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Abstract 
We describe the use of Grover’s algorithm as 

implemented in a quantum logic circuit that produces a 
solution for a classical switching circuit design problem. 
The particular application described here is to determine 
a Fixed Polarity Reed-Muller (FPRM) form that satisfies 
a threshold value constraint, thus we find a particular 
FPRM form among all 2n FPRM forms that has a number 
of terms less than or equal to the threshold value. 
Grover’s algorithm is implemented in a quantum logic 
circuit that also contains a subcircuit that expresses all 
possible FPRM solutions of a given function.  This 
approach illustrates how fast transforms as known from 
spectral theory can be combined with quantum computing 
as a part of an oracle. 
 

1. Introduction 
The original quantum search algorithm of Grover 

finds a single solution, a number that satisfies the quantum 
oracle F . A quantum oracle can be considered as a 
Boolean function F  with a solution minterm mi that 
satisfies F (i.e. ( ) 1iF m = ). Finding a solution can be thus 
visualized as finding a single number with value “1” (a 
true minterm) in a Karnaugh Map of a binary-valued 
function F in which all other cells have values 0. 
Obviously, if no additional information is available, 
classical SAT algorithms can be employed that have worst-
case exponential behavior.   When there are M >1 
solutions, a variant of Grover’s algorithm can be 
employed to find all solutions (SAT-ALL).  

A generic machine-learning problem can be 
formulated as finding the simplest rule describing a 
Boolean function representing the set of all solutions. In 
this work, the rule is expressed as a Fixed Polarity Reed-
Muller expression; however, variations for other types of 
expressions such as Exclusive-OR Sum of Products 
(ESOP) are also possible. In the case of a single solution, 
our algorithm reduces to the classical algorithm of Grover 
with the “database” that is searched being that of a binary-

valued vector of length 2n . From this aspect, this research 
is only of theoretical value since it is unlikely that a 
quantum computer with 2n  qubits will be built in the near 
future; however, it is of interest that classical EDA 
problems can be sped-up using quantum computing 
principles. 

A classic problem in binary logic minimization is that 
of minimizing a single-output Boolean function using a 
two-level structure consisting of the exclusive-OR of an 
array of ANDs of literals. If there is no constraint on the 
literals, the expression is called the Exclusive Sum of 
Product expression or ESOP. When all literals are not 
negated, the problem is that of finding the Positive 
Polarity Reed-Muller form (PPRM). A generalization of 
PPRM is called the Fixed Polarity Reed-Muller (FPRM) 
form where every variable is either negated or not 
consistently in the same polarity in every term of the 
expression. Thus, FPRM ' 'F a b=  has the polarity 
number 3 ( 0, 0a b= = ) and the equivalent PPRM 

1F a b ab= ⊕ ⊕ ⊕  has the polarity number 0 
( 1, 1a b= = ). 

Several heuristic methods have been formulated in the 
past for both ESOP minimization [19,20] and for FPRM 
minimization [7,8].  In this work, we present a 
fundamentally new approach to FPRM minimization that 
is based on quantum logic and the use of Grover’s 
algorithm. This approach can be extended to several 
canonical XOR forms [7] as well as to the non-canonical 
ESOPs; however, here only the FPRM case is discussed. 
It can be observed that the method is based on controlling 
stages of butterfly diagrams and thus similar approaches 
can be applied to any transform that can be described by a 
butterfly diagram.  
 

2. FPRM and Quantum Logic Background 
This section contains preliminary background 

discussion of two basic topics; the theory of FPRM forms 
and the basics of quantum logic circuits. 



2.1. FPRM Theory 
 
A switching function is commonly described in a 

sum-of-minterms form that is canonic and in the binary 
case represents a collection of conjunctive terms joined by 
a disjunctive operator.  As an example, all binary 
functions of three variables may be expressed in the form 

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3 6 1 2 3 7 1 2 3

F m x x x m x x x m x x x m x x x
m x x x m x x x m x x x m x x x

= + + +
+ + + +

 

where mi∈{0,1} are commonly referred to as the minterms 
of the function f.  Alternatively, such functions may also 
be represented as a Reed-Muller expansion of a given 
polarity using a collection of conjunctive terms joined by 
the modulo-additive operator as  

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

1F a a x a x a x a x x
a x x a x x a x x x

= ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕

  

where ai∈{0,1} are commonly referred to as the FPRM 
spectral coefficients and ix represents a literal in either 
complemented or uncomplemented form consistent for all 
values of i.  The particular assignment of polarities of 
dependent variables ix leads to the polarity number. For 
example, 1 2 3 0x x x → , 1 2 3 3x x x → , 1 2 3 4x x x → , etc. 

