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Abstract

A method based on eigenvalue computations is for-
mulated for computing the Chrestenson spectrum of
a discrete p-valued function. This technique is de-
veloped by considering an extension to the same ap-
proach of computation of the Walsh spectrum for a two-
valued function and is then generalized to the p-valued
case. Algebraic groups are formulated that correspond
to Cayley color graphs based on the function of inter-
est whose adjacency matrices have spectra equivalent to
the Walsh or Chrestenson spectrum of the function un-
der consideration. Because the transformation matrix
is not used in any of these computations, the method
provides an alternative approach for spectral computa-
tions.

1 Introduction

In [1] a method for computing the Walsh spectrum of

a completely speci�ed Boolean function was presented

that is based on the formation of an algebraic group

dependent on the Boolean function yielding a corre-

sponding Cayley graph [6, 7, 25]. It is shown in [1]

that the spectrum of the Cayley graph is in fact equiv-

alent to the Walsh spectrum of the Boolean function.

Some extensions and applications of this approach are

provided in [2, 3, 24].

A generalization of the set of orthogonal Walsh func-

tions over the binary �eld leads to the set of Chresten-

son functions [8]. These functions may be used as basis

functions for a discrete transform of a p-valued function

where p > 2. Several researchers have investigated the

computation and application of the Chrestenson spec-

trum for p-valued discrete functions and in particular,

the ternary case [18, 19, 22]. Applications that have

been considered in the past are synthesis [4, 11, 14],
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decomposition [20, 23] and testing [10, 17] among oth-

ers.

In the following it is proven that the spectrum of a

Cayley color graph formulated from an algebraic group

similar to that used in [1] yields the Walsh spectrum in

S-encoding for a fully speci�ed binary-valued function.

These results are then generalized and it is shown that

the Chrestenson spectrum of a fully speci�ed p-valued

function may likewise be computed as the spectrum of

a Cayley color graph. A speci�c example is given for

the case of a ternary-valued function.

The remainder of this paper is organized as follows.

Section 2 will provide a brief overview of the computa-

tion of the Chrestenson spectrum of a ternary-valued

function and the pertinent results from [1]. Section 3

will give extensions of the results of [1] and show how

these extensions are applicable to the p-valued case.

In Section 4, an example computation is given showing

how the method can be used. Conclusions are provided

in Section 5.

2 Preliminaries

The computation of the Chrestenson spectrum of

a fully speci�ed ternary-valued discrete function us-

ing the mathematically de�ned methods such as those

described in [16] is brie
y reviewed followed by an

overview of the pertinent aspects of [1]. The need for a

review of the concepts in [1, 16] is motivated by the fact

that extensions of the method as presented in Section

3 are used for the p-valued case of discrete functions.

2.1 Chrestenson Spectrum of Ternary Function

By representing all discrete function values as roots

of unity in the complex plane as shown in Figure

1 for ternary valued functions, a direct mapping to

spectral representations results. In this mapping, the

ternary logic values of f0; 1; 2g are mapped to values

in the complex plane fa0; a1; a2g respectively where

a0 = e
j0 = 1, a1 = e

j 2��
3 and a2 = e

j 4��
3 .



Figure 1. Complex Plane with Encoded
Ternary Function Values

To compute the Chrestenson spectrum of a ternary-

valued function, all logic-0 values are mapped to a0,

logic-1 values to a�
1
= a2 and logic-2 values to a�

2
= a1.

The superscript � denotes the complex conjugate of the

values that correspond to the original function values.

This is necessary for the inverse transform to yield the

proper values. The resulting vector of complex values

is then linearly transformed as a matrix-vector prod-

uct. The Chrestenson transformation matrix may be

formulated in natural order using the Kronecker prod-

uct de�nition [12] as shown in Equations 1 and 2.
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0 = [1] (1)
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nO
i=1

2
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1 a2 a1

3
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As an example, the function f de�ned by the truth

table shown in Table 1 is transformed using the trans-

formation matrix in Equation 3. In Table 1 the fourth

column, fENC , contains the function values after en-

coding into the complex conjugates of the roots of unity

shown in Figure 1.

Table 1. Truth Table of Example Ternary Func-
tion

x1 x2 f fENC

0 0 0 a0

0 1 2 a1

0 2 0 a0

1 0 1 a2

1 1 0 a0

1 2 2 a1

2 0 2 a1

2 1 1 a2

2 2 0 a0

2
666666664

1 1 1 1 1 1 1 1 1

1 a1 a2 1 a1 a2 1 a1 a2

1 a2 a1 1 a2 a1 1 a2 a1

1 1 1 a1 a1 a1 a2 a2 a2

1 a1 a2 a1 a2 1 a2 1 a1

1 a2 a1 a1 1 a2 a2 a1 1

1 1 1 a2 a2 a2 a1 a1 a1

1 a1 a2 a2 1 a1 a1 a2 1

1 a2 a1 a2 a1 1 a1 1 a2

3
777777775

2
666666664

a0

a1

a0

a2

a0

a1

a1

a2

a0

3
777777775

=

2
666666664

4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
2a0 + 4a1 + 3a2
4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
8a0 + a1

