
Multiple-Valued Random Digit Extraction
Micah A. Thornton

Department of Statistical Science
Southern Methodist University

Dallas, Texas, USA
mathornton@smu.edu

Mitchell A. Thornton
Darwin Deason Institute of Cybersecurity

Southern Methodist University
Dallas, Texas, USA
mitch@smu.edu

Abstract—We describe a parameterized random value extrac-
tion function for producing symbol strings based upon a user-
specified radix value. The presentation of the extractor function
is accompanied with a theoretical discussion that describes how
the radix value, and hence the symbol set cardinality, affects the
entropy of an extracted symbol string. Experimental results are
provided where extracted strings with respect to different radix
values are analyzed for randomness quality. The empirical data
is obtained by applying our parameterized extractor function to
a weakly random source that provides a set of inter-packet delay
spacings observed from a network interface card in a general-
purpose computer. Our results show how the quality of the
extracted random strings varies for differing radix values. These
results provide guidelines for choosing an appropriate radix value
in an extractor function.

I. INTRODUCTION

We describe the formulation and use of a multiple-valued
entropy extractor function where the radix value is a parameter
of the extractor. The parameterized radix value allows the
extractor to produce a sequence of digits from the canonical
digit set, {0, 1, . . . , r− 1}, where r is the user-specified radix
value. This extractor was first proposed in [1] for the binary
case, r = 2, and was shown to maximize Shannon’s entropy
in the extracted string [2]. Here, we generalize the extractor
by incorporating a parameterized radix value r and we analyze
the quality of the extracted digit strings with varying values
of r. The utility of this investigation allows users of random
extractors to choose radix values that produce high-quality
random digit strings.

Users of random number generators (RNG) generally rely
upon one of two different forms. A pseudorandom number
generator (PRNG) is a deterministic function that produces
periodic sequences of length N such that strings of size n
with n < N have characteristics resembling those of an
ideal random string. Conversely, the so-called class of “true
random number generators” (TRNG) is generally based upon
a physical entropy source. Examples of TRNG sources used in
the past are measurements of natural phenomena such as ra-
dioactive decay [3] or measurements of superimposed quantum
states [4]. When the source used in a TRNG implementation
results in measured values that have a deterministic as well as
a random component, the sources are characterized as weakly
random and thus the measurements are generally applied to
a mathematical function devised to extract the entropy or
randomness from the source measurements. Furthermore, the
extractor function ideally produces values that are uniformly

distributed regardless of the native distribution of the source
measurements. For at least these reasons, extraction functions
are very important with regard to the quality of TRNG output
values.

A fundamental way in which PRNG and TRNG differ is in
their use of either a recurrence relation or an extractor function.
A PRNG produces the next pseudorandom value by applying
a recursive relation to a previously generated pseudorandom
value, or alternatively, a seed value at initiation time. It is
clear that PRNG are actually deterministic processes since
they depend upon an initial seed value and subsequent values
that are deterministically computed. In the case of TRNG,
values are calculated by applying an operation to a natural
phenomenon such as a random signal or other time series
process to produce random numbers that are aperiodic.

The majority of past work in TRNG extractors focuses
upon improvements in the production of binary string outputs.
A survey of randomness extractors in both the classical and
quantum realm was undertaken by Berta et al [5]. A recently
proposed TRNG based on the use of two independent non-
stationary stochastic process sources was shown to produce
increased quality random numbers [6]. In terms of non-binary
TRNGs, past results are limited, however a notable contribu-
tion is a recently proposed TRNG that generates values based
on the meta-stability of a ternary valued latch [7]. This latter
contribution extended prior work with TRNG based on the
metastability of electronic latches [8], [9]. Our extractor allows
for the production of strings over a wide variety of symbol sets
with radices that vary from binary to arbitrarily high radix
values that are limited only by characteristics of the source.

II. BACKGROUND

The TRNG considered here is composed of an entropy
source and an extractor function. We use a weakly random
source in the form of timing observations between received
packets in a network interface card (NIC). For the case r = 2,
a binary string is produced by the TRNG. We first review the
binary extractor function since it serves as a baseline com-
parison case for the higher-radix extractor. We next consider
the entropy present in a non-binary string and consider how
entropy varies for a given set of source observations extracted
into different symbol sets of varying radix values.

