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Abstract 

The mathematical property of inheritance for certain unary 
fixed point operations has recently been exploited to enable the 
efficient formulation of arithmetic algorithms and circuits for 
operations such as the modular multiplicative inverse, 
exponentiation, and discrete logarithm computation in classical 
binary logic circuits.  This principle has desirable features with 
regard to quantum logic circuit implementations and is 
generalized for the case of MVL arithmetic systems.  It is shown 
that the inheritance principle in conjunction with the bijective 
nature of many unary functions is used to realize compact 
quantum logic cascades that require no ancilla digits and 
generate no garbage outputs. 

 
1. Introduction 

Efficient implementations of basic arithmetic algorithms 
in the form of ALU circuitry are crucial for high-
performance computing.  Recently, a new class of 
algorithms suitable for realization as computer arithmetic 
circuits have been developed that exploit the mathematical 
property of inheritance resulting in logic circuits that are 
efficient in terms of classical binary logic area, delay 
minimization, and low power dissipation [1,2].  In the 
previous work reported in [1,2], the inheritance principle 
was used to formulate compact lookup-table based 
architectures in classical binary logic.   

Here, we also exploit the inheritance principle, but in a 
different way that leads to compact quantum and reversible 
logic circuit cascades with desirable properties.  The 
inheritance principle coupled with the bijective nature 
present in many unary fixed-point arithmetic operations is 
also very useful for the design of reversible and quantum 
logic cascades both for the case of binary and multiple-
valued logic systems.  This paper provides an overview of 
the inheritance principle and demonstrates its use in the 
design of reversible and quantum logic cascades in both 
binary and MVL logic with the desirable property of 
requiring no ancilla digits and yielding circuits that have 
no garbage outputs. 

  The bijective property is present in many unary 
functions of interest in arithmetic circuits such as the 
modular multiplicative inverse, the computation of the 
discrete logarithm, and the corresponding exponentiation 
functions. 

This paper is organized as follows.  Section 2 provides 
definitions and descriptions of the inheritance principle 
and provides the guidelines for arithmetic functions 
suitable for this technique.  Section 3 provides examples of 

the modular multiplicative inverse, the discrete logarithm, 
and the exponentiation operations implemented in both 
binary and ternary arithmetic systems.  These arithmetic 
operations are shown to yield bijective functions satisfying 
the inheritance principle. These implementations are given 
in the form of quantum logic cascades and the method for 
the synthesis of these circuits is described.  Section 4 
includes a discussion of the verification of these circuits.  
Finally, Section 5 contains conclusions of this work and a 
discussion of future efforts.  

 
2. Arithmetic Operations and Inheritance 

This section contains background information describing 
the mathematical properties of the arithmetic operations of 
interest including the definition of inheritance and how it is 
used to realize efficient quantum and reversible logic 
cascades for bijective functions.  We utilize the modular 
function notation described in [11] where | n |

pk = j  denotes 

the congruence relation of n ≡ j (mod pk) for k ≥ 1 where k 
generally denotes the number of digits used in a fixed-
point representation. 

 
2.1 Unary Integer Arithmetic Operations 

Unary integer arithmetic functions are of the form f:Z→Z 

where Z represents the set of signed integers.  We are 

particularly interested in a subset of Z, denoted as Z′, that 
is composed of elements that are represented as radix p 
digit-strings of length k.  Such digit strings are used for 
fixed-point operations in systems with a register size of k.  
Many such integer arithmetic functions of interest are 
bijective (i.e. onto and one-to-one).  Examples of such 
functions are the multiplicative inverse function modulo pk 
over the integers relatively prime to p, where p is the radix 
value of the number system of interest and the 
exponentiation and discrete logarithms of k-digit values 
with a base value of p.   

Since single-precision fixed-point integer arithmetic 
functions are defined to have a domain and range space 
containing k-length digit strings, they may be considered to 
be modular operations over values in Z with modulus pk.  

This statement allows unary arithmetic fixed-point 
operations to be considered to be modular operations over 



the infinite set Z with the modulus operation restricting the 

domain and range elements to the finite set Z′. 
 
2.2 Modular Multiplicative Inverse 

The relevant properties of the modular multiplicative are 
described that are later used in the formulation of the 
binary and MVL quantum cascades. 