4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
2a0 + 4a1 + 3a2

3
777777775

(3)

2.2 Eigenvalue Technique - Binary Case

In [1] a group is formulated and described by (M;�)

where M = fmig is the set of all possible 2
n minterms

for a Boolean function f and � is the exclusive-OR

operation applied bit by bit over a pair (mi;mj). This

group can be used with the function of interest f to

form a Cayley graph. The 2n � 2n adjacency matrix

A = [aij] of the Cayley graph is formed using the rela-

tionship given in Equation 4.

aij = f(mi �mj) (4)

Since Equation 4 evaluates to the Boolean constants

0 or 1 the resulting undirected graph contains non-

weighted edges and yields a Cayley graph. The spec-

trum of the graph, de�ned as the set of eigenvalues of

A [5, 9], is also the R-encoded Walsh spectrum. R-

encoding refers to mapping function values of Boolean

0 to the integer 0 and Boolean 1 to the integer +1.

In [24] extensions of the method presented in [1] are

given without proof. In particular it is shown that



the Walsh spectrum of the complement of f , f , results

when the group (M;�) is used where � is the bitwise

equivalence operator (the exclusive-NOR) and that the

S-encoded spectrum results when the elements ofA are

mapped to the integer values +1 and -1. The mapping

of the A elements to the two roots of unity e
j0 = +1

and e
j� = �1 result in a Cayley color graph. The

Cayley color graph is a completely connected graph

with edge weights (i.e. colors) corresponding to +1 for

a Boolean 0 constant and -1 for a Boolean constant 1.

3 Extensions Using Cayley Color

Graphs

In contrast to R-encoding as was used in [1], it is

also possible to generate the Walsh coeÆcients of a two-

valued function as a computation of the eigenvalues of

an S-encoded adjacency matrix as described in [24].

In the following subsection a proof of this technique is

given and used as motivation for the extension of the

technique to fully speci�ed p-valued discrete functions

and their corresponding Chrestenson spectra.

3.1 Extensions to the Two-valued Method

As described in [15, 21] and numerous other sources,

conversion from R to S encoded spectra can be accom-

plished as given in Equations 5 and 6.

s0 = 2n � 2r0 (5)

si = �2ri (6)

R-encoding represents a mapping of function range

values such that the Boolean constant 0 is mapped to

the integer 0 and the Boolean constant 1 is mapped

to the integer +1. S-encoding represents the mapping

of the binary Boolean constants to the complex plane

as two roots of unity. This mapping is illustrated in

Figure 2 for two-valued functions.

Lemma 1 Let J denote the k � k matrix of all 1's.
Then the eigenvalues of J are k (with multiplicity one)
and 0 (with multiplicity k-1).

Proof: Since all rows are equal and nonzero,

rank(J)=1. Since a k� k matrix of rank(k� h) has at

least h eigenvalues equal to 0, it is concluded that J has

at least k�1 eigenvalues equal to 0. Since trace(J) = k

and the trace is the sum of the eigenvalues, it follows

that the remaining eigenvalue of J is equal to k. 2

Lemma 2 The all 1's k � k matrix J and the adja-
cency matrix A de�ned by Equation 4 are simultane-
ously diagonalizable.

Figure 2. Complex Plane with Encoded Binary
Function Values

Proof: From [13] it is proven that J and A are si-

multaneously diagonalizable if, and only if, they com-

mute under matrix multiplication. Due to the de�-

nition of A in Equation 4, it is seen that A = A
T.

Therefore, AJ = JA
T = JA thus A and J are simul-

taneously diagonalizable. 2

Theorem 1 The S-encoded Walsh coeÆcients of a
two-valued function are given as the set of eigenval-
ues of the adjacency matrix A de�ned by Equation 4
with all 0-valued components replaced by +1 and all
1-valued components replaced by -1.

Proof: The 2n � 2n A matrix may be represented

as an S-encoded version B as given by the relationship

in Equation 7 where the 2n � 2n J matrix is one with

all elements equal to +1.

B = J� 2A (7)

From Lemma 2, J and A are simultaneously diago-

nalizable and a nonsingular similarity matrix Sm exists

that diagonalizes each. The diagonal matrices DJ and

DA corresponding to the similarity transform matrix

SM are given in Equations 8 and 9.

DJ = S
�1
m JSm (8)

DA = S
�1
m ASm (9)

From Equations 8 and 9, it is observed that another

diagonal matrix, DB results as follows.



DB = DJ � 2DA = S
�1
m (J � 2A)Sm = S

�1
m JSm �

2S
�1
m ASm

The eigenvalues of B and DB are the same due to

the existence of the similarity transform Sm. Thus,

the eigenvalues of B = J�2A are of the form �i�2�j
where f�ig and f�ig are the eigenvalues of J and A

respectively. From Lemma 1 it is seen that the eigen-

values of J are �0 = 2n with all remaining �i = 0 for

all i 6= 0.

