
Task Value Calculus: Multi-objective Trade off
Analysis using Multiple-Valued Decision Diagrams

Tyler Giallanza, Erik Gabrielsen, Michael A. Taylor, Eric C. Larson, and Mitchell A. Thornton
Darwin Deason Institute for Cybersecurity

Southern Methodist University, Dallas, Texas, USA
{tgiallanza, egabrielsen, taylorma, eclarson, mitch}@smu.edu

Abstract—Most multiple-objective optimization algorithms uti-
lize continuous input variables. Given that many decision vari-
ables in common use-cases are discrete rather than continuous,
we develop a multiple-objective optimization framework over
discrete variables known as task value calculus (TVC). The
underlying mathematical models in TVC utilize a multiple-
valued algebraic framework where both the objective functions
and the system or process structure models are represented as
multiple-valued functions. TVC allows for fast multiple-objective
optimization through the use of the multiple-valued decision
diagram (MDD) data structure. The algorithms and structures
internal to TVC are described and experimental results are
provided. TVC is implemented with a simple graphical user
interface making it suitable for use by both laypersons and
domain experts.

Keywords-multiple-valued logic; multiple-objective optimiza-
tion; multiple-valued decision diagram

I. INTRODUCTION

Teams in business and government often need to make
decisions that satisfy multiple objectives, such as minimizing
cost and maximizing probability of success. Since these objec-
tives often conflict in complex ways, optimizing for multiple
objectives is a difficult computational problem. Thus, a class
of algorithms known as multiple-objective optimization algo-
rithms exists to simplify the process of decision-making for
the end-user. In this paper, we use Multiple-Valued Decision
Diagrams (MDDs) as a basis in the implementation of a
prototype optimization system to efficiently search for viable
solutions in the presence of multiple objectives. A central goal
of the prototype is to allow it to be used by laypersons with
little knowledge of the underlying mathematical models and
to produce visualizations of the trade-offs among differing
solutions.

Multiple-objective optimization algorithms can be broadly
classified into two categories: a priori and a posteriori. A pri-
ori algorithms assume a prior consideration of how important
multiple objectives are relative to one another. The Weighted
Sum Method, for example, assigns a specific weight to each
objective function and adds the weighted objectives together
to form a single objective function that can be optimized. In
general, a priori methods map multiple-objective problems
into a single-objective by assuming the relative importance of
the objectives. These solutions present the user with a single
solution rather than a variety of solutions to choose from.

The drawback of a priori methods is that they force the
decision-maker to determine the importance of the objectives
before being presented with the options. Especially for prob-
lems with many objectives, it can be difficult to exactly deter-
mine the relative importance of multiple objectives. Moreover,
it is difficult to quantify how modifying the importance of one
objective might affect the viable solutions.

Alternatively, a posteriori methods, do not assume that
some objectives are more important than others. These algo-
rithms, including NSGA-II [1], MOEA/D [2], PESA-II [3],
and SPEA2 [4], try to present the user with a set of optimal
solutions, known as the Pareto-optimal set or the Pareto
frontier. Any solutions on the Pareto frontier represent optimal
trade-offs between the various objective functions. Using a
posteriori methods, the user is presented with many possible
solutions and chooses the one best suited to their use-case.

To use an a posteriori algorithm, the user must first develop
a mathematical function that relates the input variables to
the various objectives. This process is trivial when known
mathematical functions are good models of the problem.
However, when approximations are required the process of
developing a mathematical relationship between inputs and
objectives can be a daunting task, especially for large systems
or processes. Additionally, discrete variables, such as the
number of employees to hire, often introduce nonlinearities
in the objective function mapping process that complicate
the ability of traditional optimization algorithms to search
efficiently.

To address these issues, we introduce a system called Task
Value Calculus (TVC). TVC allows for fast optimization of
problems that are discrete rather than continuous and does
not require users to specify the exact mathematical modeling.
TVC accomplishes these goals by reformulating the process
of “objective function specification” into a simpler form—
the user constructs a simple block diagram and the process
structure function is automatically generated using MDDs.
Rather than use models that relate inputs to objectives, TVC
utilizes a table-based approach. The table-based approach is
often simpler for the end-user to understand and better suited
for discrete input variables. Internally, TVC makes use of the
MDD data structure and associated graph-based algorithms
to automatically specify the relationship between objective
functions and choices for each node of the block diagram. An
intuitive graphical user interface allows for the construction



of the block diagram representing the structure function and
provides drop down table menus for specifying the objective
functions. Thus, the system allows a non-technical person to
use the TVC prototype with minimal training required.

