
On the Data Structure Metrics of Quantum Multiple-valued Decision Diagrams

David Y. Feinstein and Mitchell A. Thornton D. Michael Miller
Department of Computer Science and Engineering Department of Computer Science

Southern Methodist University University of Victoria
Dallas, TX, USA Victoria, BC, Canada

dfeinste,mitch@engr.smu.edu mmiller@cs.uvic.ca

Abstract

This paper describes new metrics for the data structure
referred to as quantum multiple-valued decision
diagrams (QMDD) which are used to represent the
matrices describing reversible and quantum gates and
circuits. These metrics provide information about
QMDD that allows for improvement of minimization
techniques. We explore metrics related to the frequency
of edges with non-zero weight for the entire QMDD data
structure and their histograms with respect to each
variable. We observe some unique regularity particular
to the methodology of the QMDD. We develop new
heuristics for QMDD dynamic variable ordering (DVO)
that are guided by the proposed metrics. Experimental
results show the effectiveness of the proposed techniques.

1. Introduction

The quantum multiple-valued decision diagram

(QMDD) was proposed for the efficient specification and
simulation of reversible and quantum circuits [9,10]. The
QMDD data structure has been successfully used for
reversible and quantum circuit simulations, equivalence
checking, and other applications [4]. In this paper we
develop and investigate the use of data structure metrics
for the analysis and minimization of QMDD.

Unlike the binary decision diagram (BDD) which
allows only two possible transition edges from each
vertex, and which is used in the QuIDDPro package [15],
a multiple-valued QMDD has r2 transition edges from
each vertex (where r is the radix). Since the
transformation matrices representing quantum circuits are
often sparse, many QMDD edges point directly to the
terminal node with zero weight. This creates an
interesting and complex inter-connectivity among the
QMDD vertices, that allows QMDD to represent
relatively complex circuits with a small number of
vertices.

The data structure metrics proposed in this research
are used to better understand this inter-connectivity. They
include the ratio of non-zero weight edges to the number

of vertices for the entire QMDD as well as a histogram of
the similar ratio measured for each variable. We propose
a set of heuristics based on the values of these metrics to
guide dynamic variable ordering (DVO) resulting in an
improvement in minimization for many benchmark
circuits.

In our previous work, we have developed a DVO
sifting algorithm that utilized efficient adjacent variable
interchange [8]. Our sifting algorithm, adapted for
QMDD from Rudell’s binary ROBDD sifting approach
[13], achieved significant size reductions on some
benchmarks of reversible/quantum circuits of n-variables
while considering only O(n2) of the n! possible variable
orderings.

In this work we offer additional heuristic algorithms
for QMDD minimization. The new heuristics achieve
improved minimization for some benchmarks over our
previous sifting algorithm. Since such DVO
minimization efforts consume processing time, it is
beneficial to be able to predict in advance whether a
certain QMDD structure can be minimized [16]. We
describe heuristics, based on our new data structure
metrics, that provide effective prediction in this regard for
most of the benchmarks we tested.

The paper is organized as follows. In Section 2 we
briefly discuss reversible logic, the QMDD structure, and
our previous work on QMDD minimization. The
proposed QMDD data structure metrics are described in
Section 3. In Section 4 we discuss the application of the
proposed new metrics in QMDD minimization heuristics,
and in Section 5 we discuss our preliminary experimental
results. Conclusions and suggestions for further research
appear in Section 6.

2. Preliminaries

2.1. Reversible Logic and Quantum Circuits

In this section, we briefly introduce the basic concepts
of reversible and quantum circuits. More extensive
background is available in [11].

Definition 1: A gate / circuit is logically reversible if it
maps each input pattern to a unique output pattern. For
classical reversible logic, the mapping is a permutation
matrix. For quantum circuits, the gate / circuit operation
can be described by a unitary transformation matrix.

Bennet [1] showed that reversible gates can

theoretically result in binary circuits that are completely
free from energy loss. The concept of reversibility has
been extended to MVL circuits [7]. Binary quantum logic
gates and circuits are inherently both logically and
physically reversible [11]. Non-binary quantum logic
circuits are logically reversible.