A. Binary Extractor Function

It is assumed that a weakly random source produces a
discrete time series Xt = {x1, x2, x3, ..., xn} from which
entropy is to be extracted. We note that a weakly random
source that produces a continuous-valued Xt may also be used
with an appropriate sampling function to provide discretized
values. A measure of center function, M(Xt), is used to find
an overall centered metric value characterizing the discrete
set Xt. A binary string is thus extracted through a series
of comparisons of each xi ∈ Xt with the M(Xt) value.
This result of this comparison serves as the binary extraction
function and is given in Equation 1.

f(xi) =


0, if xi > M(Xt)

1, if xi < M(Xt)

∅, if xi ≡M(Xt)

(1)

In general, the value M(Xt) can be any measure of center
for a finite times series. However, the only measure of center
that maximizes Shannon’s entropy for a binary case is the
median [1]. The median is a statistic that can be explicitly
defined and is calculated differently depending on the length
n of the observed time series. If the length of the series is
odd, there is a value xm ∈ Xt corresponding to the median.
However if the length of the series is even, then the median
falls between two values, (x1m, x2m) ∈ Xt. Due to these two
cases, we define Mo(Xt) to be the median if the length of the
series is odd, and Me(Xt) to be the median if the length of
the series is even. Equations 2 and 3 contain the definitions
for the median function used in the binary extractor for the n
odd and n even cases respectively.

Mo(Xt) = {x ∈ Xt |
|{y ∈ Xt | y < x}| ≡ |{z ∈ Xt | z > x}|} (2)

In the even formula given below, it the case that
(x1m, x2m) ∈ Xt. When the values of Xt are sorted into
ascending order, then x1m is the bn2 c

th value and x2m is
likewise the dn2 e

th value.

Me(Xt) = {x1m + x2m

2
|

|{y ∈ Xt | y < x1m}| ≡ |{z ∈ Xt | z > x2m}|} (3)

A single expression for M(Xt) can then be formulated as
given in Equation 4.

M(Xt) =

{
Mo(Xt) , |Xt|(mod2) ≡ 1

Me(Xt) , |Xt|(mod2) ≡ 0
(4)

Using the median in Equation 4, the extractor function for
a binary string as given in Equation 1 is fully specified for
both the cases of |Xt| being either even or odd [1]. In terms
of generating strings for r > 2, the naive approach of up-
converting the binary string to a higher radix value will cause
a loss of entropy and is thus not a satisfactory solution. The

extension of the extraction function to allow the production of
a symbol string based upon an arbitrary base while minimizing
entropy loss is a main contribution of this paper.

B. Entropy Calculation (for Higher Radix Strings)

In the Mathematical Theory of Communication by
Claude E. Shannon [2], the entropy of a string SΛ =
{s1, s2, s3, ..., sn} of size n based upon the symbol set Λ =
(λ1, λ2, ..., λr) of size r is given by formulas 5 and 6.

pj ≡ P (s ∈ SΛ = λj) =
|{s ∈ SΛ | s = λj}|

|SΛ|
(5)

H(SΛ) = −
r∑
j=1

pj · logr(pj) (6)

In the context of calculating the entropy for strings in
different bases we imagine that the symbol set Λ consists of the
required digits to construct a base-r number system. For exam-
ple, consider the string SΛ as a decimal (i.e., base 10) number
SΛ = (152536491023975839275912)10. SΛ is comprised of
24 decimal digits and 1

24 ≈ 0.042. The symbol set Λ consists
of the ten decimal digits, Λ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The
vector of probability values to be used in Equation 6 for the
entropy calculation of the string represented by SΛ is ~p.

~p = (p1, p2, ..., p10)

= (0.042, 0.125, 0.167, 0.125, 0.042, 0.167,

0.042, 0.083, 0.042, 0.167)

Using ~p and Equation 6, the entropy for the string of decimal
digits represented by SΛ can be computed as H(SΛ) =
0.93481.

A qualitative interpretation of the entropy value is in regard
to the information each digit of the original string represents
or carries. In other words we can say that each digit of our
original symbol string SΛ carries approximately 93 percent of
the information which it could ideally carry were it uniformly
distributed.

C. Entropy Change in Strings of Differing Symbol Sets

When considering changes in entropy for a given source ob-
servation Xt, there are a couple of possibilities. One potential
method is to extract Xt into an symbol set Λ or r symbols
and then to consider it as a string that is represented in a
larger symbol set Λ∗ consisting of r + δ∗ symbols. We show
that this naive and straightforward approach is inferior to the
alternative of extracting Xt directly into a symbol set from
Λ∗. It is desirable to extract a source directly into a higher
radix symbol set Λ∗ rather than extracting a source into a
lower radix symbol set Λ and then interpreting the extracted
symbols as Λ∗ strings since the resulting string, when extracted
directly into the Λ∗ symbol set actually has a higher entropy
as compared to the naive approach. Theorem 1 quantifies the
difference in entropy due to interpreting a string extracted into
the Λ symbol set a Λ∗ string.