II. BACKGROUND CONCEPTS

A. Multiple-Valued Decision Diagrams

Because TVC is designed for discrete inputs rather than
continuous inputs, we are able to take advantage of the MDD
data structure. MDDs enable solution space search algorithms
to be efficiently implemented and they compress the storage
space required for TVC. MDDs are data structures in the
form of acyclic directed graphs that represent discrete-valued
functions, f : Nn

r → Nr, where Nr is the finite set of natural
numbers, {0, 1, 2, 3, . . . , r − 2, r − 1}. The support set of f
is a set of independent discrete variables, xi ∈ Nr, with a
cardinality of n. The discrete function f can be denoted as
f(x1, x2, . . . , xn).

MDDs are based upon the binary decision diagram (BDD)
data structure originally proposed in [5] as first described
in [6]. MDDs are implemented as software packages that
support the graphical data structures as well as a set of
operators for their manipulation. One of the first such software
implementations is described in [7]. Our implementation was
able to benefit from past research and results obtained from
the exercise of implementing prior BDD packages, such as
the “variable ordering” property and the “reduction rules”
resulting in canonical representations [5]. However, the gen-
eralizations in MDDs as compared to BDDs required some
new approaches for the internal data structures and their
storage and manipulation. Therefore the implementation in
[7] incorporated new algorithms for implementing the math-
ematical operations such as that described in [8] that support
the APPLY function. The APPLY function is of the form
fnew = APPLY (f1, f2, <op>) where f1 and f2 represent
operand MDDs, <op> is a two-place operator, and fnew is a
resulting MDD that models the function fnew = f1 <op> f2.

MDDs allow for a representative function f to be evaluated
through a traversal of a single path from the initial vertex to a
terminal vertex. The particular path traversed is governed by
the valuation of each variable assignment as also labeled on the
edges in the path. When a nonterminal vertex is encountered
in a traversal, the outgoing edge annotated with that variable’s
valuation of interest is traversed until a terminal vertex is
encountered. The constant value annotating the terminal vertex
is then the value of the function.

In terms of mathematical manipulations of discrete func-
tions represented by MDDs, it is generally the case that such
operations are implemented as graph traversals, typically in a
recursive fashion. From a theoretical point of view, a collection
of operations resulting in a functionally complete set over an
algebra is desirable. There are a variety of different algebras
that have been formulated over discrete variables with a finite
valuation set. One of the most common algebras is the Boolean
or switching algebra, however, it is only functionally complete
when the radix value r = 2k where k is some positive integer.

Fig. 1. Flowchart of the TVC process.

Therefore, MDDs are commonly used with a set of operators
from an algebra other than the Boolean family of algebra
since the radix is not, in general, a power of two. A general
discussion of different finite discrete switching algebras and
the theory of MDDs can be found in [9].

III. TASK VALUE CALCULUS

Task Value Calculus utilizes the MDD data structures de-
scribed above within a framework to quickly optimize multiple
objectives in discrete systems. TVC utilizes a table-based
approach rather than a mathematical modeling approach to
define the inputs to the system. In the table-based approach
used by TVC, three inputs are required: first, a block diagram
that specifies the structure function; second, a listing of the
objective functions used; and third, a table that relates the
values of the input variables to local changes in the objective
functions. These three inputs are used to form the underlying
MDDs within TVC. Once the MDDs are created, they are
traversed to find potential solutions that optimize the given
objective functions. Figure 1 shows a flowchart of this process.

A. Block Diagram

A human consideration of a system or process as a collec-
tion of subsystems or subtasks that may have serial temporal
dependencies is often easily represented as a block diagram.
Through the creation of a block diagram by using a specialized
graphical user interface (GUI), a user can specify the system
or process of interest quickly and easily without requiring a
detailed knowledge of the underlying mathematical models.