Fig. 1 shows a 3 line and 6 gate binary reversible
circuit “c3_17.nct” from D. Maslov’s benchmarks [6].
The symbol ⊕ denotes the NOT operation. For each gate,
the NOT operates on the target line if every control line
(lines with a black circle) has the value 1. Otherwise the
target line is unchanged. Control and unconnected lines
pass through the gate unchanged. A gate with no controls
is a conventional NOT gate. One with a single control is
termed a controlled-NOT and gates with more than one
control are referred to as Toffoli gates [11].

Figure 1. 3-variable benchmark C3_17.nct

Fig. 1 shows the specification and the transformation
matrix for the benchmark, as captured by the QMDD tool.
In general, an r-valued reversible circuit with n lines (that
is, a circuit with n inputs and n outputs) requires a
transformation matrix of dimension [rn×rn], where r is the
radix.

2.2 Quantum Multiple-valued Decision Diagrams

The QMDD structure was proposed to simulate and
specify reversible and quantum logic circuits in a
compact form [9]. A matrix of dimension n nr r× can be
partitioned as:

2 2 2

0 1 1

1 2 1

1 1

r

r r r

r r r r r

M M M
M M M

M

M M M

−

+ −

− − + −

 
 
 =  
 
  

where each Mi element is a matrix of dimension
1 1.n nr r− −× A QMDD applies this partitioning analogous

to how a reduced ordered binary decision diagram
(ROBDD) [3] recursively applies Shannon
decompositions. In a similar manner to ROBDDs, a
QMDD adheres to a fixed variable ordering and common
substructures (submatrices) are shared. A QMDD has a
single terminal vertex with value 1, and each edge in the
QMDD, including the edge pointing to the start vertex,
has an associated complex-valued weight. Also similar to
ROBDDs, the QMDD representation is very useful due to
its property of canonicity.

Theorem 1 An rn×rn complex valued matrix M
representing a reversible or quantum circuit has a unique
(up to variable reordering or relabeling) QMDD
representation.
Proof: A proof by induction based on the iterative
construction of a QMDD and the normalization of edge
weights that is performed during that construction is
detailed in [10].

We show in Fig. 2 the QMDD structure of the binary

benchmark “c3_17.nct” given in Fig. 1, as it is captured
in our QMDD tool. The full details on the construction
and properties of the QMDD are described in [9,10]. Nine
nonterminal vertices are required in addition to the
terminal vertex. To make the figure more readable,
segmented edges marked with 0 are used to denote edges
with zero weight that point to the terminal node.

Figure 2. The QMDD for benchmark C3_17.nct

We note that for binary (r=2) reversible / quantum

gates / circuits the required matrices can be represented
using BDD, e.g. QuIDDPro [15] which employs the very
efficient CUDD package [14]. The QMDD approach is
quite different even in the binary case since each

nonterminal vertex has four outgoing edges rather than
two. This makes each vertex more complex but fewer
(about half) vertices are required. In addition, the
diagram has half the depth. QMDD are also applicable to
multiple-valued situations.

One can verify that this QMDD represents the
transformation matrix of Fig. 1, by traversing each path
from the start vertex to the terminal vertex and
multiplying the weights of the edges. While binary
reversible circuits like “c3_17.nct” have only 1 and 0
weights, quantum circuits have complex numbers as edge
weights.

2.3 Related work on QMDD Variable Sifting

In our previous work we demonstrated that local
adjacent variable interchange can be efficiently
implemented within the QMDD package [8]. We then
showed that a minimizing algorithm similar to Rudell’s
binary ROBDD sifting algorithm [13] is well suited to
reduce the number of nodes in a QMDD representation.
Our sifting algorithm employs a greedy selection rule that
iteratively picks the variable with the largest number of
associated vertices for sifting. In the event of a tie, the
variable closest to the terminal node is selected.

Our QMDD sifting algorithm produced minimization
levels that varied significantly from example to example.
On some benchmarks (e.g. “rd84d1” and “cycle17_3r”)
we achieved spectacular size reductions (82% and
92.64% respectively). A low improvement on other
benchmarks can be the result of having started from what
is already a good ordering, or due to the possibility that
the function’s QMDD representation is insensitive to
variable ordering. Since the sifting heuristic visits only a
small fraction (2 / !n n) of all possible variable orderings,
we are motivated in this paper to explore additional
minimization heuristics influenced by the data structure
metrics of the QMDD.

