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Abstract 
 

This paper describes new metrics for the data structure 
referred to as quantum multiple-valued decision 
diagrams (QMDD) which are used to represent the 
matrices describing reversible and quantum gates and 
circuits.  These metrics provide information about 
QMDD that allows for improvement of minimization 
techniques.  We explore metrics related to the frequency 
of edges with non-zero weight for the entire QMDD data 
structure and their histograms with respect to each 
variable. We observe some unique regularity particular 
to the methodology of the QMDD. We develop new 
heuristics for QMDD dynamic variable ordering (DVO) 
that are guided by the proposed metrics.  Experimental 
results show the effectiveness of the proposed techniques. 
 
1. Introduction 

 
The quantum multiple-valued decision diagram 

(QMDD) was proposed for the efficient specification and 
simulation of reversible and quantum circuits [9,10]. The 
QMDD data structure has been successfully used for 
reversible and quantum circuit simulations, equivalence 
checking, and other applications [4]. In this paper we 
develop and investigate the use of data structure metrics 
for the analysis and minimization of QMDD. 

Unlike the binary decision diagram (BDD) which 
allows only two possible transition edges from each 
vertex, and which is used in the QuIDDPro package [15], 
a multiple-valued QMDD has r2 transition edges from 
each vertex (where r is the radix). Since the 
transformation matrices representing quantum circuits are 
often sparse, many QMDD edges point directly to the 
terminal node with zero weight. This creates an 
interesting and complex inter-connectivity among the 
QMDD vertices, that allows QMDD to represent 
relatively complex circuits with a small number of 
vertices.  

The data structure metrics proposed in this research 
are used to better understand this inter-connectivity. They 
include the ratio of non-zero weight edges to the number 

of vertices for the entire QMDD as well as a histogram of 
the similar ratio measured for each variable. We propose 
a set of heuristics based on the values of these metrics to 
guide dynamic variable ordering (DVO) resulting in an 
improvement in minimization for many benchmark 
circuits.  

In our previous work, we have developed a DVO 
sifting algorithm that utilized efficient adjacent variable 
interchange [8].  Our sifting algorithm, adapted for 
QMDD from Rudell’s binary ROBDD sifting approach 
[13], achieved significant size reductions on some 
benchmarks of reversible/quantum circuits of n-variables 
while considering only O(n2) of the n! possible variable 
orderings.  

In this work we offer additional heuristic algorithms 
for QMDD minimization.  The new heuristics achieve 
improved minimization for some benchmarks over our 
previous sifting algorithm.  Since such DVO 
minimization efforts consume processing time, it is 
beneficial to be able to predict in advance whether a 
certain QMDD structure can be minimized [16].  We 
describe heuristics, based on our new data structure 
metrics, that provide effective prediction in this regard for 
most of the benchmarks we tested. 

The paper is organized as follows. In Section 2 we 
briefly discuss reversible logic, the QMDD structure, and 
our previous work on QMDD minimization.  The 
proposed QMDD data structure metrics are described in 
Section 3.  In Section 4 we discuss the application of the 
proposed new metrics in QMDD minimization heuristics, 
and in Section 5 we discuss our preliminary experimental 
results. Conclusions and suggestions for further research 
appear in Section 6. 

 
2. Preliminaries 
 
2.1. Reversible Logic and Quantum Circuits  

In this section, we briefly introduce the basic concepts 
of reversible and quantum circuits. More extensive 
background is available in [11]. 

 



Definition 1: A gate / circuit is logically reversible if it 
maps each input pattern to a unique output pattern. For 
classical reversible logic, the mapping is a permutation 
matrix. For quantum circuits, the gate / circuit operation 
can be described by a unitary transformation matrix. 

 
Bennet [1] showed that reversible gates can 

theoretically result in binary circuits that are completely 
free from energy loss.  The concept of reversibility has 
been extended to MVL circuits [7]. Binary quantum logic 
gates and circuits are inherently both logically and 
physically reversible [11].   Non-binary quantum logic 
circuits are logically reversible. 

Fig. 1 shows a 3 line and 6 gate binary reversible 
circuit “c3_17.nct” from D. Maslov’s benchmarks [6]. 
The symbol ⊕ denotes the NOT operation.  For each gate, 
the NOT operates on the target line if every control line 
(lines with a black circle) has the value 1.  Otherwise the 
target line is unchanged.  Control and unconnected lines 
pass through the gate unchanged.  A gate with no controls 
is a conventional NOT gate.  One with a single control is 
termed a controlled-NOT and gates with more than one 
control are referred to as Toffoli gates [11].  

