
* supported in part by the Semiconductor Research Corporation under contract 1399
** supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Quantum Logic Implementation of Unary Arithmetic Operations

Mitchell A. Thornton, David W. Matula*,
Laura Spenner

 D. Michael Miller**

Department of Computer Science and Engineering Department of Computer Science
Southern Methodist University University of Victoria

Dallas, Texas, U.S.A. Victoria, B.C., Canada
{mitch,matula,lspenner}@engr.smu.edu mmiller@cs.uvic.ca

Abstract

The mathematical property of inheritance for certain unary
fixed point operations has recently been exploited to enable the
efficient formulation of arithmetic algorithms and circuits for
operations such as the modular multiplicative inverse,
exponentiation, and discrete logarithm computation in classical
binary logic circuits. This principle has desirable features with
regard to quantum logic circuit implementations and is
generalized for the case of MVL arithmetic systems. It is shown
that the inheritance principle in conjunction with the bijective
nature of many unary functions is used to realize compact
quantum logic cascades that require no ancilla digits and
generate no garbage outputs.

1. Introduction

Efficient implementations of basic arithmetic algorithms
in the form of ALU circuitry are crucial for high-
performance computing. Recently, a new class of
algorithms suitable for realization as computer arithmetic
circuits have been developed that exploit the mathematical
property of inheritance resulting in logic circuits that are
efficient in terms of classical binary logic area, delay
minimization, and low power dissipation [1,2]. In the
previous work reported in [1,2], the inheritance principle
was used to formulate compact lookup-table based
architectures in classical binary logic.

Here, we also exploit the inheritance principle, but in a
different way that leads to compact quantum and reversible
logic circuit cascades with desirable properties. The
inheritance principle coupled with the bijective nature
present in many unary fixed-point arithmetic operations is
also very useful for the design of reversible and quantum
logic cascades both for the case of binary and multiple-
valued logic systems. This paper provides an overview of
the inheritance principle and demonstrates its use in the
design of reversible and quantum logic cascades in both
binary and MVL logic with the desirable property of
requiring no ancilla digits and yielding circuits that have
no garbage outputs.

 The bijective property is present in many unary
functions of interest in arithmetic circuits such as the
modular multiplicative inverse, the computation of the
discrete logarithm, and the corresponding exponentiation
functions.

This paper is organized as follows. Section 2 provides
definitions and descriptions of the inheritance principle
and provides the guidelines for arithmetic functions
suitable for this technique. Section 3 provides examples of

the modular multiplicative inverse, the discrete logarithm,
and the exponentiation operations implemented in both
binary and ternary arithmetic systems. These arithmetic
operations are shown to yield bijective functions satisfying
the inheritance principle. These implementations are given
in the form of quantum logic cascades and the method for
the synthesis of these circuits is described. Section 4
includes a discussion of the verification of these circuits.
Finally, Section 5 contains conclusions of this work and a
discussion of future efforts.

2. Arithmetic Operations and Inheritance

This section contains background information describing
the mathematical properties of the arithmetic operations of
interest including the definition of inheritance and how it is
used to realize efficient quantum and reversible logic
cascades for bijective functions. We utilize the modular
function notation described in [11] where | n |

pk = j denotes

the congruence relation of n ≡ j (mod pk) for k ≥ 1 where k
generally denotes the number of digits used in a fixed-
point representation.

2.1 Unary Integer Arithmetic Operations

Unary integer arithmetic functions are of the form f:Z→Z

where Z represents the set of signed integers. We are

particularly interested in a subset of Z, denoted as Z′, that
is composed of elements that are represented as radix p
digit-strings of length k. Such digit strings are used for
fixed-point operations in systems with a register size of k.
Many such integer arithmetic functions of interest are
bijective (i.e. onto and one-to-one). Examples of such
functions are the multiplicative inverse function modulo pk
over the integers relatively prime to p, where p is the radix
value of the number system of interest and the
exponentiation and discrete logarithms of k-digit values
with a base value of p.

