOnode* look(AOnode* node, int yag);
public:

hsh}table(int size);
&hsh}table( );

void clear}obj}list(int index);
AOnode* locate(AOnode* node)

!return look(node, 0)";
void insert(AOnode* node)!look(node, 1)";

5. AND/OR graph reduction results

Experiments have been carried out using circuits from the LGSynth'93 benchmark set for the
case of enumerating AND/OR graphs for all nodes of the network for both logic-0 and logic-1
Boolean values. These results were obtained using a 233 MHz PentiumII PC with 64 MB of main
memory and 64 MB of swap space.

First, the presence of total and local isomorphism was identi"ed. The resulting statistics on
isomorphism presence are given in Table 1. The label Bnet! denotes the number of all nodes in the
Boolean network and !! is the sum of all AO-nodes. ! tot-iso! refers to the total isomorphism
and shows the sum of all di!erent AO-nodes. The next column, ! loc-iso!, gives the number of
nodes in the AND/OR graph with sharing of locally isomorphic AO-nodes. Max-tot! and max-loc!
represent the gain that is achieved by sharing total and local isomorphic sub-graphs. As can be
seen, AND/OR graphs can have a lot of isomorphism, up to 60%. As expected, the results con"rm
that many sub-graphs are locally isomorphic (up to 90% for con 1).
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Table 1
Experimental results of analyzing AND/OR graph for total and local isomorphism

Circuits Bnet! !! ! tot-iso! ! loc-iso! Max-tot! (%) Max-loc! (%)

c17 11 346 317 254 20.00 48.00
k6 11 232 198 173 34.78 47.82
k35 11 212 194 181 30.77 40.00
Schneid 12 1265 943 366 42.42 79.78
Adder2 13 2142 1237 368 64.09 90.60
Con 1 18 4785 3203 799 56.64 91.48
k10 17 606 294 278 58.33 66.66

Table 2
Comparison of runtime and space complexity with the use of hash table vs. the use without any
hashing

Circuits !space !space (%) Time-hash Time

c17 8560 39.6 0.06 0.05
k6 5192 45.3 0.03 0.02
k35 10328 31.4 0.13 0.12
Schneid 967 18.8 0.20 0.18
Adder2 18796 17.2 0.40 0.36
Con1 46068 18.0 1.09 1.02
k10 5144 51.8 0.03 0.02

The second part of the experiments compare run-time with space-complexity for AND/OR
graph enumeration when using the hashing technique and when enumeration is performed without
hashing. These results are presented in Table 2 and they depict the case of the total isomorphism.
The "rst column, !space, gives the saved space in bytes, when using the hashing in comparison to
running experiments without hashing. The results of relative space gain are provided in the next
column. The last two columns measure the runtimes for both cases. The experiments running with
hashing have slightly larger runtimes due to the fact that identi"cation of isomorphic sub-graphs
is performed after the sub-graph has been built. However, this slight increase in runtime overhead is
negligible when compared to the dramatic savings in spatial requirements.

6. Relation of spectra and probability

This section describes how output probabilities can be used to compute various spectral
coe$cients directly. The key idea here is to view the computation in terms of a vector}matrix
product using an appropriate transformation matrix. Although such products are not computed
directly, with this viewpoint each transformation matrix row vector can be considered as an output
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vector of some other function called a constituent function. To illustrate the generality of this
approach, speci"c examples of global (Walsh), local (Reed}MuK ller) and Multi-resolution (modi"ed
Haar) transforms are given.

By using Boolean relations between the function to be transformed, f, and the various constituent
functions, f

#
, output probabilities may be computed and used to calculate various spectral

coe$cients through simple algebraic relations. The advantage of this approach is that the spectral
coe$cients are computed individually allowing complete storage of 2! spectral coe$cients to be
avoided. Furthermore, if e$cient methods are used to compute the probability values such as those
given in Refs. [14}16] a savings in computation time also results.

