
Evaluation of Toggle Coverage for MVL Circuits Specified in the
SystemVerilog HDL

Mahsan Amoui, Daniel Große*, Mitchell A. Thornton, Rolf Drechsler*
Computer Science and Engineering, Southern Methodist University, Dallas, TX 75275

 *Institute of Computer Science,University of Bremen, 28359 Bremen, Germany
{mahsan, mitch}@engr.smu.edu , *{grosse,drechsle}@informatik.uni-bremen.de

Abstract

Designing modern circuits comprised of millions
of gates is a very challenging task. Therefore new
directions are investigated for efficient modeling and
verification of such systems. Recently, a new
language, SystemVerilog, was introduced and
became an IEEE standard. SystemVerilog extends
the hardware description language Verilog by
including higher abstraction levels and integrated
verification features. In this paper, we first present
the concept of modeling multiple valued logic circuits
in SystemVerilog. We demonstrate that this approach
allows for efficient simulation of complex multiple
valued logic systems. Secondly, we show how
SystemVerilog can be used to ensure functional
correctness. A generalization of binary toggle
coverage for the multiple valued logic domain is
presented and evaluated. As a test case, a scalable
multiple valued logic arithmetic unit is modeled and
experimental results for multiple valued logic toggle
coverage are given.

1. Introduction

The rapid development of complex systems
requires a reliable modeling and verification
approach. Currently, a gap exists in terms of
abstraction between the languages used to describe
hardware at the Register Transfer Level (RTL) and
design languages used to describe the first reference
design. Verilog and VHDL are typically used to
describe hardware at the RTL and a different
language (C, C++) is commonly employed for the
first reference design. This results in a significant
amount of effort since the same code has to be
written at two or more different levels of abstraction
in multiple programming languages. A new
language, SystemVerilog [2], aims to bridge this gap
by extending Verilog to higher levels of abstraction
for architectural and algorithmic design and for
advanced verification [4, 6]. There has been a
significant past effort in the development of methods
for designing Multiple Valued Logic (MVL) circuits.
Modeling circuits based on MVL instead of the
binary domain can help during verification [10].

Thus, a development environment that supports
modeling of MVL circuits is required. A first
approach in this direction was introduced in [5]
where a package to model ternary circuits in VHDL
was provided. In [1] a modeling platform using
SystemC was presented. In addition to modeling
MVL circuits, their correct functional behavior must
also be ensured. Therefore in [1] pure simulation is
used but the completeness of the verification process
is not discussed.

For simulation-based design validation, an
estimate of the functionality that is exercised can be
given using coverage metrics [8]. A metric based on
the circuit structure and one that is well known for
the binary case is toggle coverage [7]. The basic idea
is to check whether the value of an internal net
toggles between all possible values. For the MVL
domain this metric has not been studied previously.

In this paper we present a concept for modeling
MVL circuits in SystemVerilog. The concept is
demonstrated for a scalable MVL Arithmetic Logic
Unit (ALU). To determine the quality of the
verification process we introduce a generalization of
toggle coverage for the MVL domain. We show that
two types of toggle coverage should be distinguished
if the underlying logic is MVL. Next, the realization
of the method including the instrumentation of the
SystemVerilog code for toggle coverage calculation
is described and experimental results are given.

The remainder of this paper is structured as
follows. In Section 2, we present the basics of MVL,
MVL modeling in SystemVerilog, and a scalable
MVL ALU as a case study. In Section 3, MVL toggle
coverage and the implementation of the toggle
calculations in SystemVerilog are shown. In Section
4, we present simulation results in terms of toggle
coverage and, finally in Section 5, we conclude the
paper.

2. MVL Modeling in SystemVerilog

2.1. Multiple Valued Logic Circuit

MVL is a non-binary logic that involves
switching between more than 2 values. We will
assume that MVL primitive devices will be limited to
2-input/single-output functions. For example, a logic

function with radix-3 is one that has two inputs that
can assume three values (i.e. 0, 1, or 2) and generates
one output signal that can have one of these three
values. Symbolically, a logic function based upon a
single radix-3 device can be graphically depicted as
shown in Figure 1. Table 1 shows an example truth
table of such a device.

Figure 1. Logic function with radix 3

Table 1. Truthtable of a function with radix

3

The example function in Table 1 is commutative,
and hence it would not matter if we exchange the 'A'
and 'B' inputs. MVL circuits can be modeled as
graphs where the edges correspond to nets and the
vertices correspond to storage elements or MVL
basic gates [3]. All of the basic MVL gates can be
used as an operator in higher level descriptions of a
circuit. More complex constructs can be defined
based on the MVL gates and can be used in the high
level description as well.