 

 
 

Figure 1. 3-variable benchmark C3_17.nct  
 

Fig. 1 shows the specification and the transformation 
matrix for the benchmark, as captured by the QMDD tool. 
In general, an r-valued reversible circuit with n lines (that 
is, a circuit with n inputs and n outputs) requires a 
transformation matrix of dimension [rn×rn], where r is the 
radix. 

 
2.2 Quantum Multiple-valued Decision Diagrams 

The QMDD structure was proposed to simulate and 
specify reversible and quantum logic circuits in a 
compact form [9].  A matrix of dimension n nr r×  can be 
partitioned as: 
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where each Mi element is a matrix of dimension 
1 1.n nr r− −×   A QMDD applies this partitioning analogous 

to how a reduced ordered binary decision diagram 
(ROBDD) [3] recursively applies Shannon 
decompositions. In a similar manner to ROBDDs, a 
QMDD adheres to a fixed variable ordering and common 
substructures (submatrices) are shared.  A QMDD has a 
single terminal vertex with value 1, and each edge in the 
QMDD, including the edge pointing to the start vertex, 
has an associated complex-valued weight. Also similar to 
ROBDDs, the QMDD representation is very useful due to 
its property of canonicity.  

 
Theorem 1 An rn×rn complex valued matrix M 
representing a reversible or quantum circuit has a unique 
(up to variable reordering or relabeling) QMDD 
representation. 
Proof: A proof by induction based on the iterative 
construction of a QMDD and the normalization of edge 
weights that is performed during that construction is 
detailed in [10].                                                                 

 
We show in Fig. 2 the QMDD structure of the binary 

benchmark “c3_17.nct” given in Fig. 1, as it is captured 
in our QMDD tool. The full details on the construction 
and properties of the QMDD are described in [9,10]. Nine 
nonterminal vertices are required in addition to the 
terminal vertex. To make the figure more readable, 
segmented edges marked with 0 are used to denote edges 
with zero weight that point to the terminal node. 

 

 
Figure 2. The QMDD for benchmark C3_17.nct  

 
We note that for binary (r=2) reversible / quantum 

gates / circuits the required matrices can be represented 
using BDD, e.g. QuIDDPro [15] which employs the very 
efficient CUDD package [14].  The QMDD approach is 
quite different even in the binary case since each 



nonterminal vertex has four outgoing edges rather than 
two.  This makes each vertex more complex but fewer 
(about half) vertices are required.  In addition, the 
diagram has half the depth.  QMDD are also applicable to 
multiple-valued situations. 

One can verify that this QMDD represents the 
transformation matrix of Fig. 1, by traversing each path 
from the start vertex to the terminal vertex and 
multiplying the weights of the edges. While binary 
reversible circuits like “c3_17.nct” have only 1 and 0 
weights, quantum circuits have complex numbers as edge 
weights. 
 
2.3 Related work on QMDD Variable Sifting 

In our previous work we demonstrated that local 
adjacent variable interchange can be efficiently 
implemented within the QMDD package [8].  We then 
showed that a minimizing algorithm similar to Rudell’s 
binary ROBDD sifting algorithm [13] is well suited to 
reduce the number of nodes in a QMDD representation.  
Our sifting algorithm employs a greedy selection rule that 
iteratively picks the variable with the largest number of 
associated vertices for sifting. In the event of a tie, the 
variable closest to the terminal node is selected. 

Our QMDD sifting algorithm produced minimization 
levels that varied significantly from example to example. 
On some benchmarks (e.g. “rd84d1” and “cycle17_3r”) 
we achieved spectacular size reductions (82% and 
92.64% respectively).  A low improvement on other 
benchmarks can be the result of having started from what 
is already a good ordering, or due to the possibility that 
the function’s QMDD representation is insensitive to 
variable ordering. Since the sifting heuristic visits only a 
small fraction ( 2 / !n n ) of all possible variable orderings, 
we are motivated in this paper to explore additional 
minimization heuristics influenced by the data structure 
metrics of the QMDD. 