Theorem 1: The change in the entropy for a given string
of symbols expressed in a set Λ versus when extracted into
a symbol set Λ∗, depends only upon the original symbol set
size |Λ| = r, and the difference δ∗ = |Λ∗| − |Λ| for δ∗ > 0 as
given by Equation 7.

∆H = logr+δ∗
(r

r + δ∗

)
·H(SΛ) (7)

Proof 1: Consider that we have a symbol string S extracted
from a source sequence Xt using a first symbol set Λ and a
second string SΛ∗ that is also extracted from the same Xt but
utilizes a second symbol set denoted Λ∗. The two symbol sets
Λ and Λ∗ are both countable with |Λ∗| > |Λ| and δ∗ = (|Λ∗|−
|Λ|) > 0. We modify formula 6 to account for expressing the
string in the Λ∗ symbol set.

H(SΛ∗) = −
r+δ∗∑
j=1

pj · logr+δ∗(pj) (8)

The modifications while slight are important. We know that
Λ ⊂ Λ∗ =⇒ δ∗ > 0 because there are no observations of
symbols in the set Λ∗ \ Λ in the string, SΛ∗ = SΛ. We arrive
at a situation where we have a probability of zero for those
symbols in Λ∗ \Λ since limx→0 x · log(x) = 0. Hence, using
this result we can show that equation 8 can be reduced to
equation 9, with no difference other than the upper limit of
the summation.

H(SΛ∗) = −
r∑
j=1

pj · logr+δ∗(pj) (9)

We now derive a closed form for the difference in entropy
for the same string represented in different symbol sets by
subtracting Equation 9 from 6.

∆H = −
r∑
j=1

pj · logr(pj)− (−
r∑
j=1

pj · logr+δ∗(pj))

=

r∑
j=1

pj · logr+δ∗(pj)− pj · logr(pj)

=

r∑
j=1

pj ·
(ln (pj)

ln (r + δ∗)
− ln(pj)

ln (r)

)

=

r∑
j=1

pj · ln (pj)
(ln (r)− ln (r + δ∗)

ln (r) ln (r + δ∗)

)

=

r∑
j=1

pj ·
(logr(pj)

logr(e)

)(ln (r)− ln (r + δ∗)

ln (r) ln (r + δ∗)

)

=
(1

logr(e)

)(ln (r)− ln (r + δ∗)

ln (r) ln (r + δ∗)

)
·
r∑
j=1

pj · logr (pj)

=
(1

logr(e)

)(1

ln(r + δ∗)
− 1

ln(r)

)
·H(SΛ)

=
(1

logr(e)

)(logr(e)

logr(r + δ∗)
− logr(e)

logr(r)

)
·H(SΛ)

=
(1

logr(r + δ∗)
− 1

logr(r)

)
·H(SΛ)

=
(1

logr(r + δ∗)
− 1
)
·H(SΛ)

=
(logr(r)

logr(r + δ∗)
− 1
)
·H(SΛ)

= (logr+δ∗(r)− 1) ·H(SΛ)

= logr+δ∗
(r

r + δ∗

)
·H(SΛ)

Thus, the change in the entropy for the same string in terms
of information content but when expressed in different symbol
sets is only dependent on the original entropy H(SΛ), the
original symbol set size r, and the difference δ∗. �

The result of this proof validates the intuitive result that
extraction directly into a larger symbol set allows for an
increased amount of entropy to be present. A larger symbol
set is more expressive and allows for a greater amount of
information to be present for a given set of symbols than
a string of the same number of symbols but with a smaller
symbol set. This is because less redundancy in terms of
repeated symbols is present. This result underscores that fact
that many binary extractors are in effect wasting or neglecting
to capture some of the inherent entropy present in the source.
Extracting an entropy-rich Xt sequence into a binary string for
example, only allows a single bit of information to be extracted
per observation when, in many cases, there is much more than
a single bit of information per observation in a xi ∈ Xt source
measurement.