The problem we address here is that of finding a 
polarity number P T≤  such that a Reed-Muller 
expansion can be formed where at most T spectral 
coefficients are non-zero.  The solution of this problem 
allows for the realization of a FPRM expansion that 
utilizes no more than T conjunctive operations and is a 
problem of interest for the logic synthesis and verification 
community. 

The two expressions shown previously are both affine 
functions that are related by a linear transformation.  This 
transformation is well-known and commonly 
characterized by a linear transformation matrix as the 
fixed-polarity Reed-Muller transform [16,17,18].  The 
structure of this transformation matrix can be expressed as 
a Kronecker (or tensor) matrix product where each 
dependent variable is represented by a matrix representing 
a given polarity.  Here, we use the symbol ⊗ to denote the 
Kronecker product (Kronecker multiplication) operation. 
As an example, the transformation matrix for the PPRM 
transformation is given as 

1 .1

1 0
1 1

n

P Pn Pii
M M M

=

⎡ ⎤= = ⊗⎢ ⎥
⎣ ⎦

 

1NM  and 1PM  are used to denote transformation 
matrices for complemented and positive-polarity variables 
respectively.  As an example the transformation matrix for 
an FPRM of polarity 5 (1012) is formed as 

1 1 1

1 1 1 0 1 1
.

0 1 1 1 0 1N P NM M M ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗ = ⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Due to the Kronecker product decomposition of an 
FPRM transformation matrix, the techniques commonly 
attributed to [21] may be used to represent the 
transformation in a so-called “butterfly” signal flow-graph 
(also known as a “fast transform”) where edges represent 
multiplicative weights (in this case all weights are unity) 
and vertices represent additions modulo-2, as shown in 
Figure 1.   

 
Figure 1: Butterfly signal flow-graph 

 
As described in detail in [9] butterfly diagrams may 

be devised for any given polarity number for a FPRM 
expansion.  Unfortunately, finding the “best” polarity 
number and corresponding maximal number of zero-
valued Reed-Muller coefficients resulting in the “best” 
butterfly structure is very challenging.  In this work, we 
show how the use of quantum logic circuits can give an 
optimal polarity number with respect to a threshold value. 
 
2.2 Quantum Logic Circuits 

One of the most important quantum gates is the 
quantum XOR gate (also called the Feynman gate or 
Controlled-Not gate - CNOT).  Logically, the CNOT gate 
can be described by two equations: P a= , Q a b= ⊕ , 
where bit a is referred to as the control bit and b is the 
controlled or data bit. Input variables are a and b, output 
variables are P and Q. When the control bit a has value 
|0> the gate does nothing, the controlled bit b has the same 
value on input and on output. However, when the first bit 
a has value |1>, the controlled bit b is inverted 
(since1 'b b⊕ = ). Therefore this gate is called Controlled-
NOT, which means that the controlling bit controls the 
NOT operation.  

This gate can be extended to a ternary Toffoli gate 
with GF(3) operations replacing GF(2) operations as 
shown in Figure 2 and used to build ternary butterflies for 
ternary Reed-Muller expansions and transforms. A 
generalized Toffoli gate can be built (in binary or MV 
logic) where the number of control inputs is arbitrary. The 
Toffoli gate is also called the Controlled-Controlled-NOT, 
since the NOT operation is controlled by a product of 
inputs a and b. Feynman, Fredkin and Toffoli gates, 
named after their inventors, are examples of controlled 
gates. Controlled gates are also created for multi-valued 
and hybrid quantum circuits. In hybrid logic, a ternary bit 
A may control a binary bit B or a binary bit may control a 



quaternary bit, but every “wire” is for one radix logic 
only, binary, ternary or quaternary throughout the entire 
circuit. Each “wire” in such a circuit represents an 
instance of a qubit (or qudit) in a quantum circuit diagram.  
We have designed quantum oracles for all these types of 
gates. 
 
 
 
 

 
Figure 2: A 3*3 Generalized Toffoli Gate. Symbol 
+ stands for GF(2) and GF(3) addition for binary 

and ternary quantum case respectively  
 

 
It is a significant fact that the unitary quantum gates 

such as CNOT can realize any quantum logic function 
(including standard binary).  Every non-reversible 
Boolean or multiple-valued circuit C1 (with arbitrary 
numbers of inputs and outputs) can be transformed to a 
reversible circuit C2 (described by a permutation matrix).  
 