Since e = (1; 1; : : : ; 1)T is an eigenvector of J cor-

responding to the eigenvalue �0 = 2n and �0 = #10s

in a row of A is an eigenvalue of A, one eigenvalue of

B = J � 2A is 2n � 2�0 which is of the form of s0 as

given in Equation 5. All other eigenvalues must be of

the form 0 � 2�j where j 6= 0 yielding the remaining

Walsh spectral coeÆcients, si, as given in Equation 6.

2

3.2 Cayley Color Graph Spectrum for p-valued
Functions

To extend the Cayley color graph spectrum compu-

tation method for Chrestenson spectrum calculations

for fully speci�ed p-valued functions, it is necessary to

formulate an appropriate algebraic group. The � op-

erator used for the case of two-valued functions can be

viewed as an arithmetic operation in GF (2). With this

point of view � can be considered as addition or sub-

traction modulo-2 over the set of elements inM . While

the addition operation modulo-p does indeed result in a

Cayley color graph [25], the spectrum of the graph does

not result in the corresponding Chrestenson spectrum

for the function of interest. This is easy to see since the

diagonal of the resulting adjacency matrix A does not

contain same valued elements as is the case for two-

valued functions; however, if the operator 	p is used

where 	p represents the di�erence modulo-p, this char-

acteristic is preserved. Hence, as is analogous to the

technique for two-valued functions, a group (M;	p)

may be used and the adjacency matrix for a discrete

p-valued function may be formed with each component

de�ned by the relationship in Equation 10 where each

aij is colored by the mapping de�ned above.

aij = f(mi 	p mj) (10)

4 Example Calculation

As an example of the extension of the Cayley color

graph method for computing the Chrestenson spec-

trum of a fully speci�ed p-valued function, consider

the ternary-valued function (i.e. p = 3) de�ned by

the truth table given in Table 1. Using the group and

correspondingA matrix de�ned in Equation 10 the ad-

jacency matrix given in Equation 11 results. Note that

the entries of the adjacency matrix are in fact the com-

plex conjugates of the function values when mapped to

the roots of unity as shown in Figure 1. If complex con-

jugates are not used in the formation of A, then the

resulting eigenvalues of A are the complex conjugates

of the spectrum [13].

A =

2
666666664

1 1 a1 a1 1 a2 a2 a1 1

a1 1 1 a2 a1 1 1 a2 a1

1 a1 1 1 a2 a1 a1 1 a2

a2 a1 1 1 1 a1 a1 1 a2

1 a2 a1 a1 1 1 a2 a1 1

a1 1 a2 1 a1 1 1 a2 a1

a1 1 a2 a2 a1 1 1 1 a1

a2 a1 1 1 a2 a1 a1 1 1

1 a2 a1 a1 1 a2 1 a1 1

3
777777775

(11)

The adjacency matrix given in Equation 11 has

several structural properties typical of Cayley color

graphs. A is a matrix with all values along the diag-

onal equivalent to the value of the function at the all-

zero minterm m0 = 00 : : :0. Also, the �rst column of

A corresponds to the complex conjugate values of the

function when mapped to the complex plane. When A

is considered in terms of all p� p submatrix blocks (in

this case p = 3), it is seen that A is a block circulant

matrix with each submatrix being circulant. It is also

noted that the matrix AT can likewise be used to com-

pute the Chrestenson spectrum since the eigenvalues of

A are equivalent to those of AT [13]. Obtaining A or

A
T corresponds to taking the di�erence modulo-p of

minterm values labeling the rows of A with those of

the column or vice versa.

Computing the eigenvalues of A in Equation 11 re-

sults in the set of values �i = (4a0 + 3a1 + 2a2; 3a0 +

2a1+4a2; 2a0+4a1+3a2; 4a0+3a1+2a2; 3a0+2a1+

4a2; 8a0 + a1; 4a0 + 3a1 + 2a2; 3a0 + 2a1 + 4a2; 2a0 +

4a1 +3a2) which are also the Chrestenson spectral co-

eÆcients as can be veri�ed by comparison to Equation

3 where the spectrum is computed according to the

de�nition.

5 Conclusions

The computation of the Chrestenson spectrum of a

p-valued discrete function is shown to be accomplished

by computing the spectrum of an adjacency matrix rep-

resenting a Cayley color graph. The matrix is formed

as a collection of column (or row) vectors each of which

is a permutation of the ternary function truth vector

when encoded in the complex plane. These results are

of theoretical interest since they illustrate the relation-

ship between the spectrum of a multi-valued discrete

function and the eigenvalue computation problem.



Further work will focus on the use of these results

to formulate eÆcient algorithms for the computation

of Chrestenson spectra. Because the adjacency matri-

ces are block circulant an implicit algorithm may be

formed using decision diagrams to represent the func-

tion of interest. Exploiting the block circulant property

of the adjacency matrix allows the decision diagram to

represent each column of the adjacency matrix under

a well-de�ned permutation.

Another interesting application of these results is

that well-known results in algebraic graph theory al-

low for the identi�cation of bounds for the largest (and

second largest) and smallest eigenvalue (in magnitude)

to be determined based on properties of the adjacency

matrix. This can lead to very useful results for tech-

niques that require the use of the largest and small-

est valued spectral coeÆcients (in magnitude) since

such values can be bounded directly without search-

ing through the entire spectrum of a function.
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