Given r as the radix, the operators (which
correspond to basic gates) are defined on a set of O =
{0,…,r-1}. We chose a functional complete set of
operators [1], all of them having one output and one
or two operands x and y as their inputs.
The operators and their functionalities are shown in
Table 2.

(Oyx ∈,)

Table 2. Operators and their functionalities

 In the binary case MIN, MAX and INV

correspond to AND, OR and INV, respectively.

2.2. MVL in SystemVerilog

SystemVerilog is an enhancement to the IEEE

1364 Verilog-2001 standard. These enhancements
provide new capabilities for modeling hardware at
the RTL and system level, along with a rich set of
new features for verification. In this subsection we

explain the basics and used constructs of
SystemVerilog before we discuss the details of MVL
modeling.

2.2.1 Task and functions

Verilog-2001 has static and automatic tasks and
functions. Static tasks and functions share the same
storage space for all calls to the tasks or function
within a module instance. Automatic tasks and
function allocate unique, stacked storage for each
instance. As an enhancement, SystemVerilog adds
the ability to declare automatic variables within static
tasks and functions, and static variables within
automatic tasks and functions. It adds several new
functions to the existing Verilog. C data types such
as int, typedef, struct, pass-by subroutine
arguments, and built-in types such as string,
associative arrays, and dynamic arrays can be used to
provide better compactness of the code.

A
B C Rad 3

SystemVerilog supports classes, the object-
oriented mechanisms that provide abstraction, and
safe pointer capabilities as well as property and
sequence declarations, assertions and coverage
statements with action blocks [9].

 Also, in SystemVerilog, each formal argument
has a data type which can be explicitly declared or
can inherit a default type. The task argument default
type in SystemVerilog is logic.

SystemVerilog operators are a combination of
Verilog and C operators, where the type and size of
the operands is fixed, and hence the operator is of a
fixed type and size. The fixed type and size of
operators is preserved in SystemVerilog which
allows efficient code generation.

For more details on SystemVerilog see the
SystemVerilog website and Accellera website [2, 9].
The C-like functions shown in Fig. 2, are provided to
realize the basic MVL operations for the one-digit
MVL type as well as the vector MVL type.

function int min(int a,int b);
 int res;
 res = ((a < b) ? a:b);
 return res;
endfunction

function int max(int a,int b);
 int res;
 res = ((a > b) ? a:b);
 return res;
endfunction

function int inv(int a);
 int res;
 res = ((r -1)-a);
 return res;
endfunction

Figure 2. Functions of arbitrary MVL circuits

These functions can be used by the designer in their
particular design to implement the basic operations,

 0 1 2
0 1 0 2
1 0 2 1
2 2 1 0

regardless of the radix or the width of the operands.
Due to space limitations only the functions for the
operators MIN, MAX, and INV are shown. An MVL
vector is defined using an integer array that is
supported by SystemVerilog. The presented
functions can be used for each position in the MVL
vector. More complex operations such as addition
can be also implemented easily by formulating such
operations as SystemVerilog functions using the
MVL vector as input. In the next section we
demonstrate this modeling approach for a scalable
MVL design of an Arithmetic Logic Unit (ALU).

2.2.2 Case Study – MVL ALU

A scalable MVL ALU circuit for different radices
is implemented in a SystemVerilog description. The
block diagram of the MVL ALU circuit is shown in
Fig. 3.

Figure 3. ALU circuit

task compute ();
begin
 case (i_sel)
0: //Calculating the MIN of two buses
 begin
 for (i=0; i<width; i++)
 begin
 alub.ALU_result[i] =

 min(alub.a[i], alub.b[i]);
 end
 end
1://Calculating the MAX of two buses
 begin
 for (i=0; i<width; i++)
 begin
 alub.ALU_result[i] =
 max(alub.a[i], alub.b[i]);
 end
 end
 …
end
endtask // compute

Figure 4. Implementing the MIN, MAX

operation

The ALU has four inputs: clock, two MVL
operand inputs A and B, and the control input select.

The ALU can perform the INV, MIN, MAX,
addition and multiplication operations. The output is
stored in the register named Res. The width of the
operands A and B is equal and the result bus Res has
double width to accommodate the result of a multiply
operation. The SystemVerilog implementation of the
ALU is scalable since the width and radix are
separately defined and can be easily varied.