Since single-precision fixed-point integer arithmetic
functions are defined to have a domain and range space
containing k-length digit strings, they may be considered to
be modular operations over values in Z with modulus pk.

This statement allows unary arithmetic fixed-point
operations to be considered to be modular operations over

the infinite set Z with the modulus operation restricting the

domain and range elements to the finite set Z′.

2.2 Modular Multiplicative Inverse

The relevant properties of the modular multiplicative are
described that are later used in the formulation of the
binary and MVL quantum cascades.

Definition 1 (Modular Multiplicative Inverse)

The multiplicative inverse modulo-pk of a fixed-point
value, a, is denoted by a-1 where both a and a-1 are
expressed as digit strings of length k and (a, a-1)∈Z′
satisfies:

1=| a × a−1 |

pk

As an example, for p = 2 and k = 5, Table 1 contains all
possible values of a and a-1 expressed as integer values.
Note that the multiplicative inverse only exists for ½ of the
possible k-bit fixed-point strings, the odd values.

Table 1: Multiplicative Inverses Modulo-25

a
(decimal)

a-1
(decimal)

a
(binary)

a-1
(binary)

1 1 00001 00001
3 11 00011 01011
5 13 00101 01101
7 23 00111 10111
9 25 01001 11001

11 3 01011 00011
13 5 01101 00101
15 15 01111 01111
17 17 10001 10001
19 27 10011 11011
21 29 10101 11101
23 7 10111 00111
25 9 11001 01001
27 19 11011 10011
29 21 11101 10101
31 31 11111 11111

Lemma 1

The multiplicative inverse function modulo-pk over the
domain of integers Z is one-to-one.

Proof
Consider the Abelian group G = (X,×) where the set X

consists of all k-digit strings of the form xk-1xk-2...x2x11 (i.e.
x0 = 1) with xi∈{0,1,…, p-1} and the × operator represents
the multiplicative product modulo-pk. By the group
axioms, it is known that there exists some a-1∈X such that
a × a-1 = 1 where 1 is the group multiplicative identity.
Suppose there also exists some element h′∈X satisfying
a × h′ = h′ × a = 1, then

h = h × 1 = h ×(a × h′) = (h × a) × h′ = 1× h′ = h′
thus h = h′ and a therefore has a unique inverse proving

the multiplicative inverse function is one-to-one.

Theorem 1
The multiplicative inverse function modulo-pk over the

domain of set of integers, Z, is bijective.

Proof
Due to the definition of the group G = (X,×), every

element a∈X has a corresponding inverse a-1∈X, thus the
multiplicative inverse modulo-pk function is onto. From
Lemma 1, inverses are shown to be unique and thus also
one-to-one, therefore the function is bijective.

It is possible to prove that many other unary fixed-point
operations such as exponentiation and the discrete
logarithm are also bijective.

 Examination of Table 1 shows that the multiplicative
inverse function in the binary case has many interesting
characteristics, such as the fact that the least significant bit
(LSb) is always “1”, the next two LSb’s of a are equivalent
to those of a-1, etc. Such characteristics are also present
for moduli for powers of p > 2. As an example, consider
the k=4 case of multiplicative inverse values expressed in
both the natural ternary system with a digit set of {0,1,2}
and the balanced ternary system with a digit set of {1,0,1}
as shown in Table 2.

Table 2: Multiplicative Inverses Modulo-34
Decimal

a, a-1
Ternary
Standard

Ternary
Balanced

(1, 1) (0001,0001) (0001, 0001)
(2, 41) (0002,1112) (0011 , 1111)
(4, 61) (0011,2021) (0011, 1111)
(8, 71) (0022,2122) (0101 , 0101)
(16, 76) (0121,2211) (1111, 0111)
(32, 38) (1012,1102) (1111 , 1111)
(64, 19) (2101,0201) (1101, 1101)
(47, 50) (1202,1212) (1111, 1011)
(13, 25) (0111,0221) (0111, 1011)
(26, 53) (0222,1222) (1001 , 1001)
(52, 67) (1221,2111) (1011, 1111)
(23, 74) (0212,2202) (1011 , 0111)
(46, 37) (1201,1101) (1101, 1101)
(11, 59) (0102,2012) (0111 , 1111)