3. QMDD Data Structure Metrics

The unique table used by the QMDD software

continuously maintains and tracks Active[i], the number
of active vertices for each variable i, 0≤i<n, where n is
the number of variables. This is an important QMDD data
structure metric that we have used extensively in our
previous work. We define a new QMDD data structure
metric as follows:

Definition 2: Let α be the ratio of the total number of
edges with non-zero weight to the total number of
vertices in the entire QMDD. Similarly, let α[i] be the
ratio of the number of edges with non-zero weight that

emerge from all the vertices of variable i to the number of
vertices of the same variable. It follows that,

∑
∑

−

− ×
= 1

0

1

0

][

][][
n

n

iActive

iiActive α
α

Since each nonterminal QMDD vertex has r2 edges,

1≤α≤r2 and 2][1 ri ≤≤ α , where r is the QMDD radix. For
example, computing]1[α for the QMDD of Fig. 2, we
have a total of four vertices and eight non-zero weight
edges, thus]1[α = 8/4=2.00. We observe that while
vertex N1 has two edges with non-zero weight, they both
connect N1 to N5, essentially connecting the vertex to
only one unique vertex. We therefore distinguish between
the number of edges with non-zero weight and the
number of unique connections that reach different
vertices as follows:

Definition 3: Let β be the ratio of the total number of
unique connections with non-zero weight to the total
number of vertices in the entire QMDD. Similarly, let β[i]
be the ratio of the number of unique connections with
non-zero weight edges that emerge from all the vertices
of variable i to the number of vertices of the same
variable. As above, 1≤ β ≤r2 and 2][1 ri ≤≤ β . It follows
that

∑
∑

−

− ×
= 1

0

1

0

][

][][
n

n

iActive

iiActive β
β

For variable 1 in Fig. 2, we have a total of four
vertices and seven unique connections with non-zero
weight, thus]1[β = 7/4=1.75. The relation between α and
β is given by the following lemma.

Lemma 1 Let],[,, iαβα and][iβ be the data structure
metrics of a QMDD with n variables as defined above.
Hence, (i) 2][][1 rii ≤≤≤ αβ for all i, 0≤i<n, and (ii)

21 r≤≤≤ αβ .
Proof: Each vertex of variable i must have at least one
edge with non-zero weight, since a QMDD vertex with all
edges having zero weights is redundant. This edge creates
a unique connection to a nonterminal vertex, thus

][1 iβ≤ must be true. We observe that the number of
unique connections for the vertices of variable i cannot
exceed the number of edges with non-zero weight by
Definition 3. Thus][][ii αβ ≤ must be true.
 Let Active[i] denote the number of active vertices for
variable i, and E the total number of the QMDD’s edges
with non-zero weight, and C the total number of unique
connections. Then

∑ − ×= 1

0
][][n iiActiveE α

and

∑ − ×= 1

0
][][n iiActiveC β

Since we have proven that][][ii αβ ≤ , it follows that C≤E
and

.
][][1

0

1

0

αβ =≤=
∑∑ −− nn iActive

E
iActive

C

 Clearly, 2][ri ≤α , with the equality occurring when all
edges have non-zero weights. The proof for (ii) follows
similar arguments. 

Listing the metrics for QMDD metrics in tabular form
provides a histogram-like display of the structure of the
QMDD which we will for convenience refer to as a
histogram. Table 1 shows the histogram for the QMDD
in Fig. 2.

 The bottom line of the histogram provides the overall
βα , and number of vertices for the entire QMDD. Note

that the sum of Active[i] does not include the terminal
node. The histogram lists the variables according to the
current variable order of the QMDD. In Table 1, variable
2 labels the start node and variable 0 is the closest
variable to the terminal node. As a result, variable n-1, the
start node, always has Active[n-1]=1.