 
3. QMDD Data Structure Metrics  

 
    
The unique table used by the QMDD software 

continuously maintains and tracks Active[i], the number 
of active vertices for each variable i, 0≤i<n, where n is 
the number of variables. This is an important QMDD data 
structure metric that we have used extensively in our 
previous work. We define a new QMDD data structure 
metric as follows: 

 
Definition 2: Let α be the ratio of the total number of 
edges with non-zero weight to the total number of 
vertices in the entire QMDD. Similarly, let α[i] be the 
ratio of the number of edges with non-zero weight that 

emerge from all the vertices of variable i to the number of 
vertices of the same variable. It follows that, 
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Since each nonterminal QMDD vertex has r2 edges,  

1≤α≤r2 and 2][1 ri ≤≤ α , where r is the QMDD radix. For 
example, computing ]1[α  for the QMDD of Fig. 2, we 
have a total of four vertices and eight non-zero weight 
edges, thus ]1[α = 8/4=2.00.  We observe that while 
vertex N1 has two edges with non-zero weight, they both 
connect N1 to N5, essentially connecting the vertex to 
only one unique vertex. We therefore distinguish between 
the number of edges with non-zero weight and the 
number of unique connections that reach different 
vertices as follows: 
 
Definition 3: Let β be the ratio of the total number of 
unique connections with non-zero weight to the total 
number of vertices in the entire QMDD. Similarly, let β[i] 
be the ratio of the number of unique connections with 
non-zero weight edges that emerge from all the vertices 
of variable i to the number of vertices of the same 
variable.  As above, 1≤ β ≤r2 and 2][1 ri ≤≤ β . It follows 
that 

∑
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For variable 1 in Fig. 2, we have a total of four 
vertices and seven unique connections with non-zero 
weight, thus ]1[β = 7/4=1.75.  The relation between α and 
β is given by the following lemma. 
 
Lemma 1 Let ],[,, iαβα and ][iβ be the data structure 
metrics of a QMDD with n variables as defined above. 
Hence, (i) 2][][1 rii ≤≤≤ αβ  for all i, 0≤i<n, and (ii) 

21 r≤≤≤ αβ .   
Proof: Each vertex of variable i must have at least one 
edge with non-zero weight, since a QMDD vertex with all 
edges having zero weights is redundant. This edge creates 
a unique connection to a nonterminal vertex, thus 

][1 iβ≤ must be true. We observe that the number of 
unique connections for the vertices of variable i cannot 
exceed the number of edges with non-zero weight by 
Definition 3. Thus ][][ ii αβ ≤  must be true.                            
     Let Active[i] denote the number of active vertices for 
variable i, and E the total number of the QMDD’s edges 
with non-zero weight, and C the total number of unique 
connections.  Then 

∑ − ×= 1

0
][][n iiActiveE α  

and  



∑ − ×= 1

0
][][n iiActiveC β    

Since we have proven that ][][ ii αβ ≤ , it follows that C≤E 
and  

.
][][ 1

0

1

0

αβ =≤=
∑∑ −− nn iActive

E
iActive

C   

              
  Clearly, 2][ ri ≤α , with the equality occurring when all 
edges have non-zero weights.  The proof for (ii) follows 
similar arguments.                                                            
         
 

Listing the metrics for QMDD metrics in tabular form 
provides a histogram-like display of the structure of the 
QMDD which we will for convenience refer to as a 
histogram.  Table 1 shows the histogram for the QMDD 
in Fig. 2.  

 The bottom line of the histogram provides the overall 
βα ,  and number of vertices for the entire QMDD. Note 

that the sum of Active[i] does not include the terminal 
node. The histogram lists the variables according to the 
current variable order of the QMDD. In Table 1, variable 
2 labels the start node and variable 0 is the closest 
variable to the terminal node. As a result, variable n-1, the 
start node, always has Active[n-1]=1. 

 
 

Table 1: Histogram for “3_17.nct” 
 

variable Active[i] ][iα
 

][iβ  

2 1 4.00 4.00 
1 4 2.00 1.75 
0 4 1.00 1.00 

total 9 1.78 1.67 
 
BDD researchers have observed that the numbers of 

vertices for each variable (arranged by the variable order) 
in general exhibit a pear shape pattern [12]. We have 
observed that while most QMDD exhibit similar pear 
shape histograms, many histograms exhibit quite a flat 
pattern, where most variables have roughly the same 
Active[i]. This allows us to classify QMDD histograms as 
“FLAT” or “PEAR”, as demonstrated in the two 
histograms of Table 2. The left histogram of “hwb12” 
exhibits the typical PEAR like pattern commonly 
observed in classical BDDs. The right histogram of 
benchmark “cycle10_2*” is of type FLAT as variable 7 to 
2 have similar numbers of vertices. We later show that 
different minimization heuristics apply based on this 
classification. 