D. Network Packet Delay as Weakly Random Source

The entropy source is an important component in any TRNG
implementation. The source must be shown to depend on a
quantity that can be represented by a random variable (RV).
Although the parameterized extractor function described in
this paper may be applied to any weakly random source, we
chose a simple and readily available source for the purposes
of generating our empirical results. We chose to use a time
series composed of inter-packet delay values as observed in a
network interface card (NIC) residing in a general purpose
computer. The delays between subsequent packets received
by a NIC depend upon a variety of environmental factors
including the actions of the user, the current network usage,
and physical effects and delays depending on the route that
information is transmitted along. Representing the cumulative
effects of these and other environmental characteristics as a RV
has been used for a variety of network types including adhoc
wireless, social, and biological such as neural or cellular types
[10]–[13].

A common assumption is that network packet delay se-
quences are modeled as a time series with a RV that is
exponentially distributed. However, there are studies that in-
dicate other distributions may be more appropriate such as
the truncated normal distribution [14]. For our purposes, the
exact distribution is not important and it could even be in the
form of a nonparametric distribution. The important aspect
is that the packet delays contain some amount of inherent
randomness or entropy. From this point of view, we assume
that the observed packet delay values are modeled as a RV
that has an arbitrary probability mass function (PMF) denoted
as Ppack(xi). The objective of the extractor function is then to
extract randomness from the observed packet delay sequence
such that the resulting PMF of the extracted values is as close
as possible to a theoretical uniform distribution.

In this particular case, we use the flow of information across
a network as our weakly random source. As the information
flows across a network point A to B, it takes many different
routes depending on traffic congestion as well factors such
as router and server maintenance etc. This causes random
variations in the arrival times of packets. Measuring these
precise arrival times, and reducing the data by looking only
at arrival time differences or the first order features, is done
automatically by NICs and can be reported using simple
tools like tcpdump and Wireshark. Unfortunately the timing
elements on the network interface card do not have infinite
precision and are hence limited in their resolution of measured
time values. The resolution restriction affects the quality of the
random values produced since a higher resolution allows the
radix value to increase. There is a practical upper limit to
the radix value due to the resolution of the inter-packet delay
observations as will be more fully discussed in a later section
of this paper.

To obtain the inter-packet delay values from the NIC, we
use the Wireshark packet capture utility to obtain the packet
time stamps, ti, from the NIC. After receiving the ti values, the
corresponding inter-packet delays are computed as xi = ti+1−
ti. Wireshark reports a packet arrival time with a time stamp
value that is the number of microseconds that have elapsed
since the last second of network epoch time. Network epoch
time is the total number of seconds that have elapsed since
January 1, 1970. Thus, the timing resolution of the packet
arrival times reported by Wireshark is one microsecond, 1 ×
10−6 seconds.

III. EXTRACTOR FUNCTION WITH PARAMETERIZED
RADIX VALUE

The theory behind extracting random values from a weakly
random sequence into a non-binary symbol sequence can
be considered from the point of view of the amount of
information each non-binary symbol represents. In the case
of the binary extractor function, a single test was performed.
Specifically a test that considers whether an observed value is
greater than or less than a measure of center. Therefore, in the
case of the generalized extractor, we wish to evaluate r − 1
tests in order to determine a single symbol. Thus, the amount

of information each symbol represents is greater than that of
the binary case since more information is derived from the
outcomes of a greater number of tests. Figure 1 depicts the
generalized flow of the extraction process as proposed in this
research.

Fig. 1. A Multi-valued TRNG Methodology

Presumably the desired output string size and the radix
of the output string is a priori knowledge provided by the
user. When the desired sequence size n has been reached, the
appropriate percentiles for evenly dividing the data range into
r equivalent ranges has been calculated and the data is thus
sequenced based upon the order in which it was observed.
For instance, if the first data point falls within the ith range
then the ith symbol of the symbol set si ∈ Λ is recorded
at the current position. At the next position, the subsequent
observation’s position is determined and the corresponding
information is extracted into the next digit, and so forth, until
all observations have been sequenced and the random string
is produced.

Based upon the considerations expressed above, the
multiple-valued extractor function is formulated as a direct
generalization of the binary extractor described in Section
II-A. To extract random values from a weakly random se-
quence of network packet spacings, we first divide the sam-
ple space into r partitions with each partition defined as
(mi−1(Xt),mi(Xt)). The partition set has cardinality r + 1
and is expressed as {m0,m1,m2, . . . ,mi, . . . ,mr−1,mr}.
Next we process the observed packet delay values in the order
in which they were observed and output a symbol si where
the integer index i has a range of [0, r− 1] and depends upon
which partition each observed delay value falls within. In the
work described here, we use the canonical symbol symbol
set where si = i although any arbitrary symbol set could
be used. This process results in an extractor function that is
parameterized with radix value r causing the weakly random
source observations to yield symbols from the symbol set

si ∈ {0, 1, . . . , r−1} for each observed packet delay value xi.
The extractor function is expressed mathematically as shown
in Equation 10.