Table 1: Histogram for “3_17.nct”

variable Active[i]][iα

][iβ

2 1 4.00 4.00
1 4 2.00 1.75
0 4 1.00 1.00

total 9 1.78 1.67

BDD researchers have observed that the numbers of

vertices for each variable (arranged by the variable order)
in general exhibit a pear shape pattern [12]. We have
observed that while most QMDD exhibit similar pear
shape histograms, many histograms exhibit quite a flat
pattern, where most variables have roughly the same
Active[i]. This allows us to classify QMDD histograms as
“FLAT” or “PEAR”, as demonstrated in the two
histograms of Table 2. The left histogram of “hwb12”
exhibits the typical PEAR like pattern commonly
observed in classical BDDs. The right histogram of
benchmark “cycle10_2*” is of type FLAT as variable 7 to
2 have similar numbers of vertices. We later show that
different minimization heuristics apply based on this
classification.

Table 2: Histograms for “hwb12” and “cycle10_2*”

var act[i] α[i] β[i] var act[i] α [i] β[i]
11 1 4.00 4.00 11 1 2.00 2.00
10 4 4.00 4.00 10 2 4.00 3.00
9 16 4.00 4.00 9 6 1.67 1.67
8 64 4.00 4.00 8 10 2.00 1.60
7 256 3.91 3.91 7 16 1.44 1.19
6 990 2.84 2.84 6 16 1.44 1.19
5 2258 1.37 1.37 5 16 2.00 1.56
4 1174 1.17 1.17 4 18 1.50 1.17
3 304 1.16 1.16 3 18 2.00 1.00
2 76 1.16 1.16 2 15 1.20 1.00
1 19 1.21 1.21 1 9 1.33 1.00
0 4 1.00 1.00 0 3 1.33 1.00

Total 5167 1.76 1.76 131 1.65 1.24

 The][iα and][iβ histograms provide additional

insight that is explored in the following Section. It should
be noted that the QMDD unique table provides efficient
means to compute the Active[i] as well as the][iα and

][iβ histograms without much processing overhead.

4. Improving QMDD Minimization with the
Data Structure Metrics

The inability of our sifting algorithm (as well as any

other similar heuristic algorithm) to achieve consistent
positive results with all the benchmarks, is of course, due
to the fact that it examines only O(n2) ordering
possibilities out of n! possible orderings. To achieve
improved minimization, common binary BDD packages
offer a rich choice of reordering heuristics. These
heuristics can be grouped into sifting algorithms (that
include also group sifting and symmetric sifting), random
algorithms, window algorithms, and other special
algorithms (including simulated annealing and genetic
evolutionary algorithms) [16].

While all of these heuristics can be extended for
QMDD, we concentrate here on heuristics primarily
based on sifting and random approaches. Our
experimentation with the group sifting approach that
exploits the affinity among variables achieved limited
success. One reason is that benchmarks with sufficiently
large numbers of variables are currently not available.
Furthermore, it seems that since reversible circuits are
maximally connected [1,4], they tend to display a strong
group behavior as a whole, making attempts to identify
subgroups more difficult or redundant.

Our random algorithm performs a set of random
variable position changes without regard to structure size
between repeated applications of the sifting algorithm.
This process breaks apart the initial grouping of variables
allowing the sifting algorithm to find a better ordering. A

set of heuristics inferred from the data structure metrics is
then used to determine when the process should stop.

QMDD Minimization Procedure:

i) Apply the sifting algorithm for initial reordering.

ii) Use metrics-based heuristics to predict if a better
variable ordering is likely. If prediction is negative
– stop the procedure.

iii) Perform a random set (or a specially designed
fixed set) of variable rearrangements without
regard to structure size.

iv) Repeat steps (i) to (iii). Stop the process if this step
is repeated more than k times.

We present a sample set of the data structure metrics
heuristics that have been investigated. Like all heuristics,
they obtain different levels of success as described in the
following section, hence the k limit in step iv).

Sample Heuristics:

Heuristic 1: For PEAR type benchmarks, if the sifting
algorithm provides moderate or no improvement and if
the pattern of the histogram of][iα and][iβ histogram is
not changed by the sifting, then no significant
improvement is likely to be achieved.
Heuristic 2: For FLAT type benchmarks, no significant
improvement is likely if the first half of the variables
exhibit 00.2][≈iα .
Heuristic 3: Appearance of][iα or][iβ equal to 2 in the
first two variables (of the variable ordering) of a PEAR
type benchmark suggests benefit for further reduction
attempts, as the QMDD may become FLAT.
Heuristic 4: Benchmarks with][iα that is not
monotonically decreasing (along variable order from the
start vertex) resist minimization.
Heuristic 5: If reordering of a FLAT Benchmark changes
its histogram shape to PEAR, the total number of vertices
will usually increase.