 
Definition 1 (Modular Multiplicative Inverse) 

The multiplicative inverse modulo-pk of a fixed-point 
value, a, is denoted by a-1 where both a and a-1 are 
expressed as digit strings of length k and (a, a-1)∈Z′ 
satisfies: 

  
1=| a × a−1 |

pk
                           

As an example, for p = 2 and k = 5, Table 1 contains all 
possible values of a and a-1 expressed as integer values.  
Note that the multiplicative inverse only exists for ½ of the 
possible k-bit fixed-point strings, the odd values. 

 
Table 1: Multiplicative Inverses Modulo-25 

a 
(decimal) 

a-1 
(decimal) 

a 
(binary) 

a-1  
(binary) 

1 1 00001 00001 
3 11 00011 01011 
5 13 00101 01101 
7 23 00111 10111 
9 25 01001 11001 

11 3 01011 00011 
13 5 01101 00101 
15 15 01111 01111 
17 17 10001 10001 
19 27 10011 11011 
21 29 10101 11101 
23 7 10111 00111 
25 9 11001 01001 
27 19 11011 10011 
29 21 11101 10101 
31 31 11111 11111 

 
Lemma 1 

The multiplicative inverse function modulo-pk over the 
domain of integers Z is one-to-one.                        

Proof 
Consider the Abelian group G = (X,×) where the set X 

consists of all k-digit strings of the form xk-1xk-2...x2x11 (i.e. 
x0 = 1) with xi∈{0,1,…, p-1} and the × operator represents 
the multiplicative product modulo-pk.  By the group 
axioms, it is known that there exists some a-1∈X such that 
a × a-1 = 1 where 1 is the group multiplicative identity.   
Suppose there also exists some element h′∈X satisfying     
a × h′ =  h′ × a  = 1, then 

h  =  h × 1 =  h ×( a × h′) = ( h × a) × h′ = 1× h′ = h′ 
thus h = h′ and a therefore has a unique inverse proving 

the multiplicative inverse function is one-to-one.        
 
 

Theorem 1 
The multiplicative inverse function modulo-pk over the 

domain of set of integers, Z, is bijective. 

Proof 
Due to the definition of the group G = (X,×), every 

element a∈X has a corresponding inverse a-1∈X, thus the 
multiplicative inverse modulo-pk function is onto.  From 
Lemma 1, inverses are shown to be unique and thus also 
one-to-one, therefore the function is bijective.        

It is possible to prove that many other unary fixed-point 
operations such as exponentiation and the discrete 
logarithm are also bijective.   

   Examination of Table 1 shows that the multiplicative 
inverse function in the binary case has many interesting 
characteristics, such as the fact that the least significant bit 
(LSb) is always “1”, the next two LSb’s of a are equivalent 
to those of a-1, etc.  Such characteristics are also present 
for moduli for powers of p > 2.  As an example, consider 
the k=4 case of multiplicative inverse values expressed in 
both the natural ternary system with a digit set of {0,1,2} 
and the balanced ternary system with a digit set of {1,0,1} 
as shown in Table 2. 

 
Table 2: Multiplicative Inverses Modulo-34 
Decimal 

a, a-1 
Ternary 
Standard 

Ternary 
Balanced 

(1, 1) (0001,0001) ( 0001, 0001) 
(2, 41) (0002,1112) ( 0011 , 1111 ) 
(4, 61) (0011,2021) ( 0011, 1111) 
(8, 71) (0022,2122) ( 0101 , 0101 ) 
(16, 76) (0121,2211) (1111, 0111) 
(32, 38) (1012,1102) (1111 , 1111 ) 
(64, 19) (2101,0201) ( 1101, 1101) 
(47, 50) (1202,1212) (1111, 1011) 
(13, 25) (0111,0221) ( 0111, 1011) 
(26, 53) (0222,1222) (1001 , 1001 ) 
(52, 67) (1221,2111) ( 1011, 1111) 
(23, 74) (0212,2202) (1011 , 0111 ) 
(46, 37) (1201,1101) ( 1101, 1101) 
(11, 59) (0102,2012) ( 0111 , 1111 ) 

 
A compact multiplicative inverse table for k = 3 digits for 

the ternary case with a digit set of {0,1,2} is given in Table 
2.  A fully expanded version of Table 2 would contain 34 = 
81 entries, however since this operation is commutative 
and signed operands yield results with the same sign, these 
values were omitted.  Furthermore, only a single member 
of a subgroup with a common primitive generator function 
is included since through use of the generator, the 
remaining entries can be derived [12]. 