6.1. Walsh spectrum

The Walsh spectral values form several di!erent spectra. The chief di!erence in the various
spectra depend only upon the order that coe$cients appear [17]. For example, this set of
coe$cients may be ordered naturally, in sequency order, in dyadic order, or, in revised sequency
order. These orders yield the Hadamard}Walsh, the Walsh, the Paley}Walsh, and, the
Rademacher}Walsh spectra, respectively [18,17]. In the past, the Hadamard}Walsh has seen much
use due to the fact that e$cient decompositions of the transform matrix may be obtained allowing
for &fast transform' methods [19,20] to be applied.

Since the relationships described here apply only to a single Walsh coe$cient, the particular
coe$cient orderings are not important. Each coe$cient is described by the particular f

#
that

corresponds to a transformation matrix row vector regardless of the actual location of the row
vector in the matrix. The Walsh coe$cient is denoted by=

"
( f

#
) where f denotes that the spectral

coe$cient is with respect to function f, and, f
#

denotes that the coe$cient is dependent on the row
vector corresponding to constituent function f

#
.

It is generally the case that the Walsh spectral values are computed by replacing all occurrences
of logic-1 with the integer, !1, and all occurrences of logic-0 with the integer, #1. The actual
calculation of the coe$cient is then carried out by using integer arithmetic. In terms of computing
an inner-product of a transformation row vector and an output vector of a function to be
transformed, it is easy to see that each scalar product to be accumulated is either #1 or!1 in
value. Furthermore, a scalar product of !1 will only occur when the functions f and f

#
have

di!erent output values for the same set of input variable assignments.
If we consider the equivalence function given by the exclusive-NOR operation (XNOR),

a function can be formed whose output is logic-1 if and only if both f and f
#

are at logic-1,
f"f

#
. Furthermore, if the output probability of this function is computed, we have the percentage of

outputs where both f and f
#

simultaneously output the same value, !! f"f
#
". The corresponding

Walsh spectral coe$cient can then be obtained by scaling the output probability value by 2!, where
n is the number of variables in f. This is given in Eq. (1).

=
"
( f

#
)"2![1!!! f"f

#
"]. (1)

The Walsh coe$cients in Eq. (1) depend upon the equivalence relation of the function being
transformed and the constituent function. However, the spectral coe$cient can be computed using
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Boolean operators other than XOR. This is accomplished by exploiting the probability relation-
ships given in Eqs. (2) and (3).

!! f#f
#
""!!+

#
"#!! f"f

#
", (2)

!! f#f
#
""!! f"#!! f

#
"!!! +

#
". (3)

Substituting the relationships in Eqs. (2) and (3) into Eq. (1) yields the following results:

=
"
( f

#
)"2![1#2(!!+

#
"!!! f#f

#
")], (4)

=
"
( f

#
)"2![1#4!!+

#
"!2!! f "!2!! f

#
"], (5)

=
"
( f

#
)"2![1!4!! f#f

#
"#2!! f "#2!! f

#
"]. (6)

The relationships in Eqs. (5) and (6) may be simpli"ed since !! f
#
"""

#
is easily shown to be true

for all f
#

except the zeroth-ordered coe$cient, =
"
(0), where !!0""0. Also, the higher-ordered

Walsh coe$cients can be related to the zeroth-ordered coe$cient through the expressions given in
Eqs. (7), (8), and (9).

=
"
(0)"2!(1!2!! f "), (7)

=
"
( f

#
)"2!(4!!+

#
"!1)#=

"
(0), (8)

=
"
( f

#
)"2!(3!4!! f#f

#
")!=

"
(0). (9)

6.2. Reed}MuK ller spectrum

The Reed}MuK ller family of spectra consist of 2! distinct transformations. These are generally
classi"ed according to a polarity number. The polarity number is used to indicate if a literal is
present in complemented or non-complemented form in the generalized Reed}MuK ller Boolean
algebraic expression. In terms of the Reed}MuK ller spectra, the polarity number can be considered
to uniquely de"ne the transformation matrix. The generalized Reed}MuK ller spectra have been
studied and used extensively in the past. Refs. [21,22] provide in depth background material.