f(xi; r) =


∅|xi = mi−1

si|(mi−1(Xt) < xi < mi(Xt))

∅|xi = mi

(10)

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Given sequenced observations from a weakly random source
{Xt} of length n, we provide an algorithm that can be
used to extract a random value into a symbol sequence of
maximum length n, with radix r. This algorithm implements
the extractor function given in Equation 10. The function
“Quantiles(m,Xt)” returns the quantiles of Xt partitioning the
data set Xt into m equally sized regions.

Result: Extract random values from random source
Input : Xt, Radix r
Output: R, symbol vector

R← {∅}
Q← Quantiles(r − 1, Xt)
foreach x ∈ {Xt} do

foreach q ∈ Q do
if x ≥ q then

break
end
if x < q then

R← {R, Index(q,Q)}
break

end
end

end
Algorithm 1: Arbitrary Radix Extraction

The algorithm is implemented using the R statistical pro-
gramming language and the behavior of produced random
values given different extraction radices is examined. To
visually illustrate the operation of the extraction algorithm, we
used a standard Mersenne twister-based PRNG that simulates
a discretized standard normal distributed RV to obtain an
example Xt series and ran the algorithm with radix values
of r = 2, 3, 4. The Xt sequence consists of the same eight
points for each radix and was obtained using the “rnorm”
function in R with a default mean of zero, a unity variance,
and a seed value of 0xFEED. In the plots shown in Figure
2, the computed quantile boundaries are indicated by colored
horizontal lines. Each point in Xt is indicated by the small
circle in the plots and the corresponding extracted sysmbol
is shown in colored font near the top of the plot. It is noted
that the inter-quantile spacings are not the same since they
depend upon the range of values in Xt. These non-uniform
quantile intervals are necessary to transform the native Xt

PMF, Pnorm(xi), into the desired uniform PMF and is the
essence of the extractor methodology.

●
●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

−
2

0
1

2
3

Extraction into Binary

Index of Observation (Time)

S
am

pl
ed

 S
ta

nd
ar

d
N

or
m

al

0 0 1 0 0 1 1 1

●
●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

−
2

0
1

2
3

Extraction into Ternary

Index of Observation (Time)

S
am

pl
ed

 S
ta

nd
ar

d
N

or
m

al

0 1 1 0 0 2 2 2

●
●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

−
2

0
1

2
3

Extraction into Qudranary

Index of Observation (Time)

S
am

pl
ed

 S
ta

nd
ar

d
N

or
m

al

1 1 2 0 0 2 3 3

Fig. 2. Extracting Random Values into Higher Radix Strings

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the parameterized extractor
function, we constructed a TRNG using the weakly random
source described previously and extracted symbol strings from
the source data. We used the same set of source data and
extracted symbol strings with varying radix values. Since the
objective of a TRNG is to produce data that is uniformly
distributed, we compared the sample mean and variance of the
extracted strings to that of a theoretical uniform distribution
over the unit interval. The theoretical mean of a perfectly
uniform distribution over the unit interval is µ = 1

2 and the
corresponding variance is 1

12 ≈ 0.08333.
Our experimental data consists of an ensemble of packet

delay sequences Xt with each sequence consisting of one
hundred packet spacings. Our ensemble consists of a total of
448 Xt sequences corresponding to a total number of 44,800
packet delay values. Therefore, we obtained sample mean
and variance values for each of the 448 Xt sequences for
each radix value considered. Each Xt sequence resulted in an
extracted string that consists of a maximum of 100 symbols,
although the exact number of extracted symbols is typically
slightly less than 100 since packet delay values that were equal
to quantile boundary values were discarded. The reason that
packet delays which were equal to quantile boundary values
are discarded is to avoid the introduction of a bias into the
extracted symbols. If we were to assign such delay values to
the symbol corresponding to the quantile just below boundary
value, a negative bias would be present in the mean. Likewise,
assigning the delay value to a symbol corresponding to the
quantile range greater than the boundary value would introduce
a positive bias to the mean.