An example of a block diagram representing an extremely
simple system or process of interest is shown in Figure 2.
In this scenario, a company desires to deliver a package and
can do so with either a truck “A” or truck “B.” These two
trucks have different requirements for loading the package
at the initial location (the staging site) represented by “C”
and different requirements for maintenance after the package
is delivered that occurs at their refresh site denoted by “D.”
Furthermore, TVC always uses two blocks in the specification
of a system or process block diagram structure labeled as
“S” (start) and “E” (end). This ensures that the internal TVC
processing has unique beginning and end points when it parses
through the block diagrams and “S” and “E” are not part of
the actual system or process being modeled. We note that a
parallel structure is created to denote the choice of delivery
trucks and the staging and refreshing sites are indicated as a



Fig. 2. Small Example Block Diagram

series structure. Furthermore, we note that the placement or
order in which the parallel structure comprised of blocks “A”
and “B” with respect to its location in the serial structure of
“C” and “D” is not important. While logically, a user may
choose to represent these in a time-dependent order, placing
“C” first, then the parallel structure, followed by “D,” the
actual order is not relevant to the underlying calculations. This
offers a degree of freedom that TVC can exploit in terms of
ease of use in developing the structure diagram as well as with
respect to reordering the variables in the MDD representing
the structure function.

TVC extracts a representative system structure function
from the block diagram that is represented internally as an
MDD. One of the first uses of MDDs for this application was
provided in [10] for cyber threat evaluation of system and since
that time many other similar applications of MDDs for system
and process analysis have been reported including [11]–[13].
This extraction process is enabled in TVC through the use of
an underlying algebraic theory that allows the interconnections
of a block diagram to be easily translated into a set of operators
in a defining algebra. Specifically, TVC utilizes a discrete finite
algebra based upon the theoretical work of E. Post [14] that
is also used in [13]. The Post algebra can be considered to
be a generalization of Boolean algebra since it results in a
functionally complete algebra in the case of any positive radix
r > 3. In Boolean algebra with radix r = 2, the functions
AND, OR, and NOT form a functionally complete set with
the constants {0, 1}. In the Post algebra underlying TVC, the
corresponding functions MIN, MAX, and literal selection {Ji}
form a functionally complete set for any positive integer r > 2
and it becomes equivalent to the binary Boolean algebra when
r = 2.

The MIN operator produces the minimum value among a
set of operands and represents a multiplicative operation. Like-
wise, the MAX operator produces the maximum value among
a set of operands and represents an additive operator. The
literal selection operators comprise different unary operators
denoted as {Ji} where i ∈ {0, 1, . . . , (r − 1)}. Each {Ji(x)}
results in a value of r− 1 when the x = i and 0 when x 6= i.
For example, in a radix-3 system, J2(x) results in a value of
2 when x = 2 and a value of 0 when x = 0 or x = 1.

TVC automatically translates the user-specified block di-
agram into an MDD structure function in a multi-step pro-
cess. The block diagram is represented as a combination
of series and parallel branches. These branches inherently
represent MVL algebraic operators, where series connections

Fig. 3. Converting Block Diagram into MVL

are representative of a multiplicative MIN operator and parallel
connections are representative of an additive MAX operator.
Next, the block diagram is traversed and the series and parallel
branches are recognized and converted into an MVL algebraic
(infix) representation. The infix representation is converted to
a postfix form using Dijkstra’s shunting yard algorithm [15].
Finally, the postfix equation is converted into an MDD by
processing the postfix representation and invoking the internal
APPLY algorithm. The one-place literal select operators are
useful when the block diagram has a selection block that
allows one portion of the block diagram to be activated based
upon a variable value as described in [13]. Figure 3 gives an
example of converting a block diagram into MVL operators
into postfix form.

The postfix form is represented internally in TVC us-
ing a LIFO stack of tokens representing variables and sub-
expressions. The stack content indicates the operands and
operators used with a series of calls to the MDD APPLY
algorithm. Initially, MDDs are created for each dependent
variable in an expression. Next, the postfix expression is
processed from left to right with operands being pushed to the
stack. As soon as two operands are present in the stack, they
are popped and an appropriate call to the APPLY algorithm
is made using the operands and the appropriate algebraic
operator indicated by the postfix representation. The result of
APPLY algorithm is a pointer to the newly formed MDD and
it is pushed onto the stack. This process continues until the
entire postfix expression has been processed and the remaining
entry in the stack is a single pointer to the MDD representing
the entire postfix expression.

