
QMDD: A Decision Diagram Structure for

Reversible and Quantum Circuits

D. Michael Miller Mitchell A. Thornton
Dept. of Computer Science Dept. of Computer Science and Engineering

University of Victoria Southern Methodist University
Victoria, BC, Canada Dallas, TX, USA
mmiller@cs.uvic.ca mitch@engr.smu.edu

Abstract

In this paper, we present a novel structure, Quan-
tumMultiple-valuedDecision Diagrams (QMDD), specif-
ically designed to represent and manipulate the matrices
encountered in the specification of reversible and quan-
tum gates and circuits, both binary and multiple-valued.
QMDD use many common decision diagram techniques,
ideas introduced in QuIDDPro and novel techniques in-
troduced here. Building the QMDD for the matrices for
individual gates and the subsequent construction of the
QMDD for the matrix describing a circuit are discussed.
A prototype C implementation is described and experi-
mental results are given that show the new structure is a
promising and compact representation for reversible and
quantum logic circuits.

1. Introduction

The functional behaviour of a primitive reversible
(including quantum) gate can be represented as a trans-
formation matrix and the functional behaviour of a cir-
cuit(cascade) composed of such gates is given by the
product of those matrices. The matrices are complex-
valued for quantum gates. For an r-valued circuit with
n lines, each matrix has dimension rn × rn so in or-
der to handle large circuits it is necessary to develop ef-
ficient methods for the storage and manipulation of the
required matrices.

The use of decision diagrams for storing and manip-
ulating matrices has been previously considered [3, 5].
Recently, Viamontes, Markov and Hayes [12, 13, 14]
have presented the QuIDDPro package for handling the
matrices encountered in specifying and simulating bi-
nary quantum circuits. QuIDDPro uses CUDD, a ro-
bust and highly optimized decision diagram package
developed by Somenzi [10]. In particular, QuIDDPro

uses algebraic decision diagrams [1] as implemented in
CUDD, with some extensions. A major advantage of
this approach is it makes use of the extensive optimiza-
tion in CUDD.

In this work, we introduce an alternative approach
which we call Quantum Multiple-valued Decision Dia-
grams (QMDD). The goal in developing the QMDD rep-
resentation and package is to effectively represent and
manipulate the complex matrices encountered for bi-
nary and multiple-valued reversible / quantum circuits.

2. Reversible and Quantum Circuits

Definition 1. An n-input, n-output, (written n × n)
totally-specifiedMVL function is reversible if it maps each
input assignment to a unique output assignment.

A reversible function defines a permutation of the in-
put patterns and there are thus rn! r-valued, n × n re-
versible functions. Reversible functions are realized by
circuits composed of reversible gates.

Definition 2. An m-input, m-output gate is reversible
if it realizes a reversible function.

A variety of binary reversible gates have been con-
sidered. The family of Toffoli gates [11] is defined as fol-
lows:

Definition 3. An m×m Toffoli gate passes the first m−
1 lines (controls) through unchanged, and inverts the mth

line (target) if the control lines are all 1.

The 2 × 2 Toffoli gate and the 3 × 3 Toffoli gate
have been named the controlled-NOT and controlled-
controlled-NOT gates, respectively. A Toffoli gate with
no controls is a NOT gate.

De Vos et al. [4] have considered the C and N gates
in Table 1 and the controlled versions of those gates,
denoted CC (see Table 2) and CN as generators of the
group of all 2 × 2 3-valued reversible logic functions.



x C C2 N D E
0 1 2 2 1 0
1 2 0 1 0 2
2 0 1 0 2 1

Table 1. 3-valued permutation operators

x y x CC(x, y)
0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 0
1 1 1 1
1 2 1 2
2 0 2 1
2 1 2 2
2 2 2 0

Table 2. 3-valued controlled-cycle

Extensions to the above (including C2, D and E in
Table 1) and synthesis using these gates were consid-
ered in [8]. Negation extends to any r-valued logic as
x′ = (r − 1) − x. There are r − 1 cycle inversions for
r-valued logic defined in the obvious way. Controlled cy-
cle is extended to the m × m case for r-valued logic as
follows:

Definition 4. An m × m r-valued controlled cycle gate
passes the first m − 1 lines (control) through unchanged,
and cycles the mth line (target) by a specified amount (1
to r − 1) if the control lines each assume their specified
active value 0...r − 1.

