
A Quantum CAD Accelerator Based on Grover’s Algorithm for Finding the
Minimum Fixed Polarity Reed-Muller Form

Lun Li1*, Mitch Thornton*, and Marek Perkowski**

*CAD Methods Lab, Southern Methodist University, Dallas, TX 75206, USA, {lli,mitch}@engr.smu.edu

** Portland Quantum Logic Group, Portland State University, Portland, OR 97207, USA, mperkows@ee.pdx.edu

1 This work was supported in part by the Advanced Technology Program
 (ATP) of Texas under grant 003613-0029-2003.

Abstract
We describe the use of Grover’s algorithm as

implemented in a quantum logic circuit that produces a
solution for a classical switching circuit design problem.
The particular application described here is to determine
a Fixed Polarity Reed-Muller (FPRM) form that satisfies
a threshold value constraint, thus we find a particular
FPRM form among all 2n FPRM forms that has a number
of terms less than or equal to the threshold value.
Grover’s algorithm is implemented in a quantum logic
circuit that also contains a subcircuit that expresses all
possible FPRM solutions of a given function. This
approach illustrates how fast transforms as known from
spectral theory can be combined with quantum computing
as a part of an oracle.

1. Introduction
The original quantum search algorithm of Grover

finds a single solution, a number that satisfies the quantum
oracle F . A quantum oracle can be considered as a
Boolean function F with a solution minterm mi that
satisfies F (i.e. () 1iF m =). Finding a solution can be thus
visualized as finding a single number with value “1” (a
true minterm) in a Karnaugh Map of a binary-valued
function F in which all other cells have values 0.
Obviously, if no additional information is available,
classical SAT algorithms can be employed that have worst-
case exponential behavior. When there are M >1
solutions, a variant of Grover’s algorithm can be
employed to find all solutions (SAT-ALL).

A generic machine-learning problem can be
formulated as finding the simplest rule describing a
Boolean function representing the set of all solutions. In
this work, the rule is expressed as a Fixed Polarity Reed-
Muller expression; however, variations for other types of
expressions such as Exclusive-OR Sum of Products
(ESOP) are also possible. In the case of a single solution,
our algorithm reduces to the classical algorithm of Grover
with the “database” that is searched being that of a binary-

valued vector of length 2n . From this aspect, this research
is only of theoretical value since it is unlikely that a
quantum computer with 2n qubits will be built in the near
future; however, it is of interest that classical EDA
problems can be sped-up using quantum computing
principles.

A classic problem in binary logic minimization is that
of minimizing a single-output Boolean function using a
two-level structure consisting of the exclusive-OR of an
array of ANDs of literals. If there is no constraint on the
literals, the expression is called the Exclusive Sum of
Product expression or ESOP. When all literals are not
negated, the problem is that of finding the Positive
Polarity Reed-Muller form (PPRM). A generalization of
PPRM is called the Fixed Polarity Reed-Muller (FPRM)
form where every variable is either negated or not
consistently in the same polarity in every term of the
expression. Thus, FPRM ' 'F a b= has the polarity
number 3 (0, 0a b= =) and the equivalent PPRM

1F a b ab= ⊕ ⊕ ⊕ has the polarity number 0
(1, 1a b= =).

Several heuristic methods have been formulated in the
past for both ESOP minimization [19,20] and for FPRM
minimization [7,8]. In this work, we present a
fundamentally new approach to FPRM minimization that
is based on quantum logic and the use of Grover’s
algorithm. This approach can be extended to several
canonical XOR forms [7] as well as to the non-canonical
ESOPs; however, here only the FPRM case is discussed.
It can be observed that the method is based on controlling
stages of butterfly diagrams and thus similar approaches
can be applied to any transform that can be described by a
butterfly diagram.

2. FPRM and Quantum Logic Background
This section contains preliminary background

discussion of two basic topics; the theory of FPRM forms
and the basics of quantum logic circuits.