B. Objective Functions

Objective functions in TVC are designed to be simple to
interface with the MDD structure representing the structure
function and guide traversals of the MDD structure function
such that they may be used to evaluate how the objective
interacts with the system or process. We specify objective



functions as discrete-valued MVL functions in TVC that
operate over the structure function initially represented by the
entered block diagram. An objective function can operate on
all of the variables in the block diagram or a subset thereof.

An optimization used in TVC is the pruning of variables that
are not required in the evaluation of an objective as applied
to the structure function. In the case where variables are
connected in series, the objective function operates on all of
the variables in the block diagram. When parallel connections
are present in the block diagram, some of the variables are
omitted from the computation such that only one variable
from each parallel block is used. Variables are chosen to be
omitted depending on whether the objective function is being
minimized or maximized. Thus, an objective function that is
maximized will use whichever variable in the parallel block
that has the greatest value, and an objective function that is
minimized will use whichever variable in the parallel block
that has the least value.

In TVC we allow for two types of objective functions that
are referred to as “multiplicative” or “additive.” Multiplicative
objective functions return the product of the variable valuations
and additive objective functions return the sum of the variable
valuations. Multiplicative and additive objective functions are
observed to represent many different real-life objective func-
tions, including but not limited to time, cost, profit, energy
consumption, up-time, reliability, chance of success, and risk.
For example, time is an additive type of objective since
each component delay in a system is summed to compute
the overall delay. Likewise, reliability is multiplicative since
overall system reliability is product of the reliabilities of each
serial component comprising the system structure.

C. Objective Function Table

The final input to the TVC system is a table relating the
objective functions to the input variables. Each input variable
requires r different values for each objective function for a
given radix, r. An example of an objective function table for
package delivery cost is given in Table I. In this example,
we show the cost objective function for Trucks A and B, the
staging site, and the refresh site for the simple case where
r = 3. The choice of r = 3 is representative of the different
available options for the package delivery task. Each system
structure element is denoted as “State” in Table I and as
an individual block in Fig. 2. Thus, TVC could be used to
find the overall minimum cost in relation to which time of
day each system element is employed. The use of r = 3 is
used to denote objective function values for Trucks A and B
representing one of three different time periods of day; the
radix values for the staging site represent loading the truck
on a light, normal, or rush schedule; and the radix values for
the refresh site represent performing a light, partial, or full
maintenance on the truck.

D. MDD Traversal

When all TVC input data have been specified, the optimiza-
tion can be invoked that in turn causes specific MDD traversals

TABLE I
PACKAGE DELIVERY COST

State 0 1 2
Truck A (block A) 30 60 90

Truck B (block B) 25 15 30

Staging Site (block C) 100 150 125

Refresh Site (block D) 110 50 20

to occur. A complete path from an initial to a terminal vertex
represents a candidate solution. During the MDD traversal,
the overall objective is computed for each path. In the case
of a cost objective, an additive relationship is used to sum
all of the individual costs resulting in an overall system cost.
During the traversal, the calculation of the objective functions
is performed using a simple table lookup based upon the
current vertex variable label. Traversing every path from the
initial to a terminal vertex and calculating the value of all of
the objective functions for each traversal is thus an exhaustive
search that yields all possible solutions.

The use of MDDs inherently provides significant per-
formance advantages due to the reduction rules previously
described. Although the MDD structure is a compact repre-
sentation of the structure function and traversing the MDD
is an efficient operation, exhaustively searching all possible
solutions is not required in many cases. TVC thus utilizes
certain heuristics to speed up the search. As the traversals
are made, certain constraints on the optimization goals can
be applied to prune the search and increase performance
of TVC. For example, if a partial path traversal indicates
that a cost threshold has been exceeded, there is no need
to continue the traversal along that particular path. Utilizing
these optimizations, we can efficiently create and traverse the
MDD with dynamic path pruning. We start the traversal at
the initial vertex of the MDD, recursively traversing it in a
depth-first fashion while keeping track of the cumulative value
associated with each objective function on the given path.
Certain portions of the solution space and hence certain paths
are dynamically pruned from the search during the traversal
when thresholds are exceeded. When a terminal vertex is
reached, the results are stored in a table that relates the
state/variable path chosen and the objective function values
for that path representative of a candidate solution.