A compact multiplicative inverse table for k = 3 digits for

the ternary case with a digit set of {0,1,2} is given in Table
2. A fully expanded version of Table 2 would contain 34 =
81 entries, however since this operation is commutative
and signed operands yield results with the same sign, these
values were omitted. Furthermore, only a single member
of a subgroup with a common primitive generator function
is included since through use of the generator, the
remaining entries can be derived [12].

2.3 Discrete Logarithm and Exponentiation

Another unary operation of interest is provided by the
discrete logarithm function (and its inverse,
exponentiation). The discrete logarithm function can be
used to reduce integer multiplication and division to
addition/subtraction operations. A general description of
the discrete logarithm is given followed by characteristics

that are specific for the two cases of using a radix value of
3 and a radix value of 2.

For radix-p multiple-valued logic, we are interested in
discrete logarithms having a k-digit string representation
where p is an odd prime base of the digit string. Such a
representation can be constructed from the fact [12] that
every integer n for 0≤n≤pk-1 has a factorization

| | k
e m

p
n g p= where g is a generator for the odd prime p.

Radix Value 3 Discrete Logarithm
The value g = 2 is a generator for p = 3 (also for p = 5,

and many other small primes). This means the residues
3

| 2 | k
e

cycle through the 12 3k−i integers that are relatively

prime to the radix 3, for e=0,1,…,2×3k-1. The factorization
3

| 2 3 | k
e mn = then allows for the pair (e,m) to form a

logarithmically based representation of n for every 0 ≤ n ≤
3k-1. In fact this pair is unique with 0 ≤ m ≤ k and 0 ≤ e ≤
2×3m-1-1. From these observations, a bijective unary
function can be formulated [3] between the standard k-digit
ternary strings representing each value n and the k-digit
discrete logarithm encoded strings representing these
unique (e,m) pairs.

The discrete logarithm is formulated in a ternary system
and shown for the case of k=3 in Table 3. The k-digit
discrete logarithm encoded string gk-1gk-2…g1g0 is the
concatenation of e and m where m is given by a string of
low-order zeros with 0≤m≤k, and e is the mixed radix
value ek-m-1ek-m-2…e2e1e0 where the exponent values are

2
1 2 1 0(3 2) ... (3 2) (2)k m

k me e e e e− −
− −= × + + × + +

with e0∈{1,2} and ei∈{0,1,2} for 1≤ i≤k-m-1. The mixed
radix form for e given by the above expression is the key
to obtaining the inheritance property for the encodings.

As an example, for the case of k = 3, shown in Table 3,

 e = e2e1e0 = e2 (3 ⋅ 2) + e1(2) + e0

where e1,e2∈{0,1,2} and e0∈{1,2}.
Each k-digit ternary value and it’s corresponding (e,m)

pair (the concatenation of the (e,m) pair is the discrete
logarithm system or DLS value) is unique and all DLS
values, (e,m), consist of k digits although the subfields of e
and m may each vary in size. The size depends on the
number of trailing zeros in the original ternary value since
the number of trailing zeros yields the exponent of 3 (i.e.
the m value). Additionally, the DLS obeys the inheritance
principle as described in the multiplicative inverse
example. Table 3 lists all values for the k = 3 digit string
length case. In Table 3, the values do not appear in natural
counting order, rather they appear in blocks in an order
depending on the number of trailing zeros as this can make
the DLS values easier to interpret. However, unlike the
multiplicative inverse, all possible k-digit strings for the
integers {0,1,2,…,3k-1} are included in the domain and
range of this bijective function.

Radix Value 2 Discrete Logarithm

The case of a DLS for radix-2 has an “exceptional case”
formulation. There is no generator for the prime 2,
however g = 3 is a “semi-generator” for p = 2. In this case,

the residues { 2
| 3 | k

e } cycle through ½ of the odd values.

