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Abstract

The Karhunen-Loève (KL) transform of a dis-
crete multiple-valued logic function is studied with
respect to algebraic graph theory. The spectrum of
a Cayley graph defined over the symmetry group is
observed to be equivalent to the KL spectrum of a
discrete function when the Cayley graph is gener-
ated using that function. It is also observed that
the autocorrelation of the discrete function using the
symmetry group operator is equivalent to the adja-
cency matrix of the Cayley graph. In addition to the
theoretical interests, the KL spectrum of a discrete
multiple-valued logic function can have applications
in compact function representation and the determi-
nation of function estimates with a reduced support
set. Example computations are shown in addition to
the presentation of the mathematical properties.

1 Introduction

The KL transform is named for Kari Karhunen
and Michel Loève who developed it as a series ex-
pansion method for continuous random processes
[6, 10, 11]. Originally, Harold Hotelling studied the
discrete formulation of the KL transform [4] and for
this reason, the Karhunen-Loève (KL) transform is
also known as the Hotelling transform. The KL
transform is heavily utilized for performance eval-
uation of compression algorithms in the digital sig-
nal processing community since it has been proven
to be the optimum transform for the compression of
a sampled sequence in the sense that the KL spec-
trum contains the largest number of zero-valued co-
efficients [5]. Because the basis functions of the KL
transform are data dependent, the KL spectrum is
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generally used as a benchmark to judge the effec-
tiveness of the data compression capability of other
more easily computed transforms.

The KL transform is also used in clustering analy-
sis to determine a new coordinate system for sample
data where the largest variance of a projection of the
data lies on the first axis, the next largest variance
on the second axis, and so on. Because these axes
are orthogonal, this approach allows for reducing the
dimensionality of the data set by eliminating those
coordinate axes with small variances. This data re-
duction technique is commonly referred to as Prin-
ciple Component Analysis (PCA) [3] by the analysts
who employ it for this purpose. An example of the
recent application of PCA in a computer vision sys-
tem is [14].

The KL transform is a unitary transform with
basis functions that are orthogonal eigenvectors of
the covariance matrix of a data set or measure-
ment vector. In this paper, we are interested in dis-
crete Multiple-valued Logic (MVL) functions, thus
the eigenvectors of the autocorrelation matrix of the
function form the basis. The KL spectrum is defined
as the set of eigenvalues associated with the basis
functions. It is the fact that the basis functions de-
pend on the actual function to be transformed that
discourages widespread use of the KL transform as
compared to other transforms that have a common,
well-known set of basis functions independent of the
function to be transformed and often with other
desirable features such as a recursive construction
characteristic.

There has been interest in the relationship be-
tween algebraic graph theory and the spectra of
discrete functions. This relationship can be conve-
niently described using particular algebraic groups
and generators that correspond to Cayley graphs. In
particular, it has been shown that the Walsh spec-
trum of a binary-valued function f(x1, x2, . . . , xn)
may be computed as the spectrum of a Cayley graph



over the elementary additive Abelian group Z2n us-
ing a generator based on f [1]. These results were
generalized to provide a technique to compute the
Chrestenson spectrum of finite non-binary discrete-
valued functions in [15] and extended to handle the
case of mixed-radix functions in [16]. Here, we in-
vestigate the extension of these previous techniques
using the non-Abelian symmetry groups instead of
the Abelian additive (mod(p)) groups. Interestingly,
it is observed that this approach yields the KL trans-
form of the function of interest when the symmetric
group product operator is used to compute the au-
tocorrelation matrix. We note that this is a specific
non-Abelian group as in contrast to the more gen-
eral work where Fourier transforms over non-Abelian
groups are studied as described in [8, 12]. This work
focuses upon the inter-relationship between autocor-
relation functions, Cayley graph spectra, and the KL
spectrum of a discrete function.

The KL transform of a discrete MVL function can
have potential application in serving as a benchmark
in the evaluation of methods to represent compact
forms of the function. An example may be the evalu-
ation of various decision diagram structures that are
formulated to take advantage of zero-valued termi-
nal vertices or as compact signatures in large cell li-
braries. A related technique is described in [9] where
autocorrelation properties are used to find minimal
DD representations. Another possible application is
to use the KL spectra in a mode similar to PCA to
approximate a function of n variables with a func-
tion of m variables where n > m. This could be ac-
complished by establishing a heuristic that yields a
threshold for the variance values below which to dis-
card the associated support variables. Finally, there
is some merit in evaluating the theoretical relation-
ship between algebraic graph theory and the optimal
KL transformation of a discrete MVL function.