To demonstrate the efficiency of SystemVerilog
code, we show some portions of the code used to
implement the ALU circuit in Fig. 4. The task
compute is called every rising edge of the clock.

3. Toggle Coverage

In this section, the notion of toggle coverage for
binary circuits is briefly reviewed. Next, the
generalization of this concept to the MVL domain is
presented. Based on this concept, the basic steps for
the computation and analysis of MVL toggle
coverage in SystemVerilog are discussed.

3.1. Binary Toggle Coverage

Toggle coverage checks whether, during

simulation, the value of a wire/register toggles
between all possible values. A net is said to be fully
covered if both values have been observed on that
net. This metric does not indicate that every value of
a bit vector was observed. For example, if a bit
vector of size 3 is considered and during the
simulation the values 000, 110 and 100 (left most bit
is MSB) occur, then the coverage of this bit vector is
83.3%. This is computed as follows: bit 3 and bit 2
assumed both values and bit 0 assumed only one
value. Hence in total 5 out of 6 values were assumed
and the coverage is 5/6 or 83.3%.

In the following section the generalization of
toggle coverage to the MVL domain is discussed.

3.2. MVL Toggle Coverage

If the MVL domain is considered, two different
types of logic value toggling have to be considered.
We refer to these metrics as type I and type II.

3.2.1. Type I Toggling. Type I checks for possible

logic values which have been assumed for a given
net.

3.2.2. Type II Toggling. Type II is more

comprehensive and checks for the transitions made
between all possible logic values that can occur.

As an example of type I toggle coverage, consider
the case where the radix is 5. Assuming a MVL
vector called “A”, we check if each element has
taken all the legal values according to the set {0, 1, 2,
3, 4}. For example, if the first element of A, denoted
as A[0], has taken the values 0, 1 and 3 during

simulation, then the value of type I toggle coverage
for A[0] is 3/5 or 60%. For the complete vector the
coverage is determined as an average value of
coverage computed over all elements of A. For type
II toggle coverage, consider the following example.
Again we have an MVL vector called “A” with radix
5. For the first element A[0] of A one would check
that there were transitions between all values of the
set {0, 1, 2, 3, 4}; i.e. 0 1, 0 2, 0 3, 0 4,
1 0,…, 4 3. In general radix*(radix-1) transitions
have to be considered. The transitions which need to
be checked for the example are shown in Table 3,
where ‘T’ indicates a transition of interest whereas
‘X’ indicates a transition that does not give useful
information. Hence, if A[0] has made 10 out the 20
possible transitions, we say that the type II toggle
coverage is 50% for A[0]. The coverage for the
whole vector A is once again computed as an average
over the coverage value of each element of A.

Table 3. Transitions for radix 5

3.3. MVL Toggle Coverage in SystemVerilog

To demonstrate our implementation of toggle
coverage type I using an example, we consider an
MVL vector A of width equal to 4 and radix equal to
3. We check if each element has taken all the legal
values according to the set {0, 1, 2}. To perform this
computation for vector A, we create an array of size
width of A * radix. For example the size of the array
is 4*3 = 12. Say, we name this array “cov”. If the

element of A takes a value , then we
set a 1 at location of cov. Hence, if the
vector A takes the following four values successively
during simulation: [0, 2, 1, 0], [2, 0, 1, 1], [1, 1, 0, 0],
[0, 2, 1, 2], then the toggle coverage of type I for
vector A is 11/12, or 91% as shown in Table 4. It
should be noted here that while computing the
coverage of the result vector the size of the array to
be created will be twice (i.e. width of A * radix * 2)
since the result vector is twice as big as A.

thi j { 2,1,0∈j }
)(thji +*3

The SystemVerilog function to calculate toggle
coverage of type I is shown in Fig. 6. This general
function can be used for a vector of arbitrary width
and arbitrary radix. The argument COV is a
reference since its content is changed inside the

function. Basically the access to COV is controlled
by an adequate offset computation.