The complementary set of odd values is cycled through by
2

| 2 3 | k
k e− . In order to represent all k-bit strings, a “sign”

factor, (-1)s where s∈{0,1} is introduced as another term
of the factorization allowing all odd and even values to be
represented by the three-term factorization

2
| (1) 3 2 | k

s e mn = − . This factorization is unique determining

the triple (s,e,m) provided 0 ≤ m ≤ k, 0 ≤ e ≤ 3k-m-2, and
s∈{0,1}. A bijective unary bitstring function can be
formulated that maps the k-bit value of n to a k-bit (s,e,m)
binary encoded triple employing the novel encoding
described in [2]. The operation can thus be implemented as
a cascade of quantum logic operators with no ancilla or
garbage qubits. As discussed previously, the lengths of the
bit fields representing e and m vary depending on the value
of n, however, the (s,e,m) value is always a unique k-bit
string for any value n. More details on the DLS bitstring
encoding can be found in [2].

2.4 The Inheritance Principle

The inheritance property was formally defined in [1] for
the binary case, but it is repeated here in terms of any
positive integer radix for the sake of completeness.

Table 3: 3-Digit Integers and Corresponding DLS Values
Ternary
Integer

e
e2e1e0

(ternary)

e
(decimal)

33
| 2 3 |e m

(decimal)

m
(decimal)

002 001 1 2 0
011 002 2 4 0
022 011 3 8 0
121 012 4 16 0
012 021 5 5 0
101 022 6 10 0
202 101 7 20 0
111 102 8 13 0
222 111 9 26 0
221 112 10 25 0
212 121 11 23 0
201 122 12 19 0
102 201 13 11 0
211 202 14 22 0
122 211 15 17 0
021 212 16 7 0
112 221 17 14 0
001 222 18 1 0
020 010 - 6 1
110 020 - 12 1
220 110 - 24 1
210 120 - 21 1
120 210 - 15 1
010 220 - 3 1
200 100 - 18 2
100 200 - 9 2
000 000 - 0 3

Definition 2 (Inheritance Property)

Let f(ak-1ak-2…a1a0) = bk-1bk-2…b1b0 be a one-to-one
mapping of the domain of all k-digit strings to the co-
domain of all k-digit strings defined for all k>1. The
function f exhibits the property of inheritance if

f(ak-1ak-2…a1a0) = bk-1bk-2…b1b0 implies that
f(an-1an-2…a1a0) = bn-1bn-2…b1b0 for all n≤k. That is, the
nth digit bn-1 of f(ak-1ak-2…a1a0) depends only on a subset of
low order n-digit values {an-1,an-2,…,a1,a0} independent of
the values of any the k-n elements of the subset
{ak-1,ak-2,…,an}.

An example of a fixed-point unary function exhibiting
the inheritance property is that of the fixed-point integer
square function f(x) = x2 (mod 2k). It is easy to verify that
as k increases, the least significant digits of f remain
unchanged for a fixed value of x.

3. Arithmetic Circuit Architecture

In this section, binary and MVL quantum and reversible
circuits are described that realize fixed-point unary
arithmetic functions. In particular, we give specific
examples for the multiplicative inverse function although
any unary arithmetic function exhibiting the inheritance
property could be used without loss of generality.

3.1 Binary Modular Multiplicative Inverse Circuit

 A cascade of Controlled-NOT (CNOT) and Toffoli
logic gates that implements the 5-bit fixed-point
multiplicative inverse function modulo-32 is shown in
Figure 1. The circuit inputs and outputs are the 5-bit
values of a and a-1 expressed as a = (x4x3x2x1x0)2 and
a-1 = (y4y3y2y1y0)2. The inheritance principle can be
observed in the structure of the cascade by noting that
more significant bits are formed as functions of lesser
significant bits.

