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Abstract 
 
 

Designing modern circuits comprised of millions 
of gates is a very challenging task. Therefore new 
directions are investigated for efficient modeling and 
verification of such systems. Recently, a new 
language, SystemVerilog, was introduced and 
became an IEEE standard. SystemVerilog extends 
the hardware description language Verilog by 
including higher abstraction levels and integrated 
verification features.   In this paper, we first present 
the concept of modeling multiple valued logic circuits 
in SystemVerilog. We demonstrate that this approach 
allows for efficient simulation of complex multiple 
valued logic systems. Secondly, we show how 
SystemVerilog can be used to ensure functional 
correctness. A generalization of binary toggle 
coverage for the multiple valued logic domain is 
presented and evaluated.  As a test case, a scalable 
multiple valued logic arithmetic unit is modeled and 
experimental results for multiple valued logic toggle 
coverage are given. 
 
1. Introduction 
 

The rapid development of complex systems 
requires a reliable modeling and verification 
approach. Currently, a gap exists in terms of 
abstraction between the languages used to describe 
hardware at the Register Transfer Level (RTL) and 
design languages used to describe the first reference 
design. Verilog and VHDL are typically used to 
describe hardware at the RTL and a different 
language (C, C++) is commonly employed for the 
first reference design. This results in a significant 
amount of effort since the same code has to be 
written at two or more different levels of abstraction 
in multiple programming languages. A new 
language, SystemVerilog [2], aims to bridge this gap 
by extending Verilog to higher levels of abstraction 
for architectural and algorithmic design and for 
advanced verification [4, 6]. There has been a 
significant past effort in the development of methods 
for designing Multiple Valued Logic (MVL) circuits. 
Modeling circuits based on MVL instead of the 
binary domain can help during verification [10]. 

Thus, a development environment that supports 
modeling of MVL circuits is required. A first 
approach in this direction was introduced in [5] 
where a package to model ternary circuits in VHDL 
was provided. In [1] a modeling platform using 
SystemC was presented. In addition to modeling 
MVL circuits, their correct functional behavior must 
also be ensured. Therefore in [1] pure simulation is 
used but the completeness of the verification process 
is not discussed. 

For simulation-based design validation, an 
estimate of the functionality that is exercised can be 
given using coverage metrics [8]. A metric based on 
the circuit structure and one that is well known for 
the binary case is toggle coverage [7]. The basic idea 
is to check whether the value of an internal net 
toggles between all possible values. For the MVL 
domain this metric has not been studied previously.  

In this paper we present a concept for modeling 
MVL circuits in SystemVerilog. The concept is 
demonstrated for a scalable MVL Arithmetic Logic 
Unit (ALU). To determine the quality of the 
verification process we introduce a generalization of 
toggle coverage for the MVL domain. We show that 
two types of toggle coverage should be distinguished 
if the underlying logic is MVL. Next, the realization 
of the method including the instrumentation of the 
SystemVerilog code for toggle coverage calculation 
is described and experimental results are given.  

The remainder of this paper is structured as 
follows. In Section 2, we present the basics of MVL, 
MVL modeling in SystemVerilog, and a scalable 
MVL ALU as a case study. In Section 3, MVL toggle 
coverage and the implementation of the toggle 
calculations in SystemVerilog are shown. In Section 
4, we present simulation results in terms of toggle 
coverage and, finally in Section 5, we conclude the 
paper. 
 
2. MVL Modeling in SystemVerilog 
 
2.1. Multiple Valued Logic Circuit 
 

MVL is a non-binary logic that involves 
switching between more than 2 values. We will 
assume that MVL primitive devices will be limited to 
2-input/single-output functions. For example, a logic 



function with radix-3 is one that has two inputs that 
can assume three values (i.e. 0, 1, or 2) and generates 
one output signal that can have one of these three 
values. Symbolically, a logic function based upon a 
single radix-3 device can be graphically depicted as 
shown in Figure 1. Table 1 shows an example truth 
table of such a device. 

 

          
Figure 1. Logic function with radix 3 

 
Table 1. Truthtable of a function with radix 

3 
 

 
 
 
      
 

The example function in Table 1 is commutative, 
and hence it would not matter if we exchange the 'A' 
and 'B' inputs.  MVL circuits can be modeled as 
graphs where the edges correspond to nets and the 
vertices correspond to storage elements or MVL 
basic gates [3]. All of the basic MVL gates can be 
used as an operator in higher level descriptions of a 
circuit. More complex constructs can be defined 
based on the MVL gates and can be used in the high 
level description as well.  