The remainder of the paper is organized as fol-
lows. First, a section that defines the mathematical
definitions of the symmetry group and autocorrela-
tion of a discrete function is provided. This section
will also serve to introduce the notation that will
be used throughout the following sections. Next,
the equivalence of the spectrum of a Cayley graph
formed over the symmetric group with a generator
depending on a particular function and that func-
tions’ corresponding KL spectrum is shown. An
example calculation is given and finally conclusions
and future work is outlined.

2 Symmetry Groups, Cayley Graphs,
and Autocorrelation Functions

The symmetric permutation group Sn can be vi-
sualized as consisting of a set of strings with each
string consisting of n unique elements and a permu-
tation operation denoted as ◦. The number of ele-
ments in Sn is n! since the group product operator
◦ results in all possible permutations of the string of
length n.

2.1 Symmetric Permutation Groups
and Notation

Symmetric permutation groups consist of ele-
ments that can be considered as strings of unique
objects. As an example, consider the group
S3 = (S , ◦) where the set of elements S =
{abc, bca, cab, bac, cba, acb}. One way to describe
this set of permutations is to use numerical values
that correspond to each object (i.e. 1 for a, 2 for b
and 3 for c). The six elements of S may be described
with the notation in Table 1. The top row of each
element in the table corresponds to abc with the bot-
tom row corresponding to the permuted order. As
an example, the element denoted as 1 corresponds
to permuting abc to the string cab.

Table 1. Permutation Notation Describing
Elements of S3

(
1 2 3
1 2 3

)
≡0

(
1 2 3
3 1 2

)
≡1

(
1 2 3
2 3 1

)
≡2

(
1 2 3
2 1 3

)
≡3

(
1 2 3
3 2 1

)
≡4

(
1 2 3
1 3 2

)
≡5

Using the permutation definitions in Table 1, the
Cayley table or group operation table corresponding
to ◦ can be formulated as shown in Table 2. In Table
2 the notation is used as defined in Table 1.

An important characteristic of S3 is to note that
the ◦ operation is non-commutative. As an example
2 ◦ 5 = 4; however, 5 ◦ 2 = 3. For this reason S3

is non-Abelian and it is important to interpret the
operations as shown in Table 2 in the proper order.
As Table 2 is written here, the entries in the leftmost
column correspond to the operand to the left of ◦
and the entries at the top of each of column are the
operands to the right of ◦.



Table 2. Cayley Table for the ◦Operator over
S3

◦ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0

Also, it is convenient to use the so-called “cyclic
notation” to represent a particular permutation. As
an example the left-hand side of Equation 1 rep-
resents a permutation of a 5-element object using
the same notation as that shown in Table 1 and the
right-hand side expresses the same permutation in
cyclic notation as a single cycle.

(
1 2 3 4 5
3 5 4 2 1

)
=

(
1 3 4 2 5

)
(1)

The interpretation of the cyclic notation is that
the first element moves to element 3, element 3
moves to element 4, and so on with the last element
(i.e. 5) moving to the first position. Not all permu-
tations can be expressed as a single cycle; however,
they can all be expressed as a set of disjoint cy-
cles. As an example, consider the permutation of a
5-element object as shown in Equation 2 which is
described with two disjoint cycles.

(
1 2 3 4 5
4 5 1 3 2

)
=

(
1 4 3

) (
2 5

)
(2)

2.2 Cayley Graph Over S3

A Cayley graph is a graphical representation of
an algebraic group. A Cayley graph is denoted as
Cay(V,E) where V is the vertex set and E is the
edge set. The elements of V correspond uniquely
to the the elements of the group. In this case, each
vi ∈ V corresponds to each element in the set S. A
subset of S, denoted as Y is formed based on the
use of one or more generators. A generator operates
over a pair in S, (u, v) such that some yi ∈ Y satisfies
u = yiv. When this occurs, an edge ei ∈ E is defined
as the ordered pair (u, v). In general, a Cayley graph

is a directed graph since the edge set is defined as
ordered pairs of elements of V .