In relating output probabilities to the Reed}MuK ller spectra considerations must be made due to
the fact that the RM spectrum is computed over Galois "eld 2 and the output probabilities are real
quantities in the interval [0, 1]. An isomorphic relation is used to address this problem [23]. Like
the Walsh spectrum, each of the rows of the RM transformation matrix may be viewed as
constituent function output vectors. The constituent functions turn out to be all possible products
of literals (with complementation or lack thereof) determined by the polarity number. Therefore,
any arbitrary RM spectral coe$cient may be computed as given in Eq. (10).

R
"
( f

#
)"[2!!! +

#
"](mod2). (10)

Using the probability relationships given in Eqs. (2) and (3), alternative relationships can be
derived as given in the following.

R
"
( f

#
)"[2!(!! f "!!! f

#
"!!! f#g")] (mod2), (11)

R
"
( f

#
)"[2!(!! f"f

#
"!!! f#g")] (mod 2). (12)
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Fig. 4. Example of modi"ed Haar transformation matrix for n"3.

6.3. Haar spectrum

The details of the derivation for the Modi"ed Haar transform are given in Ref. [24], an overview
of the main results are given here. Like the Walsh family of transforms, the output
vector of the function to be transformed generally contains integers with!1 representing logic-1
and#1 representing logic-0. With this viewpoint, we can de"ne the number of matches between
a particular transformation matrix row vector as the number of times the row vector and function
vector components are simultaneously equal to !1 or#1. As an example of the modi"ed Haar
transform, consider the following transformation matrix for a 3-variable function is shown in
Fig. 4. Each of the constituent Boolean functions are given to the left of their respective row vectors.
Note that the matrix contains a 0 value in addition to the 1 and !1 quantities which represent
logic levels. Since some of the rows represent constituent functions that are cofactors, the output
space is less than 2$ and the presence of a 0 value acts as a place holder.

By applying the same principles as those used to determine the algebraic relationships between
output probabilities and the Walsh family and RM transforms, we can formulate the Haar
transform relationships. The presence of cofactors in the Haar constituent functions can be handled
by using the conditional probability relationship to represent these quantities as output probabilit-
ies of the AND of the function to be transformed with its respective dependent literals. Note also
that the maximum absolute value of a Haar spectral coe$cient varies depending on the order of
the coe$cient. This is due to the reduction in the size of the range of the constituent functions
containing cofactors. The following table contains symbols for each of the Haar coe$cients, H

#
,

values that indicate the size of the constituent function range, i and n, and probability expressions
that evaluate whether the function to be transformed and the constituent function simultaneously
evaluate to logic-0 (denoted as p

$%
), or evaluate to logic-1 (denoted as p

$"
).

Using the notation introduced in Table 3, we can write an algebraic equation to compute the
value of the kth Haar spectral coe$cient in terms of the output probabilities used to compute
p
$%

and p
$"

.

H
%
"2!&#[2(p

$%
#p

$"
)!1]. (13)

7. Probability extraction from graphs

Techniques for the extraction of output probability values from generalized graphs are given
here. Initially, we formulate a solution to an easy subset of problems and show that an exact value
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Table 3
Relationship of the Haar spectrum and output probabilities

SYMBOL i n!i p
$"

p
$%

H
%

0 3 P[ f )0] P[ fM )0# ]
H

"
0 3 P[ fx

"
] P[ fMx$

"
]

H
#

1 2 &' "'$ "'# (
&' '$ " (

&' "M '$ "'$ # (
&' '$ " (

H
$

1 2 &' "'"'# (
&' '" (

&' "M '"'$ # (
&' '" (

H
)