Given r as the radix, the operators (which 
correspond to basic gates) are defined on a set of O = 
{0,…,r-1}. We chose a functional complete set of 
operators [1], all of them having one output and one 
or two operands x and y  as their inputs. 
The operators and their functionalities are shown in 
Table 2. 

( Oyx ∈, )

Table 2. Operators and their functionalities 

 
 
 In the binary case MIN, MAX and INV 

correspond to AND, OR and INV, respectively. 
 
2.2. MVL in SystemVerilog 

 
SystemVerilog is an enhancement to the IEEE 

1364 Verilog-2001 standard. These enhancements 
provide new capabilities for modeling hardware at 
the RTL and system level, along with a rich set of 
new features for verification. In this subsection we 

explain the basics and used constructs of 
SystemVerilog before we discuss the details of MVL 
modeling. 

 
2.2.1 Task and functions 
 

Verilog-2001 has static and automatic tasks and 
functions. Static tasks and functions share the same 
storage space for all calls to the tasks or function 
within a module instance. Automatic tasks and 
function allocate unique, stacked storage for each 
instance. As an enhancement, SystemVerilog adds 
the ability to declare automatic variables within static 
tasks and functions, and static variables within 
automatic tasks and functions. It adds several new 
functions to the existing Verilog. C data types such 
as int, typedef, struct, pass-by subroutine 
arguments, and built-in types such as string, 
associative arrays, and dynamic arrays can be used to 
provide better compactness of the code.  

A 
B C Rad 3 

SystemVerilog supports classes, the object-
oriented mechanisms that provide abstraction, and 
safe pointer capabilities as well as property and 
sequence declarations, assertions and coverage 
statements with action blocks [9]. 

 Also, in SystemVerilog, each formal argument 
has a data type which can be explicitly declared or 
can inherit a default type. The task argument default 
type in SystemVerilog is logic.  

SystemVerilog operators are a combination of 
Verilog and C operators, where the type and size of 
the operands is fixed, and hence the operator is of a 
fixed type and size. The fixed type and size of 
operators is preserved in SystemVerilog which 
allows efficient code generation.  

For more details on SystemVerilog see the 
SystemVerilog website and Accellera website [2, 9]. 
The C-like functions shown in Fig. 2, are provided to 
realize the basic MVL operations for the one-digit 
MVL type as well as the vector MVL type.  

 
function int min(int a,int b); 
      int res; 
      res = ((a < b) ? a:b); 
      return res; 
endfunction 
 
function int max(int a,int b); 
      int res; 
      res = ((a > b) ? a:b); 
      return res; 
endfunction 
 
function int inv(int a); 
      int res; 
      res = ((r -1)-a); 
      return res; 
endfunction 

 
Figure 2. Functions of arbitrary MVL circuits 

 
These functions can be used by the designer in their 
particular design to implement the basic operations, 

 0 1 2 
0 1 0 2 
1 0 2 1 
2 2 1 0 



regardless of the radix or the width of the operands. 
Due to space limitations only the functions for the 
operators MIN, MAX, and INV are shown. An MVL 
vector is defined using an integer array that is 
supported by SystemVerilog. The presented 
functions can be used for each position in the MVL 
vector. More complex operations such as addition 
can be also implemented easily by formulating such 
operations as SystemVerilog functions using the 
MVL vector as input. In the next section we 
demonstrate this modeling approach for a scalable 
MVL design of an Arithmetic Logic Unit (ALU). 

 
2.2.2 Case Study – MVL ALU  
 

A scalable MVL ALU circuit for different radices 
is implemented in a SystemVerilog description. The 
block diagram of the MVL ALU circuit is shown in 
Fig. 3. 

 

 
 

Figure 3. ALU circuit 
 
task compute (); 
begin 
  case (i_sel) 
0: //Calculating the MIN of two buses 
    begin 
       for (i=0; i<width; i++ ) 
   begin 
     alub.ALU_result[i] =  

  min(alub.a[i], alub.b[i]); 
   end 
    end 
1://Calculating the MAX of two buses 
    begin 
       for (i=0; i<width; i++ ) 
  begin 
          alub.ALU_result[i] =  
            max(alub.a[i], alub.b[i]); 
  end 
    end 
   … 
end 
endtask // compute 

 
Figure 4. Implementing the MIN, MAX 

operation 
 

The ALU has four inputs: clock, two MVL 
operand inputs A and B, and the control input select. 