2.1. FPRM Theory

A switching function is commonly described in a

sum-of-minterms form that is canonic and in the binary
case represents a collection of conjunctive terms joined by
a disjunctive operator. As an example, all binary
functions of three variables may be expressed in the form

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3 6 1 2 3 7 1 2 3

F m x x x m x x x m x x x m x x x
m x x x m x x x m x x x m x x x

= + + +
+ + + +

where mi∈{0,1} are commonly referred to as the minterms
of the function f. Alternatively, such functions may also
be represented as a Reed-Muller expansion of a given
polarity using a collection of conjunctive terms joined by
the modulo-additive operator as

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

1F a a x a x a x a x x
a x x a x x a x x x

= ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕

where ai∈{0,1} are commonly referred to as the FPRM
spectral coefficients and ix represents a literal in either
complemented or uncomplemented form consistent for all
values of i. The particular assignment of polarities of
dependent variables ix leads to the polarity number. For
example, 1 2 3 0x x x → , 1 2 3 3x x x → , 1 2 3 4x x x → , etc.

The problem we address here is that of finding a
polarity number P T≤ such that a Reed-Muller
expansion can be formed where at most T spectral
coefficients are non-zero. The solution of this problem
allows for the realization of a FPRM expansion that
utilizes no more than T conjunctive operations and is a
problem of interest for the logic synthesis and verification
community.

The two expressions shown previously are both affine
functions that are related by a linear transformation. This
transformation is well-known and commonly
characterized by a linear transformation matrix as the
fixed-polarity Reed-Muller transform [16,17,18]. The
structure of this transformation matrix can be expressed as
a Kronecker (or tensor) matrix product where each
dependent variable is represented by a matrix representing
a given polarity. Here, we use the symbol ⊗ to denote the
Kronecker product (Kronecker multiplication) operation.
As an example, the transformation matrix for the PPRM
transformation is given as

1 .1

1 0
1 1

n

P Pn Pii
M M M

=

⎡ ⎤= = ⊗⎢ ⎥
⎣ ⎦

1NM and 1PM are used to denote transformation
matrices for complemented and positive-polarity variables
respectively. As an example the transformation matrix for
an FPRM of polarity 5 (1012) is formed as

1 1 1

1 1 1 0 1 1
.

0 1 1 1 0 1N P NM M M ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗ = ⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Due to the Kronecker product decomposition of an
FPRM transformation matrix, the techniques commonly
attributed to [21] may be used to represent the
transformation in a so-called “butterfly” signal flow-graph
(also known as a “fast transform”) where edges represent
multiplicative weights (in this case all weights are unity)
and vertices represent additions modulo-2, as shown in
Figure 1.

Figure 1: Butterfly signal flow-graph

As described in detail in [9] butterfly diagrams may

be devised for any given polarity number for a FPRM
expansion. Unfortunately, finding the “best” polarity
number and corresponding maximal number of zero-
valued Reed-Muller coefficients resulting in the “best”
butterfly structure is very challenging. In this work, we
show how the use of quantum logic circuits can give an
optimal polarity number with respect to a threshold value.

2.2 Quantum Logic Circuits

One of the most important quantum gates is the
quantum XOR gate (also called the Feynman gate or
Controlled-Not gate - CNOT). Logically, the CNOT gate
can be described by two equations: P a= , Q a b= ⊕ ,
where bit a is referred to as the control bit and b is the
controlled or data bit. Input variables are a and b, output
variables are P and Q. When the control bit a has value
|0> the gate does nothing, the controlled bit b has the same
value on input and on output. However, when the first bit
a has value |1>, the controlled bit b is inverted
(since1 'b b⊕ =). Therefore this gate is called Controlled-
NOT, which means that the controlling bit controls the
NOT operation.

This gate can be extended to a ternary Toffoli gate
with GF(3) operations replacing GF(2) operations as
shown in Figure 2 and used to build ternary butterflies for
ternary Reed-Muller expansions and transforms. A
generalized Toffoli gate can be built (in binary or MV
logic) where the number of control inputs is arbitrary. The
Toffoli gate is also called the Controlled-Controlled-NOT,
since the NOT operation is controlled by a product of
inputs a and b. Feynman, Fredkin and Toffoli gates,
named after their inventors, are examples of controlled
gates. Controlled gates are also created for multi-valued
and hybrid quantum circuits. In hybrid logic, a ternary bit
A may control a binary bit B or a binary bit may control a

quaternary bit, but every “wire” is for one radix logic
only, binary, ternary or quaternary throughout the entire
circuit. Each “wire” in such a circuit represents an
instance of a qubit (or qudit) in a quantum circuit diagram.
We have designed quantum oracles for all these types of
gates.