Figure 1: CNOT and Toffoli Gate Cascade Realizing the

Multiplicative Inverse Modulo 25

3.2 Binary Discrete Logarithm Circuit

A cascade of Controlled-NOT (CNOT) and generalized
Toffoli logic gates that implements the 5-bit function that
maps an integer value to an (s,e,m) triple modulo-32 is
shown in Figure 2.

Figure 2: CNOT and Toffoli Gate Cascade Realizing the

Discrete Logarithm Modulo 25 Function

3.3 Ternary Quantum Logic Gates
Many different ternary single qudit gates have been

considered in the past [5,6,7,8,9,10]. Each of the gates in
Table 4 can be defined by 1 of 6 possible permutations of

the basis vectors | 0〉, |1〉, and | 2〉 . Each transfer matrix,
Uijk, is denoted in Table 2 by the (i,j,k) permutation triple
denoting the 3×3 transfer matrix computed as
Ui jk =| 0〉〈i | + |1〉〈 j | + | 2〉〈k | .

Because the six operations in Table 2 can be considered
to be elements of the symmetry group S3, group theory
arguments can be used to prove functional completeness
(universality) when controlled versions are available as is
done similarly in [7]. Universal gate sets include {N, C1},
{N, C2}, {N, NC1}, and {N, NC2}. This is easily seen to
be the case since C1×C1 = C2, C2×C2 = C1, N×C1 =
NC1, and N×C2 = NC2. We note that other gates and
universal sets are possible such as the ternary swap gate
described in [7].

Table 4: Six Ternary Quantum Permutation Gates

Name Permutation Symbol Reference
Identity (0,1,2) I -

Modulo-add by 1 (1,2,0) C1 [4,5,7]
Modulo-add by 2 (2,0,1) C2 [4,5]

Negation (2,1,0) N [5,7]
Neg. Mod. 1 (0,2,1) NC1 [5,6]
Neg. Mod. 2 (1,0,2) NC2 [5,6]

3.4 Ternary Modular Multiplicative Inverse Circuit

 The mathematical principles for unary functions
obeying the inheritance principle are independent of the
number system used. As an example, the multiplicative
inverse circuit is implemented in the ternary (p = 3) system
with a digit set of {0,1,2}. For radix values of p, the
multiplicative inverse only exists for (p-1)/p of all possible
values and hence only 2/3 of the ternary integer values.

A corresponding diagram of the circuit realizing the
function in Table 3 is shown in Figure 3. Note that we use
the notation for controlled qudit gates as that used in [5]
where the controlled qudit value is indicated numerically at
the control point. The circuit in Figure 3 was generated
with a version of the automatic synthesis method from [6]
adapted to QMDDs [13].

Figure 3: Multiplicative Inverse Modulo 34 Circuit Cascade
in Ternary Logic

When a balanced ternary system is used (i.e. the digit set

is {-1,0,1}), a modular digit encoding of 0→0, 1→(+1),
2→(-1) results in the multiplicative inverse circuit shown
in Figure 4.

Figure 4: Balanced Ternary Inverse Modulo 34 Circuit
Cascade in Logic with Modular Digit Value Encoding

The quantum ternary circuit in Figure 5 results when a

digit encoding of 0→(-1), 1→0, 2→(+1) is used.

Figure 5: Multiplicative Inverse Modulo 34 Circuit Cascade

in Balanced Ternary Logic

The modular encoding used to develop the circuit
cascade shown in Figure 4 requires fewer gates than the
encoding used to develop the circuit cascade shown in
Figure 5. This indicates that a modular encoding is a better
encoding to be used when developing the multiplicative
inverse circuit cascades using primitive gates whose
functions are also modular.

3.5 Ternary Discrete Logarithm Circuit Cascades

A ternary quantum cascade circuit was designed both
manually and by the QMDD-based adaptation of the
automated synthesis algorithm described in [6]. Both of
these circuits were verified through equivalence checking
using QMDDs [13]. The manually designed circuit is
shown in Figure 6 and the automatically synthesized
circuit is shown in Figure 7.