3. Proposed Architecture 
In this section, we introduce the proposed architecture 

for finding minimum FPRM 
 

3.1 Architecture 
The proposed architecture is shown in Figure 3.  

There are 4 blocks in the architecture, FPRM processor, 
Cost Function and Comparator, and corresponding 
inverse blocks Inverse FPRM processor, Inverse Cost 
Function and Comparator.   

 
Figure 3: Quantum Architecture for FPRM 

Oracle for Grover’s Method 
 

 The input of the FPRM processor is the vector of 
minterms (true or false) for a given Boolean function and 
the polarity vector. The output of the FPRM processor is 
the RM spectrum coefficients for the given Boolean 
function and polarity specified by (pa, pb, pc). The detailed 
architecture for the FPRM processor is presented in the 
next section. 

There are two input busses for the Cost Function and 
Comparator block, these are for the threshold value and 

the polarity vector.  The FPRM processor requires the 2n 
truth vector of the Boolean function and produces the 2n 
FPRM spectral coefficients corresponding to the function 
and polarity vector. Two tasks are accomplished in the 
Cost Function and Comparator block. First, the number 
of ones (P) in the vector of spectral coefficients is 
counted. Second, a comparison of P with the threshold 
value (T) is accomplished. If P T≤ , the Cost Function 
and Comparator block will output a one, otherwise zero.  
The corresponding inverse blocks, Inverse FPRM 
processor, Inverse Cost Function and Comparator, 
accomplish the inverses of these function blocks.  

 
3.2 Grover’s Algorithm  

In the architecture of Figure 3, we use Grover’s 
algorithm to evaluate the condition P T≤ . In the 
following, we give a brief introduction to Grover’s 
algorithm.  

Assume you have a system with states 2nN =  
labeled 1 2, ,..., NS S S . These 2n states are represented by 
n -bit strings. Assume there is a unique marked element 

mS  that satisfies a condition defined as C such 
that ( ) 1mC S = , and for all other states ( ) 0C S = . 
Assuming that C can be evaluated in unit time. Grover’s 
algorithm can minimize the number of evaluations for 
C [3].  A quantum register is just a group of qubits, all 
part of the same quantum mechanical system. Just as an 
n -bit register is capable of representing 2n distinct values, 
so too will an n -bit quantum register assume one of the 
2n basis states when measured [1]. 

The idea of Grover's algorithm is to place a register in 
an equal superposition of all states, and then selectively 
invert the phase of the marked state, followed by inversion 
about the mean operation a number of times. Selective 
inversion of the marked state, followed by the inversion 
about the mean is also referred to as the Grover Operator. 
The Grover Operator has the effect of increasing the 
amplitude of the marked state by (1 )O N . Therefore, 

after ( )O N  operations, the probability of measuring the 
marked state approaches one [2]. Observe that we did not 
modify Grover’s algorithm at all in this work, we just 
showed that it can be extended by a special way of 
building the oracle. This is true for many other 
applications as well. 

Placing the register in an equal superposition of all 
states can be accomplished by applying the Walsh-
Hadamard operator [3]. Selective inversion of the marked 
state in the Grover Operator means if the system is in any 
state S  and ( ) 1C S = , we rotate the phase by π  radians, 
otherwise we leave the system unaltered. This operation 
can be accomplished with the Oracle as described in [4]. 

A

B

AP =

BQ =

C CABR +=  



Applying the inversion about the mean is equivalent to 
applying an operation whose matrix representation is: 

2ijA N= if i j≠  and 1 2iiA N= − +  to the quantum 
register [3]. A block diagram for a quantum circuit 
implementation of Grover’s algorithm is shown In Figure 
4.  

 

 
Figure 4: Grover’s Algorithm Block Diagram 

  
 

4. Circuit Design  
In this section, we present the detailed 

implementation for blocks described in the overall 
architecture.  
 