Figure 2: A 3*3 Generalized Toffoli Gate. Symbol
+ stands for GF(2) and GF(3) addition for binary

and ternary quantum case respectively

It is a significant fact that the unitary quantum gates

such as CNOT can realize any quantum logic function
(including standard binary). Every non-reversible
Boolean or multiple-valued circuit C1 (with arbitrary
numbers of inputs and outputs) can be transformed to a
reversible circuit C2 (described by a permutation matrix).

3. Proposed Architecture
In this section, we introduce the proposed architecture

for finding minimum FPRM

3.1 Architecture
The proposed architecture is shown in Figure 3.

There are 4 blocks in the architecture, FPRM processor,
Cost Function and Comparator, and corresponding
inverse blocks Inverse FPRM processor, Inverse Cost
Function and Comparator.

Figure 3: Quantum Architecture for FPRM

Oracle for Grover’s Method

 The input of the FPRM processor is the vector of
minterms (true or false) for a given Boolean function and
the polarity vector. The output of the FPRM processor is
the RM spectrum coefficients for the given Boolean
function and polarity specified by (pa, pb, pc). The detailed
architecture for the FPRM processor is presented in the
next section.

There are two input busses for the Cost Function and
Comparator block, these are for the threshold value and

the polarity vector. The FPRM processor requires the 2n
truth vector of the Boolean function and produces the 2n
FPRM spectral coefficients corresponding to the function
and polarity vector. Two tasks are accomplished in the
Cost Function and Comparator block. First, the number
of ones (P) in the vector of spectral coefficients is
counted. Second, a comparison of P with the threshold
value (T) is accomplished. If P T≤ , the Cost Function
and Comparator block will output a one, otherwise zero.
The corresponding inverse blocks, Inverse FPRM
processor, Inverse Cost Function and Comparator,
accomplish the inverses of these function blocks.

3.2 Grover’s Algorithm

In the architecture of Figure 3, we use Grover’s
algorithm to evaluate the condition P T≤ . In the
following, we give a brief introduction to Grover’s
algorithm.

Assume you have a system with states 2nN =
labeled 1 2, ,..., NS S S . These 2n states are represented by
n -bit strings. Assume there is a unique marked element

mS that satisfies a condition defined as C such
that () 1mC S = , and for all other states () 0C S = .
Assuming that C can be evaluated in unit time. Grover’s
algorithm can minimize the number of evaluations for
C [3]. A quantum register is just a group of qubits, all
part of the same quantum mechanical system. Just as an
n -bit register is capable of representing 2n distinct values,
so too will an n -bit quantum register assume one of the
2n basis states when measured [1].

The idea of Grover's algorithm is to place a register in
an equal superposition of all states, and then selectively
invert the phase of the marked state, followed by inversion
about the mean operation a number of times. Selective
inversion of the marked state, followed by the inversion
about the mean is also referred to as the Grover Operator.
The Grover Operator has the effect of increasing the
amplitude of the marked state by (1)O N . Therefore,

after ()O N operations, the probability of measuring the
marked state approaches one [2]. Observe that we did not
modify Grover’s algorithm at all in this work, we just
showed that it can be extended by a special way of
building the oracle. This is true for many other
applications as well.

Placing the register in an equal superposition of all
states can be accomplished by applying the Walsh-
Hadamard operator [3]. Selective inversion of the marked
state in the Grover Operator means if the system is in any
state S and () 1C S = , we rotate the phase by π radians,
otherwise we leave the system unaltered. This operation
can be accomplished with the Oracle as described in [4].

A

B

AP =

BQ =

C CABR +=

Applying the inversion about the mean is equivalent to
applying an operation whose matrix representation is:

2ijA N= if i j≠ and 1 2iiA N= − + to the quantum
register [3]. A block diagram for a quantum circuit
implementation of Grover’s algorithm is shown In Figure
4.

Figure 4: Grover’s Algorithm Block Diagram

4. Circuit Design
In this section, we present the detailed

implementation for blocks described in the overall
architecture.