5. Experimental Results

We summarize our result for a broad set of

benchmarks in Table 3. The second column indicates the
histogram type (PEAR or FLAT) as described in Section
3. The last column indicates the improvement (if any) of
the new algorithm over our previous sifting algorithm.

We have seen significant improvements with the
benchmarks “9symd2”, “cycle10_2”, “ham7”, “ham15m”
and “rd73d2”. We recorded the QMDD histogram during
the entire minimization process. An interesting
observation for most benchmarks is that the initial
QMDD buildup process produces a monotonically

decreasing][iα histogram. On the other hand,
the][iβ histogram may exhibit fluctuations, although the
values are generally decreasing in view of Lemma 1. The
only observed violation of the monotonic decrease of][iα
appears with benchmark “mod5adders”. Since this
benchmark seems to resists minimization, we use this
finding in Heuristics 4.

Table 3: Improvements in QMDD Minimization

 The “hidden bit” benchmarks (“hwb7”, “hwb8”,
“hwb9”, “hwb10”, “hwb11”, and “hwb12”) worked very
well with Heuristic 1. In its reversed application, it
showed particularly good improvements for “rd73d2”,
“ham15r”, “ham15”.

Heuristic 2 seems to work fine but we do not have a
large choice of FLAT type benchmarks to verify it more
extensively. A similar situation occurs with Heuristic 3.

To further demonstrate Heuristics 5, we subjected the
benchmark “cycle10_2” to several random variable
reordering, and captured histograms we marked as
random0, random1 and random2. We compared the
active[i] of these histogram with the minimized
histograms obtained by our sifting algorithm and the new
algorithm of this paper. We show our results in Fig. 3,
where we also include the original ordering histogram.
Each series in the graph illustrates the active[i] (number

Name Hist
type

vars gates Initial
QMDD
vertices

Previous
sifting

reduction

New
algorithm
reduction

Improve-
ment

5mod5 Pear 6 17 28 42.86% 46.43% 8.33%
6symd2 Pear 10 20 247 50.20% 56.68% 12.91%
9symd2 Pear 12 28 229 19.65% 48.19% 145.24%
mod5adders Pear 6 21 38 0.00% 0.00% 0.00%
0406142c2 Flat 35 116 150 9.33% 9.33% 0.00%
0410184 Flat 14 46 39 15.38% 15.38% 0.00%
0410184.qc Flat 14 74 39 15.38% 15.38% 0.00%
cycle17_3 Flat 20 48 236 57.20% 82.20% 43.71%
cycle17_3r Flat 20 48 236 82.20% 82.20% 0.00%
cycle10_2 Flat 12 19 67 40.30% 62.69% 55.56%
ham7 Pear 7 23 130 3.08% 24.62% 699.35%
ham15 Pear 15 132 4521 49.56% 72.62% 46.53%
ham15m Pear 15 132 1774 19.17% 36.30% 89.36%
ham15r Pear 15 132 4522 60.59% 73.33% 21.03%
hwb7 Pear 7 289 179 13.41% 13.41% 0.00%
hwb8 Pear 8 614 343 18.37% 18.37% 0.00%
hwb9 Pear 9 1541 683 23.87% 23.87% 0.00%
hwb10 Pear 10 3631 1331 27.87% 29.30% 5.13%
hwb11 Pear 11 9314 2639 34.44% 34.44% 0.00%
hwb12 Pear 12 18393 5167 38.36% 39.40% 2.71%
rd84d1 Pear 15 28 3588 92.64% 92.64% 0.00%
rd73d2 Pear 15 28 3588 14.00% 40.76% 191.14%
rd53d1 Pear 7 12 26 19.32% 19.32% 0.00%

of vertices) for each variable. The variable number is
assigned from the start node (1) to the last variable (12) as
traversed along the QMDD variable order.

cycle10_2 variations

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Variable

ac
tiv

e[
i]

random2
random1
random0
original
sifting
new

Figure 3. Shape changes from FLAT to PEAR for

benchmark Cycle10_2.nct

The total number of vertices for random2, random1,
and random0 are 132, 126 and 131 respectively. From
Table 3, the total number for the original variable order is
67, and for the minimized sifting and new algorithm it is
40 and 25 respectively. We can see that the shape
changes from FLAT to PEAR for random2 and random1.
Clearly, these variable orders cause the QMDD to use a
much higher number of vertices than in our minimized
variable orders. Therefore, a minimized flat benchmark
must remain flat during further minimizations.