Controlled-cycle is sufficient for illustrative purposes
in this paper. The application of the methods described
below to the many other possible multiple-valued gates
is straightforward.

Many quantum gates have been defined and studied
in the literature [9]. We here restrict our attention to
quantum circuits composed of:

• NOT gates;

• Controlled-NOT gates;

• The 2-line controlled-V gate that changes the tar-
get line using the transformation given by the ma-
trix V = 1+i

2

(
1 −i
−i 1

)
if the control line has the

value 1;

• The 2-line controlled-V + that changes the tar-
get line using the transformation V+ = V−1 =
1−i
2

(
1 −i
−i 1

)
if the control line has the value 1.

Gates V and V + are often referred to as controlled-
square-root-of-NOT gates since V 2 = (V +)2 = NOT .

Once again, it is important to note that while we only
use a small set of gates for illustration in this paper, the
QMDD methods are directly applicable to other com-
mon quantum gates such as the Hadamard gate, Pauli
gates and rotation gates [9], and many that may be con-
ceived of for multiple-valued quantum logic. The only
requirement is that the behaviour of the gate be describ-
able as a matrix in the manner outlined in the next Sec-
tion.

3. Matrix Representation

The common feature of all the gates noted above
(and other reversible and quantum gates) is that the
transformation performed by a gate, and the transfor-
mation performed by a cascade of gates, can be repre-
sented as a matrix of dimension rn × rn for an n-line
circuit and r-valued logic. For example for n = 3 and
r = 2, the Toffoli gate T (x0, x2; x1), where x0 and x2
are control variables and x1 is the target, has the trans-
formation matrix




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0




(1)

Note that the rows and columns of this matrix are iden-
tified by 3-bit indices in natural order corresponding to
x2x1x0.

The controlled-cycle gate defined in Table 2 (n =
2, r = 3) has the transformation matrix




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0




(2)

In this case, the ordering is as indicated above with
both the variables and indices 3-valued.

The controlled-V gate V (x2; x1), where x2 is the con-
trol and x1 is the target, with n = 3, r = 2 has the trans-
formation matrix




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1+i

2
0 1−i

2
0

0 0 0 0 0 1+i
2

0 1−i
2

0 0 0 0 1−i
2

0 1+i
2

0
0 0 0 0 0 1−i

2
0 1+i

2




(3)



The row and column indices and variable ordering
are the same as for the matrix in (1). This matrix has
complex-valued entries and is not a permutation ma-
trix.

4. Quantum Multiple-valued Decision
Diagrams

The representation of a matrix by a decision dia-
grams is discussed in [3, 5]. The QMDD structure pre-
sented below extends the earlier approach.

Definition 5. AQMDD is a directed acyclic graph with
the following properties:

1. There is a single terminal vertex with associated
value 1. The terminal vertex has no outgoing edges.

2. There are some number of non-terminal vertices
each labeled by an r2-valued selection variable. Each
nonterminal vertex has r2 outgoing edges designated
e0, e1, ..., er2−1.

3. One vertex is the start vertex and has a single in-
coming edge that itself has no source vertex.

4. Every edge in the QMDD (including the one leading
to the start vertex) has an associated complex-valued
weight.

5. The selection variables are ordered, assumewith no
loss of generality x0 ≺ x1 ≺ ... ≺ xn−1, and the
QMDD satisfies the following two rules:

• Each selection variable appears at most once on
each path from the start vertex to the terminal
vertex.