Figure 3 contains a plot of the average of each Xt sample
mean versus the radix value used in the extractor. allowable
value of the radix due to the resolution of the packet delay

measurement. When the radix value of the extracted sequence
exceeds the reciprocal of the measurement resolution, no
benefit in continuing to increase the radix value will result.
Furthermore, as the number of quantiles increases due to
an increasing radix value, a large number of packet delay
samples will exactly equal the quantile boundary causing those
points to be discarded. At the extreme case where the radix
value equals or exceeds the reciprocal of the measurement
resolution, all values will equal a quantile boundary causing
every point to be discarded from the extracted sequence.
Based on these observations, a tradeoff is apparent in that
the randomness quality of the extracted sequence tends to
increase proportionally with the radix value, however, the
number of extracted symbols begins to decrease as the radix
value approaches the reciprocal of the measurement resolution.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Radix of Extraction

M
ea

n
of

 E
xt

ra
ct

ed
 S

ym
bo

l S
eq

ue
nc

e

Fig. 3. Average Sample Mean of 448 Extracted Xt Symbol Sequences

Figure 4 contains a plot of the average variance of each
extracted Xt sequence as the radix increases. The ideal vari-
ance, 1

12 , is indicated by the horizontal red line on the plot.
The localized changes of average variance are accounted for
by considering the changes in the number of discarded points
from one radix value to another. When the quantile boundary
values are perfect multiples of the measurement resolution,
there is a higher likelihood that sample values will equal a
quantile boundary and thus cause more values to be discarded.

VI. CONCLUSION

An entropy extraction function has been introduced that is
based upon a parameterized radix value. The radix param-
eter allows the extractor to produce strings using different
symbol sets of varying sizes for a given weakly random
source. We have also provided theoretical results regarding
the entropy present in strings composed of higher-radix, non-
binary symbol sets and derived expressions that indicate how
the entropy can vary. Our results provide guidelines that allow
a TRNG designer or user to choose an appropriate radix value
based upon the inherent characteristics of the weakly random
source such as measurement resolution. We have introduced

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

Radix of Extraction

V
ar

ia
nc

e
of

 E
xt

ra
ct

ed
 S

ym
bo

l S
eq

ue
nc

e

Fig. 4. Average Sample Variance of 448 Extracted Xt Symbol Sequences

the concept of TRNG extraction efficiency and conjectured
that many binary extractors are losing source entropy.

REFERENCES

[1] M. Thornton, “Randomness properties of cryptographic hash functions,”
Master’s thesis, Dept. of Computer Science and Engineering, Southern
Methodist University, 2017.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 4, pp. 623–656, Oct 1948.

[3] A. Figotin, P. Vitebsky, G. Stetsenko, S. Molchanov, A. Gordon,
J. Quinn, and N. Stavrakas, “Random number generator based on the
spontaneous alpha-decay,” US Patent 6,745,217, June 1, 2004.

[4] W. Dultz, G. Dultz, E. Hildebrandt, and H. Schmitzer, “Method for
generating a random number on a quantum-mechanical basis and random
number generator,” US Patent 6,609,139, August 19, 2003.

[5] M. Berta, O. Fawzi, V. Scholz, and O. Szehr, “Variations on classical
and quantum extractors,” in 2014 IEEE International Symposium on
Information Theory, June 2014, pp. 1474–1478.

[6] G. Martini and F. G. Bruno, “True random numbers generation from
stationary stochastic processes,” in 2017 International Conference on
Noise and Fluctuations (ICNF), June 2017, pp. 1–4.

[7] S. Tao and E. Dubrova, “Tvl-trng: Sub-microwatt true random number
generator exploiting metastability in ternary valued latches,” in 2017
IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL),
May 2017, pp. 130–135.

[8] V. B. Suresh and W. P. Burleson, “Entropy and energy bounds for
metastability based trng with lightweight post-processing,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 62, no. 7, pp.
1785–1793, July 2015.

[9] S. Walker and S. Foo, “Evaluating metastability in electronic circuits
for random number generation,” in Proceedings IEEE Computer Society
Workshop on VLSI 2001. Emerging Technologies for VLSI Systems, May
2001, pp. 99–101.

[10] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the
random waypoint mobility model for wireless ad hoc networks,” IEEE
Transactions on Mobile Computing, vol. 2, no. 3, pp. 257–269, July
2003.

[11] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction
to exponential random graph (p*) models for social networks,” Social
networks, vol. 29, no. 2, pp. 173–191, 2007.

[12] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wireless communications and mobile computing,
vol. 2, no. 5, pp. 483–502, 2002.

[13] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[14] A. Sukhov and N. Kuznetsova, “What type of distribution for packet
delay in a global network should be used in the control theory?”
arXiv:0907.4468v1 [cs.NI], p. 4, July 2009.