6. Conclusions

This paper proposes new data structure metrics that

provide insight on the inter-connectivity within a QMDD.
Heuristics based on these metrics have been developed
and used to guide an iterative minimization algorithm.
Our preliminary minimization results show some
significant improvement versus our sifting algorithm,
although no improvement was achieved for some
benchmarks.
 Considerable work is still needed with the metrics based
heuristics, although their potential has been demonstrated
to some extent in this paper. We recognize that the
heuristics that perform well with our current benchmarks
may err with future benchmarks.

In future work we plan to test the application of this
data structure metrics for QMDD with a radix larger than
2, where the importance of the inner-connectivity among
the vertices is likely to be higher.

References

[1] V. D. Agrawal, “An information theoretic approach to digital fault

testing,”, In IEEE Trans. Computers, Vol. 30, pp. 582-587, Aug.
1981.

[2] C.H. Bennett, “Logical Reversibility of Computation,”IBM, J. Res.
Dev., Vol. 17, No. 6, pp. 525-532, 1973.

[3] R.E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation”. IEEE Transactions on Computers, Vol C-35 Issue
8, August 1986, pp. 677-691.

[4] D. Y. Feinstein, M. A. Thornton, and D. M. Miller, “Partially
Redundant Logic Detection Using Symbolic Equivalence
Checking in Reversible and Irreversible Logic Circuits”, to appear
in DATE’08.

[5] D.C. Marinescu and G.M. Marinescu. Approaching Quantum
Computing. Pearson Prentice Hall, 2005

[6] D. Maslov. Reversible logic synthesis benchmarks page.
http://www.cs.uvic.ca/~dmaslov/, Nov. 15, 2005.

[7] D. M. Miller, G. Dueck, and D. Maslov, “A Synthesis Method for
MVL Reversible Logic,” Proc. 2004 Int. Symposium on Multiple-
Valued Logic, Toronto, Canada, May 2004, pp. 74-80.

[8] D. M. Miller, D. Y. Feinstein, and M. A. Thornton, “QMDD
Minimization using Sifting for Variable Reordering”, In Journal of
Multiple-valued Logic and Soft Computing. 2007. pp. 537-552.

[9] D. M. Miller and M. A. Thornton, “QMDD: A Decision Diagram
Structure for Reversible and Quantum Circuits”, Proc. IEEE
International Symposium on Multiple-Valued Logic (ISMVL), on
CD, May 17-20, 2006.

[10] D. M. Miller, M. A. Thornton, and D. Goodman, “A Decision
Diagram Package for Reversible and Quantum Circuits”, Proc.
IEEE World Congress on Computational Intelligence, on CD, July
2006.

[11] M. A. Nielsen and I.L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2000.

[12] S. Panda and F. Somenzi, “Who are the variables in your
neighborhood”, In ICCAD’ 95, December 1995, pp. 1-4.

[13] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams”, In Proceedings of the International Conference on
Computer-Aided Design, Santa Clara, CA, November 1993, pp.
42-47.

[14] F. Somenzi, “The CUDD Package”, University of Colorado at
Boulder, 1995. Version 2.4.0 available at:
http://vlsi.colorado.edu/~fabio/.

[15] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “QuIDDPro:
High-Performance Quantum Circuit Simulation”,
 http://vlsicad.eecs.umich.edu/Quantum/qp/, Oct. 20, 2006.

[16] S. N. Yanushkevitch, D. M. Miller, V. P. Shmerko and R. S.
Stankovic, Decision Diagram Techniques for Micro- and
Nanoelectronic Design, CRC Taylor and Francis, 2006..