• An edge from a nonterminal vertex labeled xi

points to a nonterminal vertex labeled xj , j < i
or to the terminal vertex. Hence x0 is closest
to the terminal vertex and xk for the highest k
present labels the start vertex.

6. No nonterminal vertex is redundant, i.e. no non-
terminal vertex has its r2 outgoing edges all with the
same weight and pointing to a common vertex.

7. Each nonterminal node is normalized such that
ej , 0 ≤ j ≤ r2 − 1 has weight 1 and ∀ei, i < j have
weight 0. Note, such an ej must exist or the vertex
would be redundant (all weights 0).

8. Nonterminal vertices are unique, i.e. no two non-
terminal vertices labeled by the same xi can have
the same set of outgoing edges (destinations and
weights).

Note that the start vertex is a nonterminal vertex ex-
cept in the case where the QMDD has no nonterminal
vertices in which case the QMDD consists of just the

terminal vertex which is also the start vertex. This ex-
treme case corresponds to a constant valued matrix.

Figure 1 illustrates the QMDD representation for a
quantum V gate. The 0,1,2,3 edges from each vertex are
from left to right. The weights are shown next to each
line.

x2

x1

x0

x1

1

1/2+1/2i

0:1

1

i

0

1

1

1

1
1

1

i

0

0
0

00

Figure 1. QMDD for V (x2; x1) with n = 3 (see
eqn. 3).

Definition 6. To evaluate a QMDD for a particular
selection variable assignment, find the path from the start
vertex to the terminal vertex (including the edge leading to
the start vertex) determined by the assignment. In partic-
ular, from a vertex labeled xi follow edge ej where j is the
value assigned to xi. Note that some variables may not ap-
pear on the designated path. The value associated with the
selection variable assignment is the product of the weights
on the edges in the corresponding path.

Theorem 1. An rn × rn complex valued matrix M has
a unique (up to variable reordering or relabeling) QMDD
representation.

Proof: The proof is omitted due to space limitations
and is available from the authors.

Three matrix operations are required and we here
describe how they are computed directly on QMDD.
Given an edge e, we use: w(e) to denote the weight on
e; v(e) to denote the vertex e points to; x(e) to denote
the variable that labels the vertex e points to (not de-
fined for the terminal vertex); Ei(e) to denote the ith

edge out of the vertex that e points to; and T (e) to de-
note a Boolean test that is true if e points to the termi-
nal vertex. The variables adhere to the same order in all
QMDD and we shall use ≺ to denote the fact one vari-
able precedes another and hence appears closer to the
terminal vertex in the QMDD. r is the radix of the
logic system being considered so every nonterminal ver-
tex has r2 outgoing edges.



Matrix Addition: Let e0 and e1 be two edges point-
ing to two QMDD (matrices) to be added. The proce-
dure is recursive and involves the following steps:

1. If T (e1), swap e0 and e1.

2. If T (e0),

(a) if w(e0) = 0, the result is e1;

(b) if T (e1), the result is an edge pointing to the
terminal vertex with weight w(e0) + w(e1).

3. If T (e0) or x(e0) ≺ x(e1), swap e0 and e1.

4. For i = 0, 1, ..., r2 − 1

(a) Create an edge p pointing to v(Ei(e0)) with
weight w(e0) × w(Ei(e0)).

(b) If x(e0) = x(e1), create an edge q pointing to
v(Ei(e1)) with weight w(e1)×w(Ei(e1)), else
set q = y.

(c) Recursively invoke this procedure to add p
and q giving zi.

5. The result is an edge pointing to a vertex labeled
x(e0) with outgoing edges zi, i = 0, 1, ...r2−1. This
vertex and the edge pointing to it are normalized
as described above.

Matrix Multiplication: Let e0 and e1 be two edges
pointing to two QMDD (matrices) to be multiplied. The
procedure is recursive and involves the following steps:

1. If T (e1), swap e0 and e1.

2. If T (e0) then

(a) if w(e0) = 0, the result is e0;

(b) if w(e0) = 1, the result is e1;

(c) otherwise, the result is an edge pointing to
v(e1) with weight w(e0) × w(e1).