The ALU can perform the INV, MIN, MAX, 
addition and multiplication operations. The output is 
stored in the register named Res. The width of the 
operands A and B is equal and the result bus Res has 
double width to accommodate the result of a multiply 
operation. The SystemVerilog implementation of the 
ALU is scalable since the width and radix are 
separately defined and can be easily varied.  

To demonstrate the efficiency of SystemVerilog 
code, we show some portions of the code used to 
implement the ALU circuit in Fig. 4. The task 
compute is called every rising edge of the clock.  

 
3. Toggle Coverage 
 

In this section, the notion of toggle coverage for 
binary circuits is briefly reviewed. Next, the 
generalization of this concept to the MVL domain is 
presented. Based on this concept, the basic steps for 
the computation and analysis of MVL toggle 
coverage in SystemVerilog are discussed.  

 
3.1. Binary Toggle Coverage  

 
Toggle coverage checks whether, during 

simulation, the value of a wire/register toggles 
between all possible values. A net is said to be fully 
covered if both values have been observed on that 
net. This metric does not indicate that every value of 
a bit vector was observed.  For example, if a bit 
vector of size 3 is considered and during the 
simulation the values 000, 110 and 100 (left most bit 
is MSB) occur, then the coverage of this bit vector is 
83.3%. This is computed as follows: bit 3 and bit 2 
assumed both values and bit 0 assumed only one 
value. Hence in total 5 out of 6 values were assumed 
and the coverage is 5/6 or 83.3%. 

In the following section the generalization of 
toggle coverage to the MVL domain is discussed. 
 
3.2. MVL Toggle Coverage  
 

If the MVL domain is considered, two different 
types of logic value toggling have to be considered. 
We refer to these metrics as type I and type II. 

 
3.2.1. Type I Toggling. Type I checks for possible 

logic values which have been assumed for a given 
net.  

 
3.2.2. Type II Toggling. Type II is more 

comprehensive and checks for the transitions made 
between all possible logic values that can occur.  

As an example of type I toggle coverage, consider 
the case where the radix is 5. Assuming a MVL 
vector called “A”, we check if each element has 
taken all the legal values according to the set {0, 1, 2, 
3, 4}. For example, if the first element of A, denoted 
as A[0], has taken the values 0, 1 and 3 during 



simulation, then the value of type I toggle coverage 
for A[0] is 3/5 or 60%. For the complete vector the 
coverage is determined as an average value of 
coverage computed over all elements of A. For type 
II toggle coverage, consider the following example. 
Again we have an MVL vector called “A” with radix 
5. For the first element A[0] of A one would check 
that there were transitions between all values of the 
set {0, 1, 2, 3, 4}; i.e. 0 1, 0 2, 0 3, 0 4, 
1 0,…, 4 3. In general radix*(radix-1) transitions 
have to be considered. The transitions which need to 
be checked for the example are shown in Table 3, 
where ‘T’ indicates a transition of interest whereas 
‘X’ indicates a transition that does not give useful 
information. Hence, if A[0] has made 10 out the 20 
possible transitions, we say that the type II toggle 
coverage is 50% for A[0]. The coverage for the 
whole vector A is once again computed as an average 
over the coverage value of each element of A. 

 
Table 3. Transitions for radix 5 

 
 
 
 
 
 
 
 

 
3.3. MVL Toggle Coverage in SystemVerilog 
 

To demonstrate our implementation of toggle 
coverage type I using an example, we consider an 
MVL vector A of width equal to 4 and radix equal to 
3. We check if each element has taken all the legal 
values according to the set {0, 1, 2}. To perform this 
computation for vector A, we create an array of size 
width of A * radix. For example the size of the array 
is 4*3 = 12. Say, we name this array “cov”. If the 

element of A takes a value ,  then we 
set a 1 at location of cov. Hence, if the 
vector A takes the following four values successively 
during simulation: [0, 2, 1, 0], [2, 0, 1, 1], [1, 1, 0, 0], 
[0, 2, 1, 2], then the toggle coverage of type I for 
vector A is 11/12, or 91% as shown in Table 4. It 
should be noted here that while computing the 
coverage of the result vector the size of the array to 
be created will be twice (i.e. width of A * radix * 2) 
since the result vector is twice as big as A. 

thi j { 2,1,0∈j }
)( thji +*3

The SystemVerilog function to calculate toggle 
coverage of type I is shown in Fig. 6. This general 
function can be used for a vector of arbitrary width 
and arbitrary radix. The argument COV is a 
reference since its content is changed inside the 

function. Basically the access to COV is controlled 
by an adequate offset computation. 