 
 

Table 2: Histograms for “hwb12” and “cycle10_2*” 
 
var act[i] α[i] β[i] var act[i] α [i] β[i] 
11 1 4.00 4.00 11 1 2.00 2.00 
10 4 4.00 4.00 10 2 4.00 3.00 
9 16 4.00 4.00 9 6 1.67 1.67 
8 64 4.00 4.00 8 10 2.00 1.60 
7 256 3.91 3.91 7 16 1.44 1.19 
6 990 2.84 2.84 6 16 1.44 1.19 
5 2258 1.37 1.37 5 16 2.00 1.56 
4 1174 1.17 1.17 4 18 1.50 1.17 
3 304 1.16 1.16 3 18 2.00 1.00 
2 76 1.16 1.16 2 15 1.20 1.00 
1 19 1.21 1.21 1 9 1.33 1.00 
0 4 1.00 1.00 0 3 1.33 1.00 

Total 5167 1.76 1.76  131 1.65 1.24 
 
 The ][iα  and ][iβ  histograms provide additional 

insight that is explored in the following Section.  It should 
be noted that the QMDD unique table provides efficient 
means to compute the Active[i] as well as the ][iα  and 

][iβ  histograms without much processing overhead. 
 
4. Improving QMDD Minimization with the 
Data Structure Metrics 

 
The inability of our sifting algorithm (as well as any 

other similar heuristic algorithm) to achieve consistent 
positive results with all the benchmarks, is of course, due 
to the fact that it examines only O(n2) ordering 
possibilities out of n! possible orderings. To achieve 
improved minimization, common binary BDD packages 
offer a rich choice of reordering heuristics.  These 
heuristics can be grouped into sifting algorithms (that 
include also group sifting and symmetric sifting), random 
algorithms, window algorithms, and other special 
algorithms (including simulated annealing and genetic 
evolutionary algorithms) [16]. 

While all of these heuristics can be extended for 
QMDD, we concentrate here on heuristics primarily 
based on sifting and random approaches. Our 
experimentation with the group sifting approach that 
exploits the affinity among variables achieved limited 
success. One reason is that benchmarks with sufficiently 
large numbers of variables are currently not available. 
Furthermore, it seems that since reversible circuits are 
maximally connected [1,4], they tend to display a strong 
group behavior as a whole, making attempts to identify 
subgroups more difficult or redundant.  

Our random algorithm performs a set of random  
variable position changes without regard to structure size 
between repeated applications of the sifting algorithm.   
This process breaks apart the initial grouping of variables 
allowing the sifting algorithm to find a better ordering.  A 



set of heuristics inferred from the data structure metrics is 
then used to determine when the process should stop. 

 
QMDD Minimization Procedure: 

i)  Apply the sifting algorithm for initial reordering.  

ii)  Use metrics-based heuristics to predict if a better 
variable ordering is likely. If prediction is negative 
– stop the procedure. 

iii) Perform a random set (or a specially designed 
fixed set) of variable rearrangements without 
regard to structure size.  

iv) Repeat steps (i) to (iii). Stop the process if this step 
is repeated more than k times. 

We present a sample set of the data structure metrics 
heuristics that have been investigated. Like all heuristics, 
they obtain different levels of success as described in the 
following section, hence the k limit in step iv).   
 
Sample Heuristics: 
 
Heuristic 1: For PEAR type benchmarks, if the sifting 
algorithm provides moderate or no improvement and if 
the pattern of the histogram of ][iα  and ][iβ histogram is 
not changed by the sifting, then no significant 
improvement is likely to be achieved. 
Heuristic 2: For FLAT type benchmarks, no significant 
improvement is likely if the first half of the variables 
exhibit 00.2][ ≈iα .  
Heuristic 3: Appearance of ][iα  or ][iβ  equal to 2 in the 
first two variables (of the variable ordering) of a PEAR 
type benchmark suggests benefit for further reduction 
attempts, as the QMDD may become FLAT.  
Heuristic 4: Benchmarks with ][iα  that is not 
monotonically decreasing (along variable order from the 
start vertex) resist minimization.  
Heuristic 5: If reordering of a FLAT Benchmark changes 
its histogram shape to PEAR, the total number of vertices 
will usually increase. 
 
5. Experimental Results 

 
We summarize our result for a broad set of 

benchmarks in Table 3. The second column indicates the 
histogram type (PEAR or FLAT) as described in Section 
3. The last column indicates the improvement (if any) of 
the new algorithm over our previous sifting algorithm.  

We have seen significant improvements with the 
benchmarks “9symd2”, “cycle10_2”, “ham7”, “ham15m” 
and “rd73d2”. We recorded the QMDD histogram during 
the entire minimization process.  An interesting 
observation for most benchmarks is that the initial 
QMDD buildup process produces a monotonically 

decreasing ][iα  histogram. On the other hand, 
the ][iβ histogram may exhibit fluctuations, although the 
values are generally decreasing in view of Lemma 1. The 
only observed violation of the monotonic decrease of ][iα  
appears with benchmark “mod5adders”. Since this 
benchmark seems to resists minimization, we use this 
finding in Heuristics 4. 