3. If x(e0) ≺ x(e1), swap e0 and e1.

4. For i = 0, r, 2r, ..., (r − 1)r
For j = 0, 1, ..., r − 1

Set zi+j to be an edge with weight 0
pointing to the terminal vertex.
For k = 0, 1, ..., r − 1

(i) Create an edge p pointing to v(Ei+k(e0))
with weight w(e0) × w(Ei+k(e0)).
(ii) If x(e0) = x(e1), create an edge q
pointing to v(Ej+r×k(e1))
with weight w(e1) × w(Ej+r×k(e1)),
else set q = y.
(iii) Recursively invoke this procedure to
multiply the QMDD pointed to by p and q
and then use the procedure above to add
the result to the QMDD pointed to by zi+j .
The result of the addition replaces zi+j .

5. The result is an edge pointing to a vertex labeled
x(e0) with outgoing edges zi, i = 0, 1, ...r2−1. This
vertex and the edge pointing to it are normalized
as described above.

Kronecker Product: Let e0 and e1 be two edges
pointing to two QMDD (matrices) for which we want to
compute the Kronecker product A

⊗
B (note that this

operation is not commutative). For the application con-
sidered here, the selection variables for B precede the
selection variables for A. This greatly reduces the com-
plexity of the algorithm for computing the Kronecker
product of two QMDD. The procedure is recursive and
involves the following steps:

1. If T (e0) then

(a) if w(e0) = 0, the result is e0;

(b) if w(e0) = 1, the result is e1;

(c) otherwise, the result is an edge pointing to
v(e1) with weight w(e0) × w(e1).

2. For i = 0, 1, ..., r2 − 1
Recursively invoke this procedure to find the Kro-
necker product of Ei(e0) and e1 setting zi to the
result.

3. The result is an edge pointing to a vertex labeled
x(e0) with outgoing edges zi, i = 0, 1, ...r2−1. This
vertex and the edge pointing to it are normalized
as described above.

Gate QMDD Construction: Given these basic op-
erations, an important procedure we have developed
builds the QMDD representation of the matrix defin-
ing a gate transformation. Assume, as above, the vari-
able order x0, x1, ..., xn−1 from the terminal vertex to-
wards the start vertex. A gate G is specified by the r×r
base transition matrix M , the target line xt and a possi-
ble empty set of control lines C. Space here only allows
us to outline the procedure. A detailed understanding
is best derived from the C code implementation avail-
able from the authors.

The procedure builds the QMDD from the terminal
vertex towards the start vertex. It has three phases:

1. Variables below the target: For these variables,
r2 separate QMDD are constructed. The (i×r+j)th

QMDD has a path following the active values (the
values required to activate the controls) for the
control variables to the terminal value Mi,j with
all other paths leading to 0. Non-control variables
(unconnected lines) are taken into account through
certain identity matrices combined with the active
part of the QMDD using Kronecker products.

2. The target variable: A single QMDD is formed
with the start vertex controlled by the target vari-



able and the edges from that vertex leading to the
QMDDs constructed in 1.

3. Variables above the target: The upper part of
the QMDD has a path following the active values
for the control variables with all other paths lead-
ing to 0. Again, non-control variables are taken into
account through appropriate identity matrices and
Kronecker products.

The most important aspect of this procedure is that
it builds the QMDD corresponding to a gate from termi-
nal to start vertex in a single pass by iterating through
x0 to xn−1 with no backtracking or recursion. It is thus
quite efficient and to a large extent the time required
is independent of the complexity of the gate under con-
sideration.

The above outlines how the QMDD giving the matrix
tranformation defining a single gate is constructed. For
a cascade of gates (circuit) G0G1...Gt−1 where transfor-
mation for gate Gi is defined by matrix Mi, the transfor-
mation for the complete circuit is Mt−1×Mt−2×...×M0.