Table 4. Transitions for radix 3, toggle cov

type I

function coverToggleI(int net[0:(2*WIDTH)-1],
 ref int cov[0:(WIDTH*RADIX*(2))-1]);
 for (int tctr=0; tctr<(2*WIDTH); tctr++)
 begin
 for (int v=0;v<=RADIX;v++)
 begin
 if (net[tctr]==v)
 begin
 cov[RADIX*tctr+v]=1;
 end
 end
 end
endfunction

Figure 6. Calculating toggle cov of type I

We now discuss our implementation of toggle

coverage type II again with the example of an MVL
vector A and radix 3. In this case 3*2=6 transitions
have to be considered between all values of the set
{0, 1, 2}; i.e. 0 1, 0 2, 1 0, 1 2, 2 0, 2 1,
for each element of A. Hence, for the vector A of
width 4, 6*4=24 different transitions need to be
checked in order to compute the toggle coverage of
type II. If the vector A takes the same four values as
before: [0, 2, 1, 0], [2, 0, 1, 1], [1, 1, 0, 0], [0, 2, 1, 2]
then the according array content of toggle coverage
type II for A is illustrated in Table 5.

After each clock cycle we compare the new value
of A with the previous value of A. If the value has
changed we set a 1 to the appropriate position, and
keep the value of the previous cycle as well. This
calculation is more exhaustive in the sense that
transitions and not just instantaneous values are
considered. We observe that the coverage for vector
A is 10/24=42%. As expected this value is lower than
the toggle coverage value for type I (91%), since type
II of coverage is more exhaustive. Fig. 7 shows the
SystemVerilog code for calculating toggle coverage
type II.

Again the presented formulation of the function is
general because the width and radix of an MVL
vector for which the coverage is computed can be
arbitrary. The estimation of toggle coverage for an
MVL circuit is performed by instrumenting the

 0 1 2 3 4
0 X T

Loc 0 1 2 0 1 2 0 1 2 0 1 2

A[0] 1 - - - - 1 - 1 - 1 - -
A[1] - - 1 1 - - - 1 - - 1 -
A[2] - 1 - - 1 - 1 - - 1 - -
A[3] 1 - - - - 1 - 1 - - - 1

Cov 1 1 1 1 1 1 1 1 - 1 1 1

T TT TT TT

1 TT X TT TT TT

2 TT TT X TT TT

3 TT TT TT X TT

4 TT TT TT TT X

Table 5. Transitions for radix 3, toggle cov type II

Systemverilog design with function calls for the nets
of interest. Finally, after simulation and analysis of
the coverage results is performed.

function coverToggleII(int net[0:(2*WIDTH)-1],
 ref int prev_net[0:(2*WIDTH)-1],
 ref int cov2[0:(2*(WIDTH* RADIX*(RADIX-1))) 1]);
 int off;
 for (int tctr=0; tctr<(2*WIDTH); tctr++)
 begin
 off=0;
 for (int x=0;x<RADIX;x++)
 begin
 for (int y=0;y<RADIX;y++)
 begin
 if (x != y)
 begin
 if (prev_net[tctr]==x & net[tctr]==y)
 begin

 cov2[(RADIX*(RADIX-1))*tctr+off]=1;
end

 off++;
 end
 …
 prev_net = net;
endfunction

Figure 7. Calculating total average of toggle

II cov

4. Simulation Result

In this section MVL coverage is computed for
different instances of the MVL ALU.

4.1. Tool Environment

All simulations were run on a Linux machine with
a Pentium processor at 2.8 GHz and 512 MB of
RAM using Synopsys tools.

4.2. Coverage Estimation

In the following experiments the radix of the

ALU is 3 and the width of the input vectors A and B
is 4. During the simulation, random values for all
inputs of the ALU are generated using the
SystemVerilog constrained based randomization
technique. Thus, the value of each input is chosen
with a uniform distribution out of the legal value set.
The results of the operations MIN, MAX, INV,
ADD, and MULT are referring to the ALU circuit in

Fig. 3 as nets 1-5, respectively. The width of all these
nets is 8 (width*2) since the largest result is the
product value of the multiplication unit that
determines the size of
the other inputs for the multiplexer. In the following
we analyze the coverage for these nets. All coverage
numbers have been obtained by averaging the results
over 100 runs. In Fig. 8, the results for toggle
coverage type I are shown. As expected, the coverage
for the vectors for operations MIN, MAX and INV
did not exceed 66%, since only the 4 lower digits of
the result vector are affected and the remaining digits
do not toggle. In case of the ADD operation 71%
were achieved since 5 lower digits of the result
vector toggle. However, in case of the MULT
operation the coverage is 100% since all digits of the
vector toggle. Similarly, in Fig. 9 we show the toggle
coverage of type II.