2 1 &' "'$ "'$ #'$ (
&' '$ "'$ # (

&' "M '$ "'$ #'$ $ (
&' '$ "'$ # (

H
*

2 1 &' "'$ "'#'$ (
&' '$ "'# (

&' "M '$ "'#'$ $ (
&''$ "'# (

H
+

2 1 &' "'"'$ #'$ (
&' '"'$ # (

&' "M '"'$ #'$ $ (
&' '"'$ # (

H
,

2 1 &' "'"'#'$ (
&' '"'# (

&'"M '"'#'$ $ (
&' '"'# (

can be obtained. Next, the problem is generalized to cover any arbitrary form of graph (or netlist)
including the AND/OR type and an approximate method is described.

7.1. Probability algorithm

To simplify the problem, the following assumptions are made:

1. Each leaf vertex in the AND/OR graph represents a unique variable in the support set of f, the
Boolean function represented by the graph.

2. The AND/OR graph is a complete representation of the function f.

The restriction that each variable in the support set of f appears only once in a leaf vertex is
equivalent to representing the function in a Completely Fan-Out Free (CFOF) tree-like circuit
composed only of alternating levels of AND and OR gates. !! f " may be computed through
a single traversal of the graph with CPU time requirements of O(N) where N is the total number of
vertices in the graph. In terms of spatial complexity, one additional word of storage per node is
required for each vertex which will contain a value corresponding to the output probability of the
subcircuit speci"ed by assuming the particular vertex is a root. The algorithm is described by the
following steps:

(1) Assign each leaf node representing a unique x
#
the value !!x

#
".

(2) In a breadth-"rst fashion, traverse the graph from the leaf nodes toward the root.
(3) As each vertex is visited, assign a probability value computed from all immediate children

probability values and the appropriate rule based on the node's Boolean functionality.
(4) !! f " is given as the node probability of the graph root vertex.

In the case of AND/OR graphs, only two Boolean functionality characteristics apply; those for the
AND and the OR operation. For the case where there are exactly two children vertices, these are
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Fig. 5. AND/OR graph and output probabilities.

given in Eqs. (14) and (15), respectively. For the general case where more than two children are
present, the vertex can be considered as a `treea of the two-child case.

!! f
"
f
#
""!! f

"
"!! f

#
", (14)

!! f
"
#f

#
""!! f

"
"#!! f

#
"!!! f

"
"!! f

#
". (15)

As an example of the application of this technique, consider the AND/OR graph in Fig. 5. Each
vertex is labeled with a Boolean expression representing the function represented by the corre-
sponding subtree. Also, each vertex is labeled with a probability value that is actually the output
probability of the subtree.

7.2. General graphs

In general a vertex may assume any Boolean function, thus, an arbitrary graph (not just
AND/OR) may be utilized. If the same restrictions are applied to the general case, the only change
in the algorithm is the type of rule applied based on the vertex's Boolean characteristic.
Table 4 contains a list of all possible rules for all Boolean functions of two variables. In this table,
the algebraic expression is given as a function of the two Boolean variables, a and b. The likelihood
that the Boolean variables are a constant-1 value is denoted as !!a""A and !!b""B.

Allowing variables in the support set to appear in more than 1 leaf node is equivalent to the
representation of a multi-level AND/OR circuit with re-convergent fanout. Such representations
are a subset of the general case of any netlist represented as a connected graph with vertices
corresponding to logic functions and edges to wires or nets. The computation of output probabilit-
ies for such representations was considered in the work by Ref. [25]. In Ref. [26] it was pointed out
that the computation of the exact value of !! f " using such representations can require the
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E F 
0.5 0.5 



Table 4
Probability rules for all possible Boolean characteristics of two variables

f (a, b) !! f (a, b)" !! f %A"B""
#
"

0 0 0
ab AB "

)
ab# A!AB "

)
a A "

#
a$ b B!AB "

)
b B "

#
a"b A#B!2AB "

#
a#b A#B!AB $

)
a#b 1!A!B#AB "

)
a"b 1!A!B#2AB "

#
b# 1!B "

#
a#b# 1#B(A!1) $

)
a$ 1!A "

#
a$ #b 1#A(B!1) $

)
ab 1!AB $

)
1 1 1

symbolic manipulation of a probability expression with an exponential number of terms with
respect to the number of support variables. The work in Ref. [25] proposed an approximation
technique based on the notion of supergates.