5. Implementation Notes and Efficiency

We have implemented a QMDD package in C (avail-
able at www.cs.uvic.ca/~mmiller/QMDD). Because of
its unique approach, this is a stand-alone program
which is not built on top of an existing package such
as CUDD.

We use standard dynamic memory allocation tech-
niques and a unique table as introduced in [2] for cre-
ation and storing vertices. The unique table ensures the
uniqueness of the representation.

A computed table [2] is used to reduce duplicate com-
putations. When an operation AopB is to be performed
where A and B are two matrices represented as QMDD
and op denotes one of matrix addition, matrix multi-
plication or Kronecker product, the computed table is
checked to see if the result of the computation is avail-
able there before performing the full computation. Since
the computations are themselves recursive, this check is
performed at each recursive step so that results known
for subcomputations can also be employed.

To further reduce computation time for matrix mul-
tiplication and the Kronecker product, a flag is associ-
ated with each vertex to identify whether the QMDD
it and its descendants comprise represents an identity
matrix. The terminal vertex, which has value 1, rep-
resents the r0 × r0 identity matrix. Each nonterminal
vertex represents a block matrix and is an identity ma-
trix only if the block matrices on the diagonal are iden-
tity matrices involving one less variable and all off diag-
onal entries are 0 matrices. These conditions are readily
checked by examining the edges from the vertex in ques-

Benchmark Lines Gates QMDD Vertices
ham3tc.tfc 3 3 10
3 17tc.tfc 3 6 10
hwb4tc.tfc 4 17 22
xor5d1.tfc 5 4 10
mod5d1.tfc 5 8 13
5mod5tc.tfc 5 17 18
hwb5tc.tfc 5 55 47

Table 3. Selected Reversible Benchmarks.

tion and the vertices those edges point to. Note that the
check only goes to depth 1 because it is known whether
each immediate descendant is an identity matrix or rep-
resents a 0 matrix (an edge with weight 0 pointing to
the terminal vertex).

6. Experimental Results

We have used our package to build QMDDs for a se-
lection of benchmarks available on the reversible logic
site maintained by D. Maslov [6]. The results are shown
in Table 3. The circuits shown in this table are quite
small for a reason. In order to verify our work, we built
the QMDD for each specification from the circuit and
also by recursive partitioning of the permutation defin-
ing the reversible function. Testing for equivalence only
requires we check equality of the start edges for the re-
sulting pair of QMDD. Although limited to fairly small
problems, the above was quite useful in building con-
fidence in the correctness of our implementation. The
execution time for all the examples is negligible.

As a larger scale example we consider a circuit known
as cycle17 3 [6]. The circuit has 20 lines and 48 Toffoli
gates with from 2 to 18 inputs. The matrix representa-
tions for each gate and the circuit itself are 220×220 per-
mutation matrices. Our prototype package reads the cir-
cuit specification, builds the QMDD for each gate, and
finds the QMDD for the circuit (by multiplying the 48
gate QMDD) in negligible time (reported as 0.0 user
seconds by the UNIX time function on a Sun server).
The QMDD for the circuit has 236 vertices with a to-
tal of 3,651 vertex spaces being allocated.

A total of 130,920 computed table lookups were per-
formed with 56,537 of 65,424 add lookups hits, 38,614 of
64,847 multiplication lookups hits and 160 of 649 Kro-
necker product lookups hits, where a hit means the re-
sult was found in the computed table thereby avoiding
recomputation. This experiment was run with a unique
table with 8,192 buckets and a computed table with
4,096 slots. Note that if no computed table is used this
problem takes 72 user seconds on the same machine.
This illustrates the critical importance of the computed
table for larger problems.



Figure 2. A reversible ternary full adder [8].

x
y
C

x

C
Sum
propagate

A:
VV V+ V V V+ VV V V+

B: C:
0
in

out

Figure 3. Three implementations of a binary full
adder [7].