 
Table 3: Improvements in QMDD Minimization 

 
 
   The “hidden bit” benchmarks (“hwb7”, “hwb8”, 
“hwb9”, “hwb10”, “hwb11”, and “hwb12”) worked very 
well with Heuristic 1. In its reversed application, it 
showed particularly good improvements for “rd73d2”, 
“ham15r”, “ham15”.   

Heuristic 2 seems to work fine but we do not have a 
large choice of FLAT type benchmarks to verify it more 
extensively.  A similar situation occurs with Heuristic 3.  

To further demonstrate Heuristics 5, we subjected the 
benchmark “cycle10_2” to several random variable 
reordering, and captured histograms we marked as 
random0, random1 and random2. We compared the 
active[i] of these histogram with the minimized 
histograms obtained by our sifting algorithm and the new 
algorithm of this paper.  We show our results in Fig. 3, 
where we also include the original ordering histogram.  
Each series in the graph illustrates the active[i] (number 

Name Hist
type

vars gates Initial 
QMDD 
vertices 

Previous 
sifting 

reduction 

New 
algorithm 
reduction

Improve-
ment 

5mod5 Pear 6 17 28 42.86% 46.43% 8.33% 
6symd2 Pear 10 20 247 50.20% 56.68% 12.91%
9symd2 Pear 12 28 229 19.65% 48.19% 145.24%
mod5adders Pear 6 21 38 0.00% 0.00% 0.00% 
0406142c2 Flat 35 116 150 9.33% 9.33% 0.00% 
0410184 Flat 14 46 39 15.38% 15.38% 0.00% 
0410184.qc Flat 14 74 39 15.38% 15.38% 0.00% 
cycle17_3 Flat 20 48 236 57.20% 82.20% 43.71%
cycle17_3r Flat 20 48 236 82.20% 82.20% 0.00% 
cycle10_2 Flat 12 19 67 40.30% 62.69% 55.56%
ham7 Pear 7 23 130 3.08% 24.62% 699.35%
ham15 Pear 15 132 4521 49.56% 72.62% 46.53%
ham15m Pear 15 132 1774 19.17% 36.30% 89.36%
ham15r Pear 15 132 4522 60.59% 73.33% 21.03%
hwb7 Pear 7 289 179 13.41% 13.41% 0.00% 
hwb8 Pear 8 614 343 18.37% 18.37% 0.00% 
hwb9 Pear 9 1541 683 23.87% 23.87% 0.00% 
hwb10 Pear 10 3631 1331 27.87% 29.30% 5.13% 
hwb11 Pear 11 9314 2639 34.44% 34.44% 0.00% 
hwb12 Pear 12 18393 5167 38.36% 39.40% 2.71% 
rd84d1 Pear 15 28 3588 92.64% 92.64% 0.00% 
rd73d2 Pear 15 28 3588 14.00% 40.76% 191.14%
rd53d1 Pear 7 12 26 19.32% 19.32% 0.00% 



of vertices) for each variable. The variable number is 
assigned from the start node (1) to the last variable (12) as 
traversed along the QMDD variable order. 
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Figure 3. Shape changes from FLAT to PEAR for 

benchmark Cycle10_2.nct  
 

The total number of vertices for random2, random1, 
and random0 are 132, 126 and 131 respectively. From 
Table 3, the total number for the original variable order is 
67, and for the minimized sifting and new algorithm it is 
40 and 25 respectively.  We can see that the shape 
changes from FLAT to PEAR for random2 and random1.  
Clearly, these variable orders cause the QMDD to use a  
much higher number of vertices than in our minimized 
variable orders. Therefore, a minimized flat benchmark 
must remain flat during further minimizations. 
 
 
6. Conclusions 

 
This paper proposes new data structure metrics that 

provide insight on the inter-connectivity within a QMDD.  
Heuristics based on these metrics have been developed 
and used to guide an iterative minimization algorithm.  
Our preliminary minimization results show some 
significant improvement versus our sifting algorithm, 
although no improvement was achieved for some 
benchmarks.   
   Considerable work is still needed with the metrics based 
heuristics, although their potential has been demonstrated 
to some extent in this paper. We recognize that the 
heuristics that perform well with our current benchmarks 
may err with future benchmarks. 

In future work we plan to test the application of this 
data structure metrics for QMDD with a radix larger than 
2, where the importance of the inner-connectivity among 
the vertices is likely to be higher. 
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