In the case of S3, V contains vertices correspond-
ing to the elements in S. Using the notation in Ta-
ble 1, the elements of S are defined as integer values
V = {0, 1, 2, 3, 4, 5}. To form Cay(V,E) an appro-
priate generator, e(si, sj) must be determined. The
generator can be considered to be a function that
depends on two elements in (si, sj) ∈ S and yields a
color value for the Cayley graph edge connecting the
vertices corresponding to (si, sj). If the generator is
binary-valued, Cay(V,E) is not necessarily a fully
connected graph since edges are not present when
e = 0. If e is a p-valued function, the Cayley graph
can be considered to be a fully connected graph with
each edge annotated by 1 of p colors. If one of the p
values is 0, this can be considered to be the absence
of an edge and the resulting Cayley graph is one that
is not necessarily complete and contains edges anno-
tated with 1 of p − 1 possible colors. In any event,
Cayley color graphs can be considered to be a set of
non-colored graphs with each graph having an edge
present if it has a particular color, otherwise no edge
is present.

The spectrum of the Cayley graph is the spectrum
of the adjacency matrix representing the graph [2].
The spectrum of a matrix is the set of roots (and
their respective multiplicities) of the characteristic
matrix commonly referred to as the eigenvalues of
the matrix.

2.3 Discrete Function Autocorrelation

The autocorrelation of a function gives a mea-
sure of that function with itself at all other possible
domain values. The autocorrelation of a discrete
function as defined in [7] is given in Equation 3.

R(u) =
N−1∑
x=0

f(x)f(x �p u) (3)

Equation 3 assumes that f is a discrete function
that depends on a single p-valued variable. The op-
eration �p is the difference modulo-p of the values x
and u when x and u are represented in a component-
wise manner. We note that this definition of au-
tocorrelation is sometimes referred to as the “one-
sided” autocorrelation.

The computation of the autocorrelation of dis-
crete functions can alternatively be expressed in
terms of a vector-matrix equation. In this formu-
lation, the discrete autocorrelation function is given



as a vector Ru with each component corresponding
to a distinct u value. Likewise the function f is rep-
resented as a vector f where each component is a
distinct range value. In this formulation, Equation
4 is used where the (N − 1) × (N − 1) matrix Fu is
termed the autocorrelation matrix.

Ru = Ff (4)

Using the formulation given in Equation 4, the
autocorrelation matrix F is composed of column vec-
tors as given in Equation 5.

F = [f(x � 0) f(x � 1) . . . f{x � (N − 1)}] (5)

3 Computation of the KL Spectrum

This section describes the computation of the KL
spectrum of a discrete MVL function. Specifically,
the KL spectrum of a discrete function is computed
using the definition as provided in the previous sec-
tion followed by a discussion of the relationship with
the spectrum of a Cayley graph.

In classical processing of signals arising from
physical processes, the Wiener-Khinchine theorem
gives the relationship between the autocorrelation
and the power spectral density of a signal. The
Wiener-Khinchine theorem states that the power
spectral density of a physical signal is equivalent to
the Fourier transform of the signal’s autocorrelation
function [17].

In the work described here, we are interested in
a different aspect of the autocorrelation function.
Instead of computing the spectrum of the autocor-
relation function, we examine the spectrum of the
autocorrelation matrix. In [1], a Cayley graph is for-
mulated using the additive Abelian group and the
generator function e = f(mi ⊕ mj) where mi is a
minterm of the binary-valued function f and e is the
edge in the Cayley graph adjacent to vertices of the
group elements mi and mj . In [1] it is also proven
that the spectrum of this Cayley graph is equivalent
to the Walsh transform of the binary-valued function
f . This result is generalized to functions depending
on discrete non-binary valued variables in [16] and to
the class of mixed-radix functions in [15]. This leads
to Observation 1 where the Abelian group consists
of all possible minterms and the group operator is
�.

Observation 1 The autocorrelation matrix as de-
fined in Equation 5 is equivalent to the adjacency
matrices of the Cayley graphs described in [1, 15,
16].

If the � operator in the autocorrelation definition
given in Equation 3 is replaced with the ◦ opera-
tion, the corresponding autocorrelation matrix, F◦
becomes that shown in Equation 6.

F◦ = [f(x ◦ 0) f(x ◦ 1) . . . f{x ◦ (N − 1)}] (6)

The extension of Obervation 1 to the Cayley
graph based on the symmetric group S with the gen-
erator given in Equation 7 leads to the result stated
in Observation 2.

e = f(si ◦ sj) (7)

Observation 2 The autocorrelation matrix F◦
given in Equation 6 is equivalent to the adjacency
matrix of a Cayley graph defined over the symmet-
ric group S using the generator given in Equation
7.

Because the KL spectrum is defined as the set
of eigenvalues of the autocorrelation matrix, and by
Observation 2, this matrix is equivalent to that de-
scribing a particular Cayley graph, it is seen that the
Cayley graph spectrum is in fact the KL spectrum
of the function f .