4.1 FPRM Processor

The butterfly diagrams described previously for the
“fast” calculation of the FPRM spectral coefficients may
be represented as quantum logic circuits comprised of
cascades of generalized Toffoli gates. Furthermore, all
possible butterfly diagrams for any given polarity may be
described as a single quantum logic circuit with the
polarity number provided as an input to the circuit. Figure
5 contains the butterfly diagrams for 1-variable functions.
The diagram on the left represents the polarity-0 transform
while that in the middle represents the polarity-1
transform. Values d1 and d2 represent binary truth vectors
for all possible functions of 1-variable. The right side of
each butterfly expresses the RM spectral coefficients in
terms of the original function values. The quantum logic
circuit is a realization of the composite function formed
using the polarity value p to select which of the two sets of
coefficients are requested as shown in the expressions on
the right side of the quantum logic circuit.

The FPRM processor accepts a vector corresponding
to the Boolean function and a polarity vector and outputs
FPRM spectral coefficients. The core part of the FPRM
processor is the “butterfly” quantum circuit. The polarity
of the “butterfly” is controlled by the polarity bits. Figure
5 shows the 1-variable FPRM processor which has a 2-bit
function input (1 2[,]d d) and a 1-bit polarity input (p).
If 0p = , the output is positive polarity coefficients,
otherwise, it is negative polarity coefficients.

Figure 5: RM Transformation Butterflies and
Corresponding Quantum Logic Circuit

Figure 6 shows the 3-variable FPRM processor.

There are 3 polarity bits and 8 input lines for a 3-variable
processor. There are 3-levels in the processor that
correspond to a 3-level “butterfly” diagram such as those
shown in Figure 1.

d0
d1
d2
d3

d4
d5
d6
d7

3 bit for polarity

23 bit for data -
Boolean Function

23 bit for spectrum of
this Boolean function

for given polarity

pc

pb

pa

e0
e1
e2
e3
e4
e5
e6
e7

Figure 6: 3-variable FPRM Processor

4.2 Cost Counter and Comparator
There are two tasks to be accomplished in this block.

The first task is to count T, while the second task to
evaluate the condition P T≤ . If P T≤ , the circuit will
output one, otherwise zero.

The “count ones” function can be accomplished using
a tree of half-adders and full-adders and is also known in
the arithmetic community as an 8:4 compressor. The
quantum implementation for the half-adder is shown in
Figure 7 and the full-adder is shown in Figure 8.

Figure 7: Half-adder Figure 8: Full-adder

The 8:4 compressor based on a tree of full-adders and
half adders is shown in Figure 9. The compressor circuit
has two-levels with the first level consisting of two full-
adders and one half-adder which add two 3-bit values and
one 2-bit value parallel and form three 2-bit numbers. The
second level is an adder tree that compresses the 6-bit
value from the first stage into a 3-bit value. The detailed
quantum implementation is shown in Figure 10 (in the
leftmost box). This result along with the threshold value
then serves as input to the comparator.

Figure 9: 8:4 Compressor Tree

To build the comparator, we first derive the Boolean

function for a comparator that compares two unsigned 4-
bit numbers (

3 2 1 0S s s s s= and 3 2 1 0B b b b b=). We first compare
the Most Significant bit (MSb), if 3s and 3b has different
value (3 3 1s b⊕ =) and 3 1b = , then we know B S> . If 3s
and 3b are the same (3 3 0s b⊕ =), then we check the next
significant digit. This can be carried out until the Least
Significant bit (LSb) is reached. Based on that, we can
write the Boolean function as the following:

3 3 3 3 3 2 2 2 3 3 2 2

1 1 1 3 3 2 1 1 0 0 02

() ()() ()()

() () ()()()

out s b b s b s b b s b s b

s b b s b s b s b s b b

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ •

⊕ ⊕ ⊕ • ⊕ ⊕ ⊕

Based on the formula, we design the quantum circuit
as shown in Figure 10 (in the rightmost box). The inverse
circuits are just mirror reflections of their basic circuits,
and thus the inverse butterfly is drawn by mirroring in
inverse order all gates from the butterfly. This is because
in binary reversible logic, the Toffoli, generalized Toffoli,
Feynman, and NOT gates are their own inverses. This is
not true in ternary logic, but designing inverse circuits is
also straightforward in this logic [5].

Figure 10: Quantum Implementation of 8:4

Compressor and Comparator

5. MVL Compressor Tree Implementation
As described in the previous section, this circuit

consists of a compressor and a comparator. The
compressor will have a delay and cost proportional to the
number of stages in the compressor tree. In the small 3-
variable example described previously, 3:2 and 2:2 binary
compressors are used. For larger functions, the
compressor tree can be optimized by using larger

compressors and compressors that are based on the signed
binary digit set.