4.1 FPRM Processor 

The butterfly diagrams described previously for the 
“fast” calculation of the FPRM spectral coefficients may 
be represented as quantum logic circuits comprised of 
cascades of generalized Toffoli gates.  Furthermore, all 
possible butterfly diagrams for any given polarity may be 
described as a single quantum logic circuit with the 
polarity number provided as an input to the circuit.  Figure 
5 contains the butterfly diagrams for 1-variable functions. 
The diagram on the left represents the polarity-0 transform 
while that in the middle represents the polarity-1 
transform.  Values d1 and d2 represent binary truth vectors 
for all possible functions of 1-variable.  The right side of 
each butterfly expresses the RM spectral coefficients in 
terms of the original function values.  The quantum logic 
circuit is a realization of the composite function formed 
using the polarity value p to select which of the two sets of 
coefficients are requested as shown in the expressions on 
the right side of the quantum logic circuit. 

The FPRM processor accepts a vector corresponding 
to the Boolean function and a polarity vector and outputs 
FPRM spectral coefficients. The core part of the FPRM 
processor is the “butterfly” quantum circuit. The polarity 
of the “butterfly” is controlled by the polarity bits. Figure 
5 shows the 1-variable FPRM processor which has a 2-bit 
function input ( 1 2[ , ]d d ) and a 1-bit polarity input (p).  
If 0p = , the output is positive polarity coefficients, 
otherwise, it is negative polarity coefficients. 

 

Figure 5: RM Transformation Butterflies and 
Corresponding Quantum Logic Circuit 

 
Figure 6 shows the 3-variable FPRM processor. 

There are 3 polarity bits and 8 input lines for a 3-variable 
processor. There are 3-levels in the processor that 
correspond to a 3-level “butterfly” diagram such as those 
shown in Figure 1.  
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Boolean Function
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pb
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e1
e2
e3
e4
e5
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Figure 6: 3-variable FPRM Processor 

 

4.2 Cost Counter and Comparator 
There are two tasks to be accomplished in this block. 

The first task is to count T, while the second task to 
evaluate the condition P T≤ . If P T≤ , the circuit will 
output one, otherwise zero. 

The “count ones” function can be accomplished using 
a tree of half-adders and full-adders and is also known in 
the arithmetic community as an 8:4 compressor. The 
quantum implementation for the half-adder is shown in 
Figure 7 and the full-adder is shown in Figure 8. 

 
 

 
Figure 7: Half-adder    Figure 8: Full-adder 
 

The 8:4 compressor based on a tree of full-adders and 
half adders is shown in Figure 9. The compressor circuit 
has two-levels with the first level consisting of two full-
adders and one half-adder which add two 3-bit values and 
one 2-bit value parallel and form three 2-bit numbers. The 
second level is an adder tree that compresses the 6-bit 
value from the first stage into a 3-bit value. The detailed 
quantum implementation is shown in Figure 10 (in the 
leftmost box). This result along with the threshold value 
then serves as input to the comparator.  

 



 
Figure 9: 8:4 Compressor Tree 

 

 
To build the comparator, we first derive the Boolean 

function for a comparator that compares two unsigned 4-
bit numbers (

3 2 1 0S s s s s= and 3 2 1 0B b b b b= ). We first compare 
the Most Significant bit (MSb), if 3s  and 3b  has different 
value ( 3 3 1s b⊕ = ) and 3 1b = , then we know B S> . If 3s  
and 3b  are the same ( 3 3 0s b⊕ = ), then we check the next 
significant digit. This can be carried out until the Least 
Significant bit (LSb) is reached. Based on that, we can 
write the Boolean function as the following: 

3 3 3 3 3 2 2 2 3 3 2 2

1 1 1 3 3 2 1 1 0 0 02

( ) ( )( ) ( )( )

( ) ( ) ( )( )( )

out s b b s b s b b s b s b

s b b s b s b s b s b b

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ •

⊕ ⊕ ⊕ • ⊕ ⊕ ⊕
 

Based on the formula, we design the quantum circuit 
as shown in Figure 10 (in the rightmost box). The inverse 
circuits are just mirror reflections of their basic circuits, 
and thus the inverse butterfly is drawn by mirroring in 
inverse order all gates from the butterfly. This is because 
in binary reversible logic, the Toffoli, generalized Toffoli, 
Feynman, and NOT gates are their own inverses. This is 
not true in ternary logic, but designing inverse circuits is 
also straightforward in this logic [5]. 

 
Figure 10: Quantum Implementation of 8:4 

Compressor and Comparator 
 

5. MVL Compressor Tree Implementation 
As described in the previous section, this circuit 

consists of a compressor and a comparator.  The 
compressor will have a delay and cost proportional to the 
number of stages in the compressor tree.  In the small 3-
variable example described previously, 3:2 and 2:2 binary 
compressors are used.  For larger functions, the 
compressor tree can be optimized by using larger 

compressors and compressors that are based on the signed 
binary digit set.   