 
2.3 Discrete Logarithm and Exponentiation 

Another unary operation of interest is provided by the 
discrete logarithm function (and its inverse, 
exponentiation).  The discrete logarithm function can be 
used to reduce integer multiplication and division to 
addition/subtraction operations.  A general description of 
the discrete logarithm is given followed by characteristics 



that are specific for the two cases of using a radix value of 
3 and a radix value of 2. 

For radix-p multiple-valued logic, we are interested in 
discrete logarithms having a k-digit string representation 
where p is an odd prime base of the digit string.  Such a 
representation can be constructed from the fact [12] that 
every integer n for 0≤n≤pk-1 has a factorization 

| | k
e m

p
n g p= where g is a generator for the odd prime p.  

Radix Value 3 Discrete Logarithm 
The value g = 2 is a generator for p = 3 (also for p = 5, 

and many other small primes).  This means the residues 
3

| 2 | k
e

cycle through the 12 3k−i  integers that are relatively 

prime to the radix 3, for e=0,1,…,2×3k-1. The factorization 
3

| 2 3 | k
e mn =  then allows for the pair (e,m) to form a 

logarithmically based representation of n for every 0 ≤ n ≤ 
3k-1. In fact this pair is unique with 0 ≤ m ≤ k and 0 ≤ e ≤ 
2×3m-1-1.  From these observations, a bijective unary 
function can be formulated [3] between the standard k-digit 
ternary strings representing each value n and the k-digit 
discrete logarithm encoded strings representing these 
unique (e,m) pairs. 

The discrete logarithm is formulated in a ternary system 
and shown for the case of k=3 in Table 3.  The k-digit 
discrete logarithm encoded string gk-1gk-2…g1g0 is the 
concatenation of e and m where m is given by a string of 
low-order zeros with 0≤m≤k, and e is the mixed radix 
value ek-m-1ek-m-2…e2e1e0 where the exponent values are 

2
1 2 1 0(3 2) ... (3 2) (2)k m

k me e e e e− −
− −= × + + × + +  

with e0∈{1,2} and ei∈{0,1,2} for 1≤ i≤k-m-1.  The mixed 
radix form for e given by the above expression is the key 
to obtaining the inheritance property for the encodings. 

As an example, for the case of k = 3, shown in Table 3, 

  e = e2e1e0 = e2 (3 ⋅ 2) + e1(2) + e0
 

where e1,e2∈{0,1,2} and e0∈{1,2}.   
Each k-digit ternary value and it’s corresponding (e,m) 

pair (the concatenation of the (e,m) pair is the discrete 
logarithm system or DLS value) is unique and all DLS 
values, (e,m), consist of k digits although the subfields of e 
and m may each vary in size. The size depends on the 
number of trailing zeros in the original ternary value since 
the number of trailing zeros yields the exponent of 3 (i.e. 
the m value).  Additionally, the DLS obeys the inheritance 
principle as described in the multiplicative inverse 
example.  Table 3 lists all values for the k = 3 digit string 
length case.  In Table 3, the values do not appear in natural 
counting order, rather they appear in blocks in an order 
depending on the number of trailing zeros as this can make 
the DLS values easier to interpret.  However, unlike the 
multiplicative inverse, all possible k-digit strings for the 
integers {0,1,2,…,3k-1} are included in the domain and 
range of this bijective function. 

 
Radix Value 2 Discrete Logarithm 

The case of a DLS for radix-2 has an “exceptional case” 
formulation. There is no generator for the prime 2, 
however g = 3 is a “semi-generator” for p = 2. In this case, 

the residues { 2
| 3 | k

e } cycle through ½ of the odd values.  

The complementary set of odd values is cycled through by 
2

| 2 3 | k
k e− .  In order to represent all k-bit strings, a “sign” 

factor, (-1)s where s∈{0,1} is introduced as another term 
of the factorization allowing all odd and even values to be 
represented by the three-term factorization 

2
| ( 1) 3 2 | k

s e mn = − . This factorization is unique determining 

the triple (s,e,m) provided 0 ≤ m ≤ k, 0 ≤ e ≤ 3k-m-2, and 
s∈{0,1}. A bijective unary bitstring function can be 
formulated that maps the k-bit value of n to a k-bit (s,e,m) 
binary encoded triple employing the novel encoding 
described in [2]. The operation can thus be implemented as 
a cascade of quantum logic operators with no ancilla or 
garbage qubits.  As discussed previously, the lengths of the 
bit fields representing e and m vary depending on the value 
of n, however, the (s,e,m) value is always a unique k-bit 
string for any value n.  More details on the DLS bitstring 
encoding can be found in [2].  