Figure 2 shows a circuit for a ternary full adder as
presented in [8]. The black circles indicate controls with
each one labeled by the active control value for that con-
nection. C1 and C2 represent cycle-by-1 and cycle-by-2
operations respectively. The QMDD for the circuit has
23 vertices with 180 vertex spaces in total being used
during its construction. There were 12,738 computed ta-
ble references with a hit rate of 80.8%. Again the com-
putation time is negligible.

As a final example, we consider the verification of
three implementations of a binary 3-bit full adder as
shown in Figure 3; one Toffoli gate circuit and two quan-
tum gate circuits are given. In building the QMDD for
circuit A, space for 38 vertices was allocated. Building
the QMDD for circuit B required an additional 69 ver-
tices while building the QMDD for circuit C required
only a further 4. The QMDD for each circuit is, as ex-
pected, the same and requires 9 vertices. The key thing
to note is that having built QMDD for two circuits, ver-
ifying that the two circuits have the same functionality
and hence identical QMDD only requires that we ver-
ify that the edges, including the weights, leading to the
start vertices for the two QMDD are the same. One does
not have to compare the complete QMDD. This is a re-
sult of using a common unique table.

7. Conclusion

We have presented QMDD, a new decision diagram
representation targeted to the matrices encountered in
specifying reversible and quantum gates and circuits,
and the results for a prototype implementation that
show it is efficient for circuits of quite reasonable size.

Our ongoing work involves further development of
the package including a QuIDDpro-like interface, and
examining the possibility of QMDD as a representation
for use in a circuit synthesis tool.

Acknowledgements

This work was supported by a Discovery Grant from
the Natural Sciences and Engineering Research Coun-
cil of Canada. David Goodman assisted in gathering
some of the experimental results.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E.Macii, A. Pardo, andF. Somenzi. Algebric decision di-
agramsandtheirapplications. Form.MethodsSyst.Des.,
10(2-3):171–206, 1997.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient im-
plementation of a bdd package. In 27th Design Automa-
tion Conference, June 1990.

[3] E. Clarke, K. Mcmillan, X. Zhao, M. Fujita, and J. Yang.
Spectral transforms for large boolean functions with ap-
plications to technology mapping. Formal Methods in
System Design, 10(2-3):137–148, 1997.

[4] A. De Vos, B. Raa, and L. Storme. Generating the group
of reversible logic gates. J. of Physics A: Mathematical
and General, 35:7063–7078, 2002.

[5] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-
terminal binary decision diagrams: An efficient data
structure formatrix representation. Form.Methods Syst.
Des., 10(2-3):149–169, 1997.

[6] D. Maslov. Reversible logic synthesis benchmarks page.
http://www.cs.uvic.ca/~dmaslov/, 2005.

[7] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck.
Quantum circuit simplification using templates. In De-
sign andTestEurope (DATE), pages 1208–1213,Munich,
Germany, March 2005.

[8] M. Miller, G. Dueck, and D. Maslov. A synthesis method
for MVL reversible logic. In International Symposium
onMultiple-Valued Logic, pages 74–80,Toronto,Canada,
May 2004.

[9] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge Univ. Press, 2000.

[10] F. Somenzi. CUDD: CU Decision Diagram pack-
age - release 2.4.1. http://vlsi.colorado.edu/~fabio/
CUDD/cuddIntro.html, 2005.

[11] T. Toffoli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

[12] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-
based simulation of quantum computation in the state-
vector anddensity-matrix representation. InProceedings
of SPIE, volume 5436, April 2004.

[13] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-
based simulation of quantum computation in the density
matrix representation. Quantum Information &Compu-
tation, 5(2):113–130, 2005.

[14] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Quid-
dpro: High-performance quantum circuit simulation.
http://vlsicad.eecs.umich.edu/Quantum/qp/, 2005.