The signed binary number system still uses a radix-
value of 2 but allows for a digit set of }1,0,1{ , where 1
represents the value of -1 (negative unity). This is
redundant in that some values may be expressed with two-
different digit strings (eg. +1=01= 11). Efficient
compressors may be designed using signed binary adder
as a component. Because three distinct digits are used, it
is convenient to implement the signed digit adder as a
quantum-ternary-valued circuit. We also note that these
types of adders have the desirable property of constant
delay regardless of wordlength and can be used as the
basis for other high-speed arithmetic circuits. Table 1 first
appeared in [23] and illustrates how the redundant digit
set is exploited to prevent long carry ripples.

Table 1: Signed Binary Addition Table

i ia b+ Sign info. of
digits in pos. i-1

1ic + 1is +

1 1+ Not Used 1 0

1 0+ Either is Neg. 1 1

1 0+ Neither is Neg. 0 1
0 0+ Not Used 0 0

1 1+ Not Used 0 0
1 0+ Either is Neg. 0 1
1 0+ Neither is Neg. 1 1
1 1+ Not Used 1 0

In Table 1, the values 1s and 1c occur when either of

the digits at next position to the right are negative while
2s and 2c occur when neither of the digits to the right are

negative. The portion of the circuit that performs this
computation is called the pre-condition.

Our implementation of this adder as a ternary-quantum
circuit is shown in Figure 11 where we use the following
encoding scheme: 0 0, 1 1, 1 2↔ ↔ ↔ . To build the
signed-digit adder, logic to differentiate between 1s and

2s is necessary. The subcircuit for computing the pre-
condition that “either input is negative” is based on the
generalized Toffoli gates as shown in upper-left box in
Figure 11.

Based on Table 1, the sum and carry values are:
{0} {0} {0} {0} {2}

2A B A B s+ + =
2 12 s s• =

(2 ()) (2 ())i i i iC S A B S A B= • ⊕ = ⊕ • ⊕
where ,⊕ • are GF add and multiplication respectively.

From the formulas, the entire adder can be
implemented as shown in Figure 11. The lower-left box
shows the implementation for the sum digit and the lower-
right box indicates the portion for the for the carry digit.

Figure 11: Sign Adder Quantum Implementation

6. Applications

When we write “applications” we mean of course
only hypothetical applications because quantum
computers are not available yet. In this sense, applications
can be all those in which the FPRM transform is used,
including logic design (also logic minimization for
reversible and quantum circuits themselves), image
processing and DSP, and machine learning. There is also a
quickly developing area of quantum game theory where
many known results for quantum algorithms find very
interesting interpretations. For instance, the problem
discussed above is more general than the game of finding
the conjunctive formula of literals for a given set of data.
Our machine could be just set to the threshold of two
(limit to a single product of literals) to obtain a product of
literals (not necessarily a minterm like in many games)
that satisfies the input data being formulated as a set of
minterms. All circuits presented here can be generalized to
ternary quantum gates [5,15], allowing for ternary
butterflies [22] and more efficient arithmetic for larger
counters and comparators.

7. Conclusions and Future Work
We showed how Grover’s algorithm can be used to

solve a practical problem in classical logic minimization.
This work also illustrates the design of practical reversible
circuits using quantum gates for blocks that will be
normally used inside oracles. In many oracles that we
tried, there always exist arithmetic blocks such as adders,
subtractors, comparators, counters of ones (compressors),
and logic blocks. Here we add one more type of block,
butterfly transforms. Our goal is to simulate this algorithm
using QuidPro [14] to practically validate its correctness.
The next goal is to design and simulate similar algorithms
for Galois Fields other than GF(2) [15], for ESOP and for
Karhunen-Loeve transforms [10]. We also intend to build
quantum oracles for graph coloring, satisfiability,
Hamiltonian path and other intractable problems for both
binary, ternary and hybrid binary/ternary
algorithms/circuits. One of the aims of our work is to
discover practical and efficient methods of designing and
laying out binary, multi-valued and hybrid quantum
circuits not for random benchmarks but for practical
blocks and architectures.

8. References

[1] C. Williams, S. Clearwater, Explorations in Quantum Computing,
Springer-Verlag, New York, Inc.