4 Example KL Spectrum Calcula-
tions

As an example of the calculation of the KL
spectrum of a discrete MVL function, consider
the mixed-radix, binary-valued function defined in
truth-table form in Table 3. Note that this func-
tion can be considered to have a support variable
set consisting of the binary-valued variable x1 and
the ternary-valued variable x2, or, the single sextary-
valued variable X. Also, a mapping is assigned to
each domain value of f in Table 3 although this is
done arbitrarily. The general form of the adjacency
matrix of the Cayley graph for functions with this
set of domain points is given in Equation 8.



A =

⎡
⎢⎢⎢⎢⎢⎢⎣

f(0) f(1) f(2) f(3) f(4) f(5)
f(1) f(2) f(0) f(4) f(5) f(3)
f(2) f(0) f(1) f(5) f(3) f(4)
f(3) f(5) f(4) f(0) f(2) f(1)
f(4) f(3) f(5) f(1) f(0) f(2)
f(5) f(4) f(3) f(2) f(1) f(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

Table 3. Truth-table of Example Function for
Computation of the KL Spectrum

x1 x2 X Mapping f
0 0 0 0 0
0 1 1 1 1
0 2 2 2 1
1 0 3 3 0
1 1 4 4 1
1 2 5 5 0

The vertex set of Cay(V,E) is V = {0, 1, 2, 3, 4, 5}.
The edge set is given by the generator in Equa-
tion 7 which consists of the ordered pairs E =
{(0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 3), (2, 0), (2, 2),
(2, 5), (3, 2), (3, 4), (3, 5), (4, 0), (4, 3), (4, 5), (5, 1),
(5, 3), (5, 4)}. The adjacency matrix describing this
Cay(V,E) is given by the matrix A in Equation 9
and the characteristic equation C(λ) of A is given
in Equation 10.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0
1 1 0 1 0 0
1 0 1 0 0 1
0 0 1 0 1 1
1 0 0 1 0 1
0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

C(λ) = λ6 − 2λ5 − 5λ4 + 6λ3 (10)

The spectrum of Cay(V,E) and corresponding
KL spectrum of f(X) becomes the set of roots of
C(λ). Finding the roots of Equation 10 results in
the set of spectral values λi ∈ Λ.

Λ = {0, 0, 0, 1,−2, 3} (11)

To illustrate the importance of mapping the do-
main values of the function of interest to the vertices
of the Cayley graph, consider the alternative map-
ping of the same example function as shown in Table
4.

Table 4. Truth-table of Example Function
for Computation of the KL Spectrum with
Alternative Mapping

x1 x2 X Mapping f
0 0 0 0 0
0 1 1 3 1
0 2 2 4 1
1 0 3 1 0
1 1 4 5 1
1 2 5 2 0

The corresponding adjacency matrix for this al-
ternatively mapped function is given in Equation 12.
The characteristic equation and eigenvalues (or func-
tion KL spectral coefficients) are given in Equations
13 and 14.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

C(λ) = λ6 − 9λ4 (13)

Λ = {0, 0, 0, 0,−3, 3} (14)

These two examples illustrate the important fact
that although the KL spectra are proven to give
a maximum number of zero-valued coefficients, the
arbitrary mapping of the elements of the S3 group
members to the minterms of the function f also af-
fect the number of zero-elements. In future work,
it is of interest to determine the complexity of find-
ing mappings that yield the “best” KL spectrum in
terms of maximizing the number of zeros in the re-
sulting spectrum and to perhaps develop techniques
to find good mappings.

5 Conclusion

It has been shown that the spectrum of a Cayley
graph over the symmetry group with a particular
generator based on a function of interest is equiva-
lent to the KL spectrum when the autocorrelation
is computed using the group product operator ◦. In



addition to the theoretical interest in relating the
KL spectrum to algebraic graph techniques, this re-
sult can have useful applications with regard to MVL
function estimation techniques and lossless compres-
sion of MVL functions.

In the future it is planned to investigate the ap-
plication of these techniques for generating compact
decision diagram representations of discrete MVL
functions. By representing functions in the KL
spectral domain, an extension of the use of zero-
suppressed binary decision diagrams (ZBDDS) [13]
to the multiple-valued case may lead to compact
representations of this class of functions. It is also
planned to investigate the use of these methods to es-
timate a function f with a dependent support set of
cardinality n with a corresponding estimated func-
tion f̂ that has a dependent variable set of cardinal-
ity m where m < n.
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