When the dynamically pruned recursive traversal completes,
TVC processing is complete with regard to the currently
selected objective function and it will output a set of non-
dominated solutions, meaning that no solution generated is
strictly worse than any other solution when measured by every
objective function. That is to say, non-dominated solutions are
the Pareto-optimal front (or approximate the Pareto-optimal
front if heuristics are used to speed up searching). The
resulting solutions are then presented to the user, in the style of
other a posteriori multiple objective optimization algorithms.
At this point the user can determine which solution is most
appropriate for their goals by using domain expertise.



IV. EXAMPLE APPLICATION

To demonstrate the capabilities of TVC we consider an
example in the business domain. In this example, a hypothet-
ical e-commerce company is launching a new website. The
company has a number of choices to make, including the
quality of the web designer they are hiring, the number of
customer service agents and site maintenance technicians they
need, and the type of web servers to use. Overall, the company
would like to minimize the cost of this new website, minimize
the amount of time the website takes to build, but maximize
the uptime of the website.

A. Example: Block Diagram

First, a block diagram is created that represents the decisions
the company has to make. In this case, the company has a
number of trade-offs to decide on. By paying a third party
vendor to host the web servers, the company avoids the need
to hire its own web technicians. If the company chooses to
build out its web servers internally, it can choose between a
high-end web server and a low-end web server. Figure 4 shows
the block diagram for this example scenario.

B. Example: Objective Functions

The objective functions the company would like to consider
are cost, time, and uptime. The cost objective function here
refers to the monetary cost of creating and maintaining the
website. The company would like to minimize this cost overall.
Cost is an additive objective function. The time objective
function here refers to the amount of time it takes to create
the website. The company would like to minimize this time.
Time is also an additive objective function. Lastly, the uptime
objective function here refers to the percentage of time that
the website is fully operational and taking customers’ orders
in a given year. For example, a 90% uptime means that the
website was non-operational and orders were not processed
for about 37 days in a given year. The company would like
to maximize the uptime. Uptime is a multiplicative objective
function; it can be thought of as the reliability of the website,
or the inverse of the risk that the website crashes.

C. Example: Objective Function Table

With the block diagram constructed and the objective func-
tions defined, the remaining step is to relate the input variables
to objective function values. Each input variable will have
exactly r different values for each objective function. In this
example, the value for each variable indicates the following:
a higher value for web developer means hiring a more skilled
web developer; a higher value for customer support or web
technicians means hiring more customer support agents or
web technicians; and a higher value for any of the web
servers means the web server is more powerful and capable
of processing more orders. Table II shows the cost of each
variable, Table III shows the time for each variable, and Table
IV shows the uptime for each variable.

TABLE II
COST

State 0 1 2
Web Developer 50 75 100

Web Technicians 20 40 60

Customer Service 25 50 75

Low-End Server 5 10 15

High-End Server 25 50 75

3rd-Party Server 50 100 150

TABLE III
BUILDING TIME

State 0 1 2
Web Developer 5 10 20

Web Technicians 1 2 3

Customer Service 2 4 6

Low-End Server 4 6 7

High-End Server 8 10 11

3rd-Party Server 8 10 11

TABLE IV
UPTIME

State 0 1 2
Web Developer 0.93 0.95 0.99

Web Technicians 0.96 0.97 0.98

Customer Service 0.94 0.96 0.98

Low-End Server 0.93 0.94 0.95

High-End Server 0.96 0.96 0.96

3rd-Party Server 0.99 0.99 0.99

D. Example: MDD Traversal

To create the MDD, the block diagram is first converted
to a discrete radix-r function through the traversal of the
block diagram in JSON format. In this case, let the the Web
Developer be represented by A, Customer Service by B, 3rd-
Party Web Server by C, Internal Web Server (High End) by
D, Internal Web Server (Low End) by E, and Web Technicians
by F. The block diagram would then be represented in infix
as A ∗ B ∗ (C + ((D + E) ∗ F )), which translates to postfix
as ABCDE + F ∗ + ∗ ∗. From this postfix form, the MDD
is created as previously described. We note that an exhaustive
representation of the solution space would require 729 possible
paths. After traversing the MDD, the algorithm generates
29 candidate solutions that are a heuristic approximation
of the Pareto-front; these solutions optimally trade-off with
one another. Figure 5 visualizes the trade-offs between cost,
building time, and uptime for the 29 candidate solutions in a
parallel line diagram where each line corresponds to one of the
computed solution paths. From these visualizations, the user
can now select the appropriate trade-off among all objectives
through various mechanisms. Once a solution is selected, the
user can map from the solution to the individual decisions at
each node in the block diagram that generated the solution.
Also notice that the space of possible solutions to select can



Fig. 4. Block Diagram for the E-Commerce Website.

be greatly reduced by only showing solutions that are on the
Pareto Frontier as shown on the right in Figure 5.