 
2.4 The Inheritance Principle 

The inheritance property was formally defined in [1] for 
the binary case, but it is repeated here in terms of any 
positive integer radix for the sake of completeness.  
 

Table 3: 3-Digit Integers and Corresponding DLS Values 
Ternary 
Integer 

e 
e2e1e0 

(ternary) 

e  
(decimal) 

33
| 2 3 |e m  

(decimal) 

m 
(decimal) 

002 001 1 2 0 
011 002 2 4 0 
022 011 3 8 0 
121 012 4 16 0 
012 021 5 5 0 
101 022 6 10 0 
202 101 7 20 0 
111 102 8 13 0 
222 111 9 26 0 
221 112 10 25 0 
212 121 11 23 0 
201 122 12 19 0 
102 201 13 11 0 
211 202 14 22 0 
122 211 15 17 0 
021 212 16 7 0 
112 221 17 14 0 
001 222 18 1 0 
020 010 - 6 1 
110 020 - 12 1 
220 110 - 24 1 
210 120 - 21 1 
120 210 - 15 1 
010 220 - 3 1 
200 100 - 18 2 
100 200 - 9 2 
000 000 - 0 3 

 
Definition 2 (Inheritance Property) 

Let f(ak-1ak-2…a1a0) = bk-1bk-2…b1b0 be a one-to-one 
mapping of the domain of all k-digit strings to the co-
domain of all k-digit strings defined for all k>1.  The 
function f exhibits the property of inheritance if  



f(ak-1ak-2…a1a0) = bk-1bk-2…b1b0 implies that  
f(an-1an-2…a1a0) =  bn-1bn-2…b1b0 for all n≤k.  That is, the 
nth digit bn-1 of f(ak-1ak-2…a1a0) depends only on a subset of 
low order n-digit values {an-1,an-2,…,a1,a0} independent of 
the values of any the k-n elements of the subset  
{ak-1,ak-2,…,an}.                             

An example of a fixed-point unary function exhibiting 
the inheritance property is that of the fixed-point integer 
square function f(x) = x2 (mod 2k).  It is easy to verify that 
as k increases, the least significant digits of f remain 
unchanged for a fixed value of x. 

 
3. Arithmetic Circuit Architecture 

In this section, binary and MVL quantum and reversible 
circuits are described that realize fixed-point unary 
arithmetic functions.  In particular, we give specific 
examples for the multiplicative inverse function although 
any unary arithmetic function exhibiting the inheritance 
property could be used without loss of generality. 

 
3.1 Binary Modular Multiplicative Inverse Circuit 

   A cascade of Controlled-NOT (CNOT) and Toffoli 
logic gates that implements the 5-bit fixed-point 
multiplicative inverse function modulo-32 is shown in 
Figure 1.  The circuit inputs and outputs are the 5-bit 
values of a and a-1 expressed as a = (x4x3x2x1x0)2 and  
a-1 = (y4y3y2y1y0)2.  The inheritance principle can be 
observed in the structure of the cascade by noting that 
more significant bits are formed as functions of lesser 
significant bits.  

 
Figure 1: CNOT and Toffoli Gate Cascade Realizing the 

Multiplicative Inverse Modulo 25 
 

  
3.2 Binary Discrete Logarithm Circuit 

A cascade of Controlled-NOT (CNOT) and generalized 
Toffoli logic gates that implements the 5-bit function that 
maps an integer value to an (s,e,m) triple modulo-32 is 
shown in Figure 2.   

 

 
Figure 2: CNOT and Toffoli Gate Cascade Realizing the 

Discrete Logarithm Modulo 25 Function 
 

3.3 Ternary Quantum Logic Gates 
Many different ternary single qudit gates have been 

considered in the past [5,6,7,8,9,10]. Each of the gates in 
Table 4 can be defined by 1 of 6 possible permutations of 

the basis vectors | 0〉,  |1〉,  and | 2〉 . Each transfer matrix, 
Uijk, is denoted in Table 2 by the (i,j,k) permutation triple 
denoting the 3×3 transfer matrix computed as 
Ui jk =| 0〉〈i | + |1〉〈 j | + | 2〉〈k | .  