40%

50%

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 80
Random Inputs

C
ov

er
ag

e
%

MIN
MAX
INV
ADD
MULT

Figure 8. Toggle coverage type I vs. number

of inputs, vector width = 4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 80

Random Inputs

C
ov

er
ag

e
%

MIN
MAX
INV
ADD
MULT

Figure 9. Toggle coverage type II vs. number

of inputs, vector width = 4.

 0
1

0
2

1
0

1
2

2
0

2
1

0
1

0
2

1
0

1
2

2
0

2
1

0
1

0
2

1
0

1
2

2
0

2
1

A[0] - 1 - - - - - - - - - 1 - - 1 - - -
A[1] - - - - 1 - 1 - - - - - - - - 1 - -
A[2] - - - - - - - - 1 - - - 1 - - - - -
A[3] 1 - - - - - - - 1 - - - - 1 - - - -

Cov 1 1 - - 1 - 1 - 1 - - 1 1 1 1 1 - -

Both graphs show that the coverage converges

very fast. As expected for the toggle coverage type II
more random inputs are necessary to achieve
convergence.

In the second series of experiments we introduced
an error to the ADD and MULT operation by
inserting a design error that is manifested as
performing fewer iterations than the number required
in the main computation loops. The results are shown
in Fig. 10 and Fig. 11. We observe that the coverage
drops. Toggle coverage of type I for the MULT
operation drops from 100% to 83.33%. Also, in case
of the ADD operation, the coverage dropped from
71% to 62.5%. The same can be observed in Fig. 11
for toggle coverage of type II but with an even more
noticeable reduction.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 80

Random Inputs

C
ov

er
ag

e
%

ADD(ERROR)

MULT(ERROR)

Figure 10. Toggle coverage type 1 with errors
in mult & add functions vs. number of inputs,

vector width = 4.

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 80

Random Inputs

C
ov

er
ag

e
%

ADD(ERROR)

MULT(ERROR)

Figure 11. Toggle coverage type II with errors
in mult & add functions vs. number of inputs,

vector width = 4.

5. Conclusion and Future Work

In this paper we first presented a concept for
modeling MVL circuits using SystemVerilog that
allows for easy scaling of operand size (in terms of
digits) and radix value. A scalable MVL ALU has
been implemented and simulated efficiently. To
determine the quality of the verification process we
generalized the concept of toggle coverage for MVL.
It was shown that two types of toggle coverage must
be distinguished for the MVL domain. In the

experimental results, the convergence of both
coverage types for the MVL ALU is empirically
shown.
Future directions in this research include developing
a general flow to automate the code instrumentation
of an MVL SystemVerilog design.

6. Acknowledgment

The authors are grateful for the support provided
by the Synopsys Corporation for their generous
donation of SystemVerilog language and design tools
as well as interactions with Synopsys employees.

7. References

[1] Daniel Große, Görschwin Fey, Rolf Drechsler.

Modeling Multi-Valued Circuits in SystemC. In
International Symposium on Multi Valued Logic,
pages 281 – 286, 2003.

[2] The SystemVerilog Homepage. http://www.

systemverilog.org

[3] J. Muzio and T. Wesselkamper. Multiple-Valued

Switching Theory. Adam Hilger, Bristol and Boston,
1986.

[4] Accellera, “SystemVerilog 3.1 Accellera’s extensions

to Verilog”. Npa, CA, 2003, pp.1-2.

[5] C. Rozon, On the Use of VHDL as a Multi-Valued

Logic Simulator. Royal Military College, Kingston,
Ontario, Canada. 1996, IEEE.

[6] Ben Cohen, Srinivasan Venkataramanan, Ajeetha

Kumari. SystemVerilog Assertions Handbook,
VhdlCohen Publishing. Los Angeles, California,
2005.

[7] Dean Drako, Paul Cohen. HDL Verification Coverage.

EETimes, Global news for creators of technology,
1998.

[8] H. Chokler, O. Kupferman, M. Y. Vardi, Coverage

Metrics for Formal Verification, Correct Hardware
Design and Verification Methods, pages 111 – 125,
2003, Springer Berlin/Heidelberg publisher.

[9] Accelera SystemVerilog 3.1a reference manual,

Extension to Verilog. Available at:
http://www.accellera.org/home

[10] Rolf Drechsler, Using World-Level Information in

Formal Hardware Verification, Automation and
Remote Control, Volume 65, Issue 6, pp. 963-977,
June 2004.