The signed binary number system still uses a radix-
value of 2 but allows for a digit set of }1,0,1{ , where 1  
represents the value of -1 (negative unity).  This is 
redundant in that some values may be expressed with two-
different digit strings (eg. +1=01= 11 ).  Efficient 
compressors may be designed using signed binary adder 
as a component.  Because three distinct digits are used, it 
is convenient to implement the signed digit adder as a 
quantum-ternary-valued circuit.  We also note that these 
types of adders have the desirable property of constant 
delay regardless of wordlength and can be used as the 
basis for other high-speed arithmetic circuits.  Table 1 first 
appeared in [23] and illustrates how the redundant digit 
set is exploited to prevent long carry ripples.  

 
Table 1: Signed Binary Addition Table  

i ia b+  Sign info. of 
digits in pos. i-1 

1ic +  1is +  

1 1+  Not Used 1  0 

1 0+  Either is Neg. 1  1 

1 0+  Neither is Neg. 0 1  
0 0+  Not Used 0 0 

1 1+  Not Used 0 0 
1 0+  Either is Neg. 0 1 
1 0+  Neither is Neg. 1 1  
1 1+  Not Used 1 0 

 
In Table 1, the values 1s  and 1c occur when either of 

the digits at next position to the right are negative while 
2s  and 2c  occur when neither of the digits to the right are 

negative. The portion of the circuit that performs this 
computation is called the pre-condition. 

Our implementation of this adder as a ternary-quantum 
circuit is shown in Figure 11 where we use the following 
encoding scheme: 0 0,  1 1,  1 2↔ ↔ ↔ . To build the 
signed-digit adder, logic to differentiate between 1s  and 

2s  is necessary. The subcircuit for computing the pre-
condition that “either input is negative” is based on the 
generalized Toffoli gates as shown in upper-left box in 
Figure 11.  

Based on Table 1, the sum and carry values are: 
{0} {0} {0} {0} {2}

2A B A B s+ + =  
2 12 s s• =  

(2 ( )) (2 ( ))i i i iC S A B S A B= • ⊕ = ⊕ • ⊕  
where ,⊕ •  are GF add and multiplication respectively. 

From the formulas, the entire adder can be 
implemented as shown in Figure 11. The lower-left box 
shows the implementation for the sum digit and the lower-
right box indicates the portion for the for the carry digit.  



 
Figure 11: Sign Adder Quantum Implementation 

 
6. Applications 

When we write “applications” we mean of course 
only hypothetical applications because quantum 
computers are not available yet. In this sense, applications 
can be all those in which the FPRM transform is used, 
including logic design (also logic minimization for 
reversible and quantum circuits themselves), image 
processing and DSP, and machine learning. There is also a 
quickly developing area of quantum game theory where 
many known results for quantum algorithms find very 
interesting interpretations. For instance, the problem 
discussed above is more general than the game of finding 
the conjunctive formula of literals for a given set of data.  
Our machine could be just set to the threshold of two 
(limit to a single product of literals) to obtain a product of 
literals (not necessarily a minterm like in many games) 
that satisfies the input data being formulated as a set of 
minterms. All circuits presented here can be generalized to 
ternary quantum gates [5,15], allowing for ternary 
butterflies [22] and more efficient arithmetic for larger 
counters and comparators. 

 

7. Conclusions and Future Work  
We showed how Grover’s algorithm can be used to 

solve a practical problem in classical logic minimization. 
This work also illustrates the design of practical reversible 
circuits using quantum gates for blocks that will be 
normally used inside oracles. In many oracles that we 
tried, there always exist arithmetic blocks such as adders, 
subtractors, comparators, counters of ones (compressors), 
and logic blocks. Here we add one more type of block, 
butterfly transforms. Our goal is to simulate this algorithm 
using QuidPro [14] to practically validate its correctness. 
The next goal is to design and simulate similar algorithms 
for Galois Fields other than GF(2) [15], for ESOP and for 
Karhunen-Loeve transforms [10]. We also intend to build 
quantum oracles for graph coloring, satisfiability, 
Hamiltonian path and other intractable problems for both 
binary, ternary and hybrid binary/ternary 
algorithms/circuits. One of the aims of our work is to 
discover practical and efficient methods of designing and 
laying out binary, multi-valued and hybrid quantum 
circuits not for random benchmarks but for practical 
blocks and architectures.  
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