8. Experimental results

An approximation method based on the use of supergates has been implemented and the results
are compared to the true probability values. The true values were computed using a BDD
representation of the benchmark circuits. This data is contained in Table 5 where the column labeled
Threshold contains the depth of the logic levels used to compute a supergate. The average, maximum
and percentage error values compare the approximated output probabilities using the supergates to
the exact values based on BDD computations over all outputs in the benchmark circuits.

The results indicate that this approach is indeed very e!ective for some benchmarks, however
large errors result from others. The variance in error is not too large when compared to the overall
error in terms of the Threshold depth of the supergate. This indicates that the penalty in increased
computation time for increased threshold values is not worthwhile.

9. Conclusion

A method is introduced for reducing the size of AND/OR graphs when they are used as an
underlying structure for representing Boolean networks. The experiments indicate sub-graph
isomorphism occurs frequently in benchmark logic circuits; in some cases up to 90% of the graph
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Table 5
Results using the approximation scheme for probability computation

Circuit Inputs Outputs Threshold Avg. error Max. error Pct. error CPU time

c432 36 7 0 0.13167 0.35140 19.167 0.007
c432 36 7 1 0.13167 0.35140 19.167 0.007
c432 36 7 2 0.12203 0.32239 17.706 0.013
c432 36 7 3 0.13751 0.31966 20.042 2.497

c499 41 32 0 0 0 0 0.007
c499 41 32 1 0 0 0 0.007
c499 41 32 2 0 0 0 0.008
c499 41 32 3 0 0 0 0.020

c880 60 26 0 0.01915 0.05728 3.492 0.012
c880 60 26 1 0.01915 0.05728 3.492 0.013
c880 60 26 2 0.01867 0.05656 3.359 0.014
c880 60 26 3 0.00730 0.03311 1.360 0.025

c1355 41 32 0 0.00113 0.00113 0.2260 0.031
c1355 41 32 1 0.00113 0.00113 0.2260 0.032
c1355 41 32 2 0.00042 0.00079 0.0850 0.037
c1355 41 32 3 0 0 0 0.118

c1908 33 25 0 0.02994 0.20310 6.1020 0.034
c1908 33 25 1 0.02994 0.20310 6.1020 0.035
c1908 33 25 2 0.02990 0.20295 6.0940 0.162
c1908 33 25 3 0.01327 0.15656 2.1440 2.995

c3540 50 22 0 0.17646 0.33187 45.49 0.078
c3540 50 22 1 0.17646 0.33187 45.49 0.081
c3540 50 22 2 0.16712 0.33211 42.98 0.107
c3540 50 22 3 0.07353 0.18904 20.471 0.646

nodes are present in isomorphic sub-graphs. A method for identifying and sharing isomorphic
sub-graphs was described and implemented using an open hashing technique. Experimental results
indicate that this implementation resulted in signi"cant savings in terms of required memory with
a negligible increase in CPU run-time.

An exact !! f " for a CFOF representation of f can be easily computed. An approximation
technique was implemented for the general case which includes AND/OR graphs as a subset. This
technique was implemented and the relative error due to the approximation was computed. The
results indicate that increasing the threshold level for the formation of the supergates did not
signi"cantly decrease the overall error and is not a pragmatic improvement. It was also noted that
the results were mixed with very good approximations resulting for some benchmark functions.
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