Fig. 5. Plot of candidate solutions - cost and time functions are scaled.

V. CONCLUSION AND FUTURE WORK

We developed Task Value Calculus as a system that allows
for simple, efficient computation of multiple-objective opti-
mization in discrete-valued systems. The effectiveness of TVC
was demonstrated in the scenario of a business opening up a
new e-commerce website. TVC shows promise for application
in settings where multi-objective solutions must be achieved
quickly by personnel who may not be skilled in the theoretical
underpinnings of optimization models and mathematics. The
advantage of TVC is its simplicity - the block diagram and
table-based objective function approach easily allow non-
technical users to interact with the system. These advances
will expand the use-case of multiple-objective optimization,
allowing domain experts to quickly setup optimization prob-
lems without the need for a technical user.

In the future, we will modify TVC to utilize mixed radix
scenarios. Currently, our MDD package is limited to a fixed
radix r value for every variable. We plan to include true
mixed radix processing in the future. We also intend to
incorporate extended accuracy by eliminating the “rare-event
approximation” that underlies the application of multiplicative
objective functions as described in [16].

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, p. 182197, 2002.

[2] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[3] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-ii:
Region-based selection in evolutionary multiobjective optimization,” in
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 2001, pp. 283–290.

[4] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[5] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[6] A. Srinivasan, T. Kam, S. Malik, and R. Brayton, “Algorithms for dis-
crete function manipulation,” in Proceedings of the IEEE International
Conference on Computer-Aided Design, 1990, pp. 92–95.

[7] D. Miller and R. Drechsler, “Implementing a multiple-valued decision
diagram package,” in Proceedings of the International Symposium on
Multiple-Valued Logic. IEEE Computer Society Press, 1998, pp. 52–
57.

[8] R. Drechsler and M. Thornton, “Fast and efficient equivalence checking
based on NAND-BDDs,” in Proceedings of the IFIP International
Conference on Very Large Scale Integration, 2001, pp. 401–405.

[9] D. Miller and M. Thornton, Multiple-Valued Logic Concepts and Repre-
sentations. San Rafael, California, USA: Morgan-Claypool Publishers,
2008.

[10] P. Ongkasorn, K. Turney, M. Thornton, S. Nair, S. Szygenda, and
T. Manikas, “Cyber threat trees for large system threat cataloging and
analysis,” in Proceedings of the IEEE Systems Conference, 2010, pp.
610–615.

[11] T. Manikas, M. Thornton, and D. Feinstein, “Using multiple-valued logic
decision diagrams to model system threat probabilities,” in Proceedings
of the International Symposium on Multiple-Valued Logic, 2011, pp.
263–267.

[12] S. Nagayama, T. Sasao, J. Butler, M. Thornton, and T. Manikas,
“On optimizations of edge-valued mdds for fast analysis of multi-state
systems,” IEICE Transactions on Information and Systems, vol. E97-D,
no. 9, 2014.

[13] P. Davis, T. Manikas, and M. Thornton, “Reliability block diagram
extensions for non-parametric probabilistic analysis,” in Proceedings of
the IEEE Systems Conference, 2016, pp. 927–932.

[14] E. Post, “Introduction to a general theory of elementary propositions,”
American Journal of Mathematics, vol. 43, pp. 163–185, 1921.

[15] E. W. Dijkstra, “Making a translator for ALGOL 60,” A.P.I.C. Bull. 7,
pp. 3–7, 1961.

[16] M. Thornton, T. Manikas, S. Szygenda, and S. Nagayama, “System
probability distribution modeling using MDDs,” in Proceedings of the
International Symposium on Multiple-Valued Logic, 2014, pp. 196–201.