 
Table 4. Transitions for radix 3, toggle cov 

type I 

 
 
function coverToggleI( int net[0:(2*WIDTH)-1],    
    ref int cov[0:(WIDTH*RADIX*(2))-1] ); 
       for (int tctr=0; tctr<(2*WIDTH); tctr++)  
           begin 
             for (int v=0;v<=RADIX;v++) 
               begin 
                  if (net[tctr]==v) 
                    begin 
                      cov[RADIX*tctr+v]=1; 
                    end 
                 end 
             end 
endfunction 

 
Figure 6. Calculating toggle cov of type I 

 
We now discuss our implementation of toggle 

coverage type II again with the example of an MVL 
vector A and radix 3. In this case 3*2=6 transitions 
have to be considered between all values of the set 
{0, 1, 2}; i.e. 0 1, 0 2, 1 0, 1 2, 2 0, 2 1, 
for each element of A. Hence, for the vector A of 
width 4, 6*4=24 different transitions need to be 
checked in order to compute the toggle coverage of 
type II. If the vector A takes the same four values as 
before: [0, 2, 1, 0], [2, 0, 1, 1], [1, 1, 0, 0], [0, 2, 1, 2] 
then the according array content of toggle coverage 
type II for A is illustrated in Table 5.  

After each clock cycle we compare the new value 
of A with the previous value of A. If the value has 
changed we set a 1 to the appropriate position, and 
keep the value of the previous cycle as well. This 
calculation is more exhaustive in the sense that 
transitions and not just instantaneous values are 
considered. We observe that the coverage for vector 
A is 10/24=42%. As expected this value is lower than 
the toggle coverage value for type I (91%), since type 
II of coverage is more exhaustive. Fig. 7 shows the 
SystemVerilog code for calculating toggle coverage 
type II. 

Again the presented formulation of the function is 
general because the width and radix of an MVL 
vector for which the coverage is computed can be 
arbitrary. The estimation of toggle coverage for an 
MVL circuit is performed by instrumenting the 

 

 0 1 2 3 4
0 X T

Loc 0 1 2 0 1 2 0 1 2 0 1 2 

A[0] 1 - - - - 1 - 1 - 1 - - 
A[1] - - 1 1 - - - 1 - - 1 - 
A[2] - 1 - - 1 - 1 - - 1 - - 
A[3] 1 - - - - 1 - 1 - - - 1 

Cov 1 1 1 1 1 1 1 1 - 1 1 1 

T TT TT TT

1 TT X TT TT TT

2 TT TT X TT TT

3 TT TT TT X TT

4 TT TT TT TT X



Table 5. Transitions for radix 3, toggle cov type II

  
Systemverilog design with function calls for the nets 
of interest. Finally, after simulation and analysis of 
the coverage results is performed. 
  
function coverToggleII(int net[0:(2*WIDTH)-1],   
   ref int prev_net[0:(2*WIDTH)-1], 
   ref int cov2[0:(2*(WIDTH* RADIX*(RADIX-1)))   1]); 
   int off; 
     for (int tctr=0; tctr<(2*WIDTH); tctr++) 
         begin 
            off=0; 
              for (int x=0;x<RADIX;x++) 
    begin 
      for (int y=0;y<RADIX;y++) 
          begin 
             if ( x != y ) 
                  begin 
                                   if (prev_net[tctr]==x & net[tctr]==y) 
          begin 

   cov2[(RADIX*(RADIX-1))*tctr+off]=1; 
end 

                                     off++; 
                              end 
                      …                               
    prev_net = net; 
endfunction 

 
Figure 7. Calculating total average of toggle 

II cov 
 

4. Simulation Result 
 

In this section MVL coverage is computed for 
different instances of the MVL ALU. 
 
 
4.1. Tool Environment 
 

All simulations were run on a Linux machine with 
a Pentium processor at 2.8 GHz and 512 MB of 
RAM using Synopsys tools. 