Because the six operations in Table 2 can be considered 
to be elements of the symmetry group S3, group theory 
arguments can be used to prove functional completeness 
(universality) when controlled versions are available as is 
done similarly in [7].  Universal gate sets include {N, C1}, 
{N, C2}, {N, NC1}, and {N, NC2}.  This is easily seen to 
be the case since C1×C1 = C2, C2×C2 = C1, N×C1 = 
NC1, and N×C2 = NC2.  We note that other gates and 
universal sets are possible such as the ternary swap gate 
described in [7]. 

 
Table 4: Six Ternary Quantum Permutation Gates 

Name Permutation Symbol Reference 
Identity (0,1,2) I - 

Modulo-add by 1 (1,2,0) C1 [4,5,7] 
Modulo-add by 2 (2,0,1) C2 [4,5] 

Negation (2,1,0) N [5,7] 
Neg. Mod. 1 (0,2,1) NC1 [5,6] 
Neg. Mod. 2 (1,0,2) NC2 [5,6] 

 
3.4 Ternary Modular Multiplicative Inverse Circuit 

   The mathematical principles for unary functions 
obeying the inheritance principle are independent of the 
number system used.  As an example, the multiplicative 
inverse circuit is implemented in the ternary (p = 3) system 
with a digit set of {0,1,2}.  For radix values of p, the 
multiplicative inverse only exists for (p-1)/p of all possible 
values and hence only 2/3 of the ternary integer values.   

A corresponding diagram of the circuit realizing the 
function in Table 3 is shown in Figure 3.  Note that we use 
the notation for controlled qudit gates as that used in [5] 
where the controlled qudit value is indicated numerically at 
the control point.  The circuit in Figure 3 was generated 
with a version of the automatic synthesis method from [6] 
adapted to QMDDs [13]. 

 

 
 

Figure 3: Multiplicative Inverse Modulo 34 Circuit Cascade 
in Ternary Logic 

 
When a balanced ternary system is used (i.e. the digit set 

is {-1,0,1}), a modular digit encoding of 0→0, 1→(+1), 
2→(-1) results in the multiplicative inverse circuit shown 
in Figure 4. 

 



 
Figure 4: Balanced Ternary Inverse Modulo 34 Circuit 
Cascade in Logic with Modular Digit Value Encoding 

 
The quantum ternary circuit in Figure 5 results when a 

digit encoding of 0→(-1), 1→0, 2→(+1) is used. 
 

 
Figure 5: Multiplicative Inverse Modulo 34 Circuit Cascade 

in Balanced Ternary Logic 
 

The modular encoding used to develop the circuit 
cascade shown in Figure 4 requires fewer gates than the 
encoding used to develop the circuit cascade shown in 
Figure 5. This indicates that a modular encoding is a better 
encoding to be used when developing the multiplicative 
inverse circuit cascades using primitive gates whose 
functions are also modular. 

 
3.5 Ternary Discrete Logarithm Circuit Cascades 

A ternary quantum cascade circuit was designed both 
manually and by the QMDD-based adaptation of the 
automated synthesis algorithm described in [6].  Both of 
these circuits were verified through equivalence checking 
using QMDDs [13].  The manually designed circuit is 
shown in Figure 6 and the automatically synthesized 
circuit is shown in Figure 7. 

 

 
Figure 6: DLS Conversion Circuit Designed Manually 

 

 
Figure 7: Automatically Synthesized DLS Circuit 

 
In the circuit shown in Figure 6, the gate set was 

restricted to {N,C1} which is functionally complete over 
the set of ternary quantum operators.  It is noted that the 
use of C2 or NC1 gates would allow for a lesser gate 
count.  For example, the two C1 gates in series at the x2 
input can be replaced by a single C2 gate. 
 
 
 

3.6 Mathematical and Physical Reversibility 
As is well-known, all quantum circuits must necessarily 

implement functions that are bijective.  In the case of 
binary functions, the resulting circuits are physically 
reversible since the unitary transfer matrices are 
symmetric. While the ternary quantum circuits also 
represent bijective functions, they are not physically 
reversible.  The DLS circuits shown in Figures 7 and 8 are 
useful for demonstrating the differences between physical 
and mathematical reversibility. 