Figure 6: DLS Conversion Circuit Designed Manually

Figure 7: Automatically Synthesized DLS Circuit

In the circuit shown in Figure 6, the gate set was

restricted to {N,C1} which is functionally complete over
the set of ternary quantum operators. It is noted that the
use of C2 or NC1 gates would allow for a lesser gate
count. For example, the two C1 gates in series at the x2
input can be replaced by a single C2 gate.

3.6 Mathematical and Physical Reversibility
As is well-known, all quantum circuits must necessarily

implement functions that are bijective. In the case of
binary functions, the resulting circuits are physically
reversible since the unitary transfer matrices are
symmetric. While the ternary quantum circuits also
represent bijective functions, they are not physically
reversible. The DLS circuits shown in Figures 7 and 8 are
useful for demonstrating the differences between physical
and mathematical reversibility.

The inverse function of the DLS operation is the
exponentiation function. In Figure 2, a binary DLS circuit
is shown. Since binary quantum circuits exhibit both
physical and mathematical reversibility, the binary
exponentiation circuit is the same circuit as that shown in
Figure 2 when evaluated from right to left. However in the
case of the ternary quantum circuits, the exponentiation
circuit must be formulated through evaluating the DLS
circuit from right to left and with one-to-one replacement
of the individual quantum gates by their inverses.

In order to determine the gate replacements, it is
necessary to find the replacement gate U2 for each U1 that
satisfies:

 U2U1 = I
In the case of the binary quantum circuits used in this

paper, all individual gates are self-inverses, hence the
circuits are all physically reversible. In the work here, we
are considering the 6 quantum ternary permutation gates
represented by the set {I, C1, C2, N, NC1, NC2}. Of these
6 gates all are self-inverses except for C1 and C2, thus a
physically reversible circuit can be realized by evaluating
the circuit from right to left and interchanging all instances
of C1 and C2 gates. Using this observation, the circuit that
computes the exponential is derived from the DLS circuit
shown in Figure 6 as that shown in Figure 8.

Figure 8: Exponential Circuit Derived from DLS Circuit in

Figure 6

3.7 General Structure of Arithmetic Circuit Cascades
In [1,2], the inheritance principle is exploited to realize

fixed-point unary arithmetic functions in classical binary
logic using compact lookup-table (LUT) based
architectures. In the results presented here we also exploit
the inheritance principle, however the enhancements are
present in the fact that all resulting circuits require no input
ancilla bits nor are any garbage bits produced. It is also
noted that extending the precision of such circuits (i.e.
using extending the operand value set) requires only the
design of the circuitry for the more significant bits as the
portion of the circuit that generates the lesser significant
bits is identical to the smaller precision circuits. This

characteristic is shown in Figure 1 where the dashed line
box encloses the subcircuit that generates the
multiplicative inverse modulo-16 for the 4-bit function.

These observations can be generalized to describe the
architecture of any cascade realizing a fixed-point unary
function to be of the form of that shown in Figure 9 where
each gate represents controlled Ui digit transfer matrices.

 Figure 9: General Form of Cascade Realizing Fixed-point

Unary Arithmetic Functions with Inheritance

It is noted that each transfer matrix Ui is not necessarily
of maximum dimension as shown in Figure 9 and is
dependent upon the arithmetic function under
consideration. As an example, for the multiplicative
inverse circuit shown in Figure 1, U0, U1, and U2 are all
identity matrices since yi = xi∀i<3. U3 is represented by the
cascade of the leftmost three CNOT gates in the cascade
(shown enclosed in the dotted lines). The general form of
the transfer matrix representing U3 for the example in
Figure 1 is:

U3 =

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

4. Circuit Synthesis and Validation
Some of the circuits presented in this paper are

synthesized manually and others are produced using a
QMDD-based modified version of the technique described
in [6]. Through manual design of these circuits new
heuristics were identified and augmented to the synthesis
techniques described in [6].