[2] L. Grover, “A fast quantum mechanical algorithm for database
search,” Proceedings of the 28th Annual ACM Symposium on
Theory of Computing 1996, pp. 212-219

[3] M. Hayward, Quantum Computing and Grover's Algorithm,
http://alumni.imsa.edu/~matth/quant/473/473proj/node1.html

[4] E. Abe , School on Quantum Computing @Yagami,
http://www.appi.keio.ac.jp/Itoh_group/members/abe/qis-4.pdf

[5] M. H. A. Khan and M. A. Perkowski, “Quantum Realization of
Ternary Parallel Adder/Subtractor with Look-Ahead Carry,”
Proceedings of the International Symposium on Representations
and Methodology of Future Computing Technologies, 2005.

[6] N. Song, M. Perkowski, "Minimization of Exclusive Sum of
Products Expressions for Multi-Output Multiple-Valued Input,
Incompletely Specified Functions," IEEE Transactions on
Computer Aided Design, Vol. 15, No. 4, April 1996, pp. 385-395.

[7] T. Sasao, M. Fujita, Representations of Discrete Functions,
Kluwer Academic Publishers, 1996

[8] Rolf Drechsler, Bernd Becker, Nicole Göckel, “A Genetic
Algorithm For Minimization of Fixed Polarity Reed-Muller
Expressions,” In IEE Proceedings Computers and Digital
Techniques, Vol. 143, pp. 364-368, 1996.

[9] M. Thornton, R. Drechsler and D. M. Miller, Spectral Techniques
in VLSI CAD, Kluwer Academic Publishers, 2001

[10] M. Thornton “The Karhunen-Loève Transform of Discrete MVL
Functions,” IEEE International Symposium on Multiple-Valued
Logic (ISMVL), May 18-21, 2005.

[11] B. Patterson, http:www.cs.iastate.edu/~patterbi/cs
/quantum.fp/FinalPaper.pdf

[12] T. Toffoli, “Reversible Computing”, in Automata, Languages and
Programming, Springer Verlag, pp. 632-644, 1980.

[13] G.F. Viamontes, M. Rajagopalan, I.L. Markov and J.P. Hayes,
Gate-Level Simulation of Quantum Circuits, quant-ph/0208003.

[14] G. F. Viamontes, I. L. Markov and J. P. Hayes, “Improving Gate-
Level Simulation of Quantum Circuits'' (quant-ph/0309060), to
appear in Quantum Information Processing, 2004

[15] U. Kalay, D. V. Hall, and M. Perkowski “Easily Testable Multiple-
Valued Galois Field Sum-of-Products Circuits”. Journal on
Multiple Valued Logic, 2000, Vol. 5, pp. 507-528.

[16] U. Kalay, M. Perkowski, D. Hall, “A Minimal Universal Test Set
for Self-Test of EXOR-Sum-Of-Products Circuits,” IEEE Tr. on
Computers, March 2000, Vol. 49, pp. 267 - 276.

[17] S. Reed, “A class of multiple error correcting codes and their
decoding scheme,” IRE Trans. Inf. Th.,Vol. PGIT-4, 1954, 38-39.

[18] I. Zhegalkin, “O tekhnyke vychyslenyi predlozhenyi v
symbolytscheskoi logykye,” Math. Sb., Vol. 34,1927, 9-28, (in
Russian).

[19] T. Sasao, "EXMIN2: A simplification algorithm for exclusive-OR-
Sum-of-products expressions for multiple-valued input two-valued
output functions," IEEE Trans.on Computer-Aided Design, vol.
12, No. 5, May 1993, pp. 621-632.

[20] A. Mishchenko and M. Perkowski, "Fast heuristic minimization of
exclusive-sums-of-products", Proc. Reed-Muller Workshop '01,
pp. 242-250.

[21] J. W. Cooley, and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series. Math. Computation, Vol.
19:297-301, 1965.

[22] Ch. Fu, and B.J. Falkowski, “Ternary Fixed Polarity Linear
Kronecker Transforms and their Comparison with Ternary Reed-
Muller Transform,” Journal of Circuits, Systems, and Computers,
Vol. 14, No. 4 (2005) pp. 721–733.

[23] Y. Harata, et.al ,“A High-Speed Multiplier Using a Redundant
Binary Adder Tree,”IEEE J. Solid-State Circuits, vol. 22, pp. 28-
34, Feb. 1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