 
4.2. Coverage Estimation 

 
In the following experiments the radix of the 

ALU is 3 and the width of the input vectors A and B 
is 4. During the simulation, random values for all 
inputs of the ALU are generated using the 
SystemVerilog constrained based randomization 
technique. Thus, the value of each input is chosen 
with a uniform distribution out of the legal value set. 
The results of the operations MIN, MAX, INV, 
ADD, and MULT are referring to the ALU circuit in 

Fig. 3 as nets 1-5, respectively. The width of all these 
nets is 8 (width*2) since the largest result is the 
product value of the multiplication unit that 
determines the size of  
the other inputs for the multiplexer. In the following 
we analyze the coverage for these nets. All coverage 
numbers have been obtained by averaging the results 
over 100 runs.  In Fig. 8, the results for toggle 
coverage type I are shown. As expected, the coverage 
for the vectors for operations MIN, MAX and INV 
did not exceed 66%, since only the 4 lower digits of 
the result vector are affected and the remaining digits 
do not toggle. In case of the ADD operation 71% 
were achieved since 5 lower digits of the result 
vector toggle. However, in case of the MULT 
operation the coverage is 100% since all digits of the 
vector toggle. Similarly, in Fig. 9 we show the toggle 
coverage of type II. 
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Figure 8. Toggle coverage type I vs. number 

of inputs, vector width = 4. 
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Figure 9. Toggle coverage type II vs. number 

of inputs, vector width = 4. 
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Both graphs show that the coverage converges 

very fast. As expected for the toggle coverage type II 
more random inputs are necessary to achieve 
convergence.  

In the second series of experiments we introduced 
an error to the ADD and MULT operation by 
inserting a design error that is manifested as 
performing fewer iterations than the number required 
in the main computation loops. The results are shown 
in Fig. 10 and Fig. 11. We observe that the coverage 
drops. Toggle coverage of type I for the MULT 
operation drops from 100% to 83.33%. Also, in case 
of the ADD operation, the coverage dropped from 
71% to 62.5%. The same can be observed in Fig. 11 
for toggle coverage of type II but with an even more 
noticeable reduction. 
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Figure 10. Toggle coverage type 1 with errors 
in mult & add functions vs. number of inputs, 

vector width = 4. 
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Figure 11. Toggle coverage type II with errors 
in mult & add functions vs. number of inputs, 

vector width = 4. 
 
5. Conclusion and Future Work 

In this paper we first presented a concept for 
modeling MVL circuits using SystemVerilog that 
allows for easy scaling of operand size (in terms of 
digits) and radix value.  A scalable MVL ALU has 
been implemented and simulated efficiently. To 
determine the quality of the verification process we 
generalized the concept of toggle coverage for MVL. 
It was shown that two types of toggle coverage must 
be distinguished for the MVL domain. In the 

experimental results, the convergence of both 
coverage types for the MVL ALU is empirically 
shown. 
Future directions in this research include developing 
a general flow to automate the code instrumentation 
of an MVL SystemVerilog design. 
 
6. Acknowledgment 
 

The authors are grateful for the support provided 
by the Synopsys Corporation for their generous 
donation of SystemVerilog language and design tools 
as well as interactions with Synopsys employees. 
 
7. References 
  
[1] Daniel Große, Görschwin Fey, Rolf Drechsler. 

Modeling Multi-Valued Circuits in SystemC. In 
International Symposium on Multi Valued Logic, 
pages 281 – 286, 2003. 

 
[2] The SystemVerilog Homepage. http://www. 

systemverilog.org 
 
[3] J. Muzio and T. Wesselkamper. Multiple-Valued 

Switching Theory. Adam Hilger, Bristol and Boston, 
1986. 

 
[4] Accellera, “SystemVerilog 3.1 Accellera’s extensions 

to Verilog”. Npa, CA, 2003, pp.1-2. 
 
[5] C. Rozon, On the Use of VHDL as a Multi-Valued 

Logic Simulator. Royal Military College, Kingston, 
Ontario, Canada. 1996, IEEE. 

 
[6] Ben Cohen, Srinivasan Venkataramanan, Ajeetha 

Kumari. SystemVerilog Assertions Handbook, 
VhdlCohen Publishing. Los Angeles, California, 
2005. 

 
[7] Dean Drako, Paul Cohen. HDL Verification Coverage. 

EETimes, Global news for creators of technology, 
1998. 

 
[8] H. Chokler, O. Kupferman, M. Y. Vardi, Coverage 

Metrics for Formal Verification, Correct Hardware 
Design and Verification Methods, pages 111 – 125, 
2003, Springer Berlin/Heidelberg publisher. 

 
[9] Accelera SystemVerilog 3.1a reference manual, 

Extension to Verilog. Available at: 
http://www.accellera.org/home 

 
[10] Rolf Drechsler, Using World-Level Information in 

Formal Hardware Verification, Automation and 
Remote Control, Volume 65, Issue 6, pp. 963-977, 
June 2004. 

 
 
 
 