The inverse function of the DLS operation is the 
exponentiation function.  In Figure 2, a binary DLS circuit 
is shown.  Since binary quantum circuits exhibit both 
physical and mathematical reversibility, the binary 
exponentiation circuit is the same circuit as that shown in 
Figure 2 when evaluated from right to left.  However in the 
case of the ternary quantum circuits, the exponentiation 
circuit must be formulated through evaluating the DLS 
circuit from right to left and with one-to-one replacement 
of the individual quantum gates by their inverses. 

In order to determine the gate replacements, it is 
necessary to find the replacement gate U2 for each U1 that 
satisfies: 

  U2U1 = I  
In the case of the binary quantum circuits used in this 

paper, all individual gates are self-inverses, hence the 
circuits are all physically reversible.  In the work here, we 
are considering the 6 quantum ternary permutation gates 
represented by the set {I, C1, C2, N, NC1, NC2}.  Of these 
6 gates all are self-inverses except for C1 and C2, thus a 
physically reversible circuit can be realized by evaluating 
the circuit from right to left and interchanging all instances 
of C1 and C2 gates.  Using this observation, the circuit that 
computes the exponential is derived from the DLS circuit 
shown in Figure 6 as that shown in Figure 8. 

 

 
Figure 8: Exponential Circuit Derived from DLS Circuit in 

Figure 6 
 

3.7 General Structure of Arithmetic Circuit Cascades 
In [1,2], the inheritance principle is exploited to realize 

fixed-point unary arithmetic functions in classical binary 
logic using compact lookup-table (LUT) based 
architectures.  In the results presented here we also exploit 
the inheritance principle, however the enhancements are 
present in the fact that all resulting circuits require no input 
ancilla bits nor are any garbage bits produced.  It is also 
noted that extending the precision of such circuits (i.e. 
using extending the operand value set) requires only the 
design of the circuitry for the more significant bits as the 
portion of the circuit that generates the lesser significant 
bits is identical to the smaller precision circuits.  This 



characteristic is shown in Figure 1 where the dashed line 
box encloses the subcircuit that generates the 
multiplicative inverse modulo-16 for the 4-bit function. 

These observations can be generalized to describe the 
architecture of any cascade realizing a fixed-point unary 
function to be of the form of that shown in Figure 9 where 
each gate represents controlled Ui digit transfer matrices.  

 
 Figure 9: General Form of Cascade Realizing Fixed-point 

Unary Arithmetic Functions with Inheritance 
 

It is noted that each transfer matrix Ui is not necessarily 
of maximum dimension as shown in Figure 9 and is 
dependent upon the arithmetic function under 
consideration.  As an example, for the multiplicative 
inverse circuit shown in Figure 1, U0, U1, and U2 are all 
identity matrices since yi = xi∀i<3. U3 is represented by the 
cascade of the leftmost three CNOT gates in the cascade 
(shown enclosed in the dotted lines).  The general form of 
the transfer matrix representing U3 for the example in 
Figure 1 is: 

 

  

U3 =

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
 

4. Circuit Synthesis and Validation 
Some of the circuits presented in this paper are 

synthesized manually and others are produced using a 
QMDD-based modified version of the technique described 
in [6].  Through manual design of these circuits new 
heuristics were identified and augmented to the synthesis 
techniques described in [6].  

The quantum circuits presented here are all verified 
through the use of the QMDD data structure [13].  In some 
cases they are exhaustively simulated and compared to the 
specified function truth table using techniques similar to 
those described in [4].  In other cases, when an existing 
circuit is already designed and verified through exhaustive 
simulation, the canonical nature of QMDD (for a given 
variable ordering) is used to perform functional 
equivalence checking. 

 
 

5. Conclusions and Future Directions 
  This work illustrates how bijective unary fixed-point 

arithmetic functions can be realized in relatively compact 

binary and quantum logic cascades.  The principle of 
inheritance is exploited to ease the burden of quantum 
cascade realization.  Another benefit of this work is that 
several new ternary cascades are presented and verified 
that may be added to the relatively small collections of 
multiple-valued quantum logic circuit examples currently 
in existence today. 

In the future we plan to use the results described here to 
further refine the updated automated synthesis technique 
originally described in [6] and to disseminate the resulting 
algorithms to the research community. Additionally, we 
plan to investigate how the multiplicative inverse and 
discrete logarithm operations extend naturally to radix 5. 
This will provide needed examples for investigation of 
cascades utilizing quintary quantum logic gates. 
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