The quantum circuits presented here are all verified
through the use of the QMDD data structure [13]. In some
cases they are exhaustively simulated and compared to the
specified function truth table using techniques similar to
those described in [4]. In other cases, when an existing
circuit is already designed and verified through exhaustive
simulation, the canonical nature of QMDD (for a given
variable ordering) is used to perform functional
equivalence checking.

5. Conclusions and Future Directions
 This work illustrates how bijective unary fixed-point

arithmetic functions can be realized in relatively compact

binary and quantum logic cascades. The principle of
inheritance is exploited to ease the burden of quantum
cascade realization. Another benefit of this work is that
several new ternary cascades are presented and verified
that may be added to the relatively small collections of
multiple-valued quantum logic circuit examples currently
in existence today.

In the future we plan to use the results described here to
further refine the updated automated synthesis technique
originally described in [6] and to disseminate the resulting
algorithms to the research community. Additionally, we
plan to investigate how the multiplicative inverse and
discrete logarithm operations extend naturally to radix 5.
This will provide needed examples for investigation of
cascades utilizing quintary quantum logic gates.

References

[1] D. W. Matula, A, Fit-Florea, and M. A. Thornton, Lookup Table
Structures for Multiplicative Inverses Modulo 2k, Proceedings of the
IEEE Symposium on Computer Arithmetic, June 27-29, 2005, pp.
130-135.

[2] L. Li, A. Fit-Florea, M. A. Thornton, and D. W. Matula,
Performance Evaluation of a Novel Table Lookup Method and
Architecture for Integer Functions, Proceedings of the IEEE
International Conference on Application-specific Systems,
Architectures, and Processors, September 11-13, 2006, pp. 99-104.

[3] D. W. Matula, Discrete Log Number Systems, SMU Internal Report,
2007.

[4] D. Goodman, M. A. Thornton, D. Y. Feinstein, and D. M. Miller,
Quantum Logic Circuit Simulation Based on the QMDD Data
Structure, Proceedings of the Workshop on Applications of the Reed-
Muller Expansion in Circuit Design and Representations and
Methodology of Future Computing Technology, May 16, 2007, pp.
99-105.

[5] D. Gottesman, Fault-Tolerant Quantum Computation with Higher-
Dimensional Systems, 1998, arXiv:quant-ph/9802007.

[6] D. M. Miller, D. Maslov, and G. Dueck, Synthesis of Quantum
Multiple-Valued Circuits, Journal of Multiple-Valued Logic and
Soft Computing, vol. 12, no. 5-6, 2006, pp. 431-450.

[7] G. Yang, X. Song, and M. Perkowski, Realizing Ternary Quantum
Switching Networks without Ancilla Bits, J. Phys. A: Math. Gen.,
vol. 38, no. 44, November 2005, arXiv:quant-ph/0509192v1.

[8] A. DeVos, B. Raa, and L. Storme, Generating the Group of
Reversible Logic Gates, J. Phys. A.: Math. Gen., vol. 35, no. 33,
August 2002, pp. 7063-7078.

[9] J. Daboul, X. Wang, and B. C. Sanders, Quantum Gates on Hybrid
Qudits, J. Phys. A.: Math. Gen., vol. 36, no. 14, 2003, pp. 2525-
2536, arXiv:quant-ph/0211185v1.

[10] A. Muthukrishnan and C. R. Stroud Jr., Multi-Valued Logic Gates
for Quantum Computation, Phys. Rev. A preprint, June 2000,
arXiv:quant-ph/0002033v2.

[11] S. Szabó and R. I. Tanaka, Residue Arithmetic and Its
Application to Computer Technology, McGraw-Hill Book Co.,
1967.

[12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, Oxford Science Publications, 5th ed., 1979.

[13] D. M. Miller and M. A. Thornton, QMDD: A Decision Diagram
Structure for Reversible and Quantum Circuits, Proceedings of the
IEEE Int. Symp. on Multiple-Valued Logic, May 2006, CD, 6 pp.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

