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Abstract—An architecture for a quantum photonic true ran-
dom number generator (TRNG) that takes advantage of higher-
radix encoding schemes is presented. The TRNG is based
upon two statistically independent sources of entropy: generated
photon sequences at randomly distributed time intervals and the
measurement of radix-4 superimposed quantum states. The two-
source TRNG comprises of recently developed structures and
extractor functions that enable it to be implemented in a quantum
photonic integrated circuit (QPIC). We show that the amount of
entropy extracted from the dual weakly random sources exceeds
the amount of entropy that can be extracted from either of the
single physical sources. We also describe several features of the
TRNG architecture that enhance the data output rates.

Index Terms—TRNG, QRNG, MVL, Extractor function, Pho-
tonic Integrated Circuit, Chrestenson

I. INTRODUCTION

High-quality random number generators (RNG) are foun-
dational building blocks for modern computer privacy and
security applications. As the need for increased security is con-
sidered in combination with the explosive growth in ubiquitous
embedded systems, RNGs that are compact, inexpensive,
reliable, and are characterized by high output data rates are
needed. The lack of high-quality random number sources in
otherwise secure systems has been the cause of several well-
documented security breaches [1]–[3].

RNGs are categorized as either pseudorandom number gen-
erators (PRNGs) or true random number generators (TRNGs).
PRNGs produce periodic bit sequences of length N such
that strings of size n, where n < N , have characteristics
resembling those of a random string. Conversely, the class
of TRNGs is based on a physical entropy source that has an
inherent random nature. TRNGs are preferable in applications
where security is of concern. Many sources of entropy have
been identified and used in TRNGs, notably those based upon
quantum effects.

The TRNG presented here is based upon quantum pho-
tonic effects and can be fabricated within a single photonic
integrated circuit (PIC) for operation at room temperature.
A unique aspect of our architecture is that two statistically
independent entropy sources are combined to increase TRNG
throughput. Due to the axioms of quantum mechanics wherein
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the measurement of an observable is probabilistic, the gener-
ation of a superimposed location-state coupled with a mea-
surement mechanism serves as a physical entropy source [4].
Throughput is doubled via the use of radix-4 encoded photonic
quantum states as compared to previous work that used binary
encoded photonic quantum states [5].

The second source of entropy is based upon the probability
that a pair of photons is produced when a single photon
of higher frequency is incident upon a nonlinear medium.
The effect of photon pair production is due to spontaneous
parametric down conversion (SPDC) that is probabilistic and
conserves energy by producing a photon pair whose total
energy is equal to that of the incident photon. The SPDC-
based entropy source results in a sequence of probabilistically-
distributed intervals between SPDC photon pair production.
We combine these two independent physical entropy sources
to produce a single composite random digit stream with an
increased output data rate.

Physical entropy sources used in TRNGs are often referred
to as “weakly random sources” since it is difficult to measure
the source output without adding some degree of determinism.
Thus, an important aspect of TRNG design is the incorporation
of an extractor function that transforms a weakly random
source into a sequence that is ideally an equally likely and
independent string of random digits. In the case of the TRNG
architecture described here, it is necessary to employ a dual-
source extractor that serves to combine the two weakly random
entropy sources into a single output stream.

II. QUANTUM PHOTONIC TRNG ARCHITECTURE

Fig. 1. A generic and typical TRNG block diagram including a physical
source and extractor function.

As shown in Fig. 1, TRNGs are generally comprised of a
physical source of entropy, a measurement stage, and a post-
measurement processing stage that contains an extractor func-
tion. We propose a TRNG implemented as a quantum photonic
integrated circuit (QPIC) using location-encoded methods for



information representation. This location-encoding is an exten-
sion of “dual-rail” radix-2 quantum computing, and is referred
to as “quad-rail” as radix-4 logic is implemented.

The prototype TRNG is illustrated in Fig. 2. Here, a single
photon pump excites a SPDC structure causing it to prob-
abilistically generate a heralded single photon source (SPS)
in the form of a signal and idler photon pair. The SPS is
comprised of a pulsed laser source with wavelength 405 nm
serving as a pump and a rotatable half-wave plate (HWP) for
adjusting the angle of linear polarization of the pump photon
with the optical axis of the SPDC. The down-converted signal
and idler photons are at 810 nm wavelength. As is typical
in a heralded photon system, the SPAD-T detector is used
to indicate the presence of a down-converted photon pair
by measuring the presence of the idler photon. We use the
time intervals between subsequent SPAD-T output signals to
serve as a weakly random entropy source since SPDC pair
production is inherently probabilistic.

The signal photon is applied to a four-input, four-output
radix-4 Chrestenson operator (C4) that places the photon,
acting as an information carrier for a radix-4 qudit, into a
state of maximal superposition [6], [7]. The C4 operator
is implemented with a four-port directional coupler and has
four ports that are encoded as |0〉, |1〉, |2〉, and |3〉. This
component receives an input through the |0〉 terminal, and
the superimposed output photon exits through one of the four
output waveguides representing an orthogonal basis state in
the set of |0〉, |1〉, |2〉, and |3〉. The idler photon is transmitted
in a fifth waveguide that enables a heralded implementation.
Each of the five waveguides drives a single-photon avalanche
diode (SPAD) detector labeled as SPAD-0, SPAD-1, SPAD-
2, SPAD-3, and SPAD-T. A random digit stream is produced
depending upon which SPAD[0:3] device indicates light de-
tection that is correlated with an active output from SPAD-
T. This approach for implementing a TRNG using photonic
quantum effects is well-known when used with binary basis
states (i.e., qubits) and a Hadamard operator. Variations of the
binary approach are used in commercial devices [8]–[12]. Our
approach, however, uses a radix-4 qudit in conjunction with
a recently disclosed Chrestenson operator and also combines
a second entropy source based on SPDC timing intervals to
enhance overall data output rates.

A signal flow diagram that includes the four-port directional
coupler is pictured in Fig. 3. The signal labeled as “Input 0” is
first incident after the photon travels through a polarizing beam
splitter and a half-wave plate. This causes the input signal and
the output signal from the leftmost port of the coupler diagram
to have orthogonal polarizations. The different polarizations of
the input and output allow the output signal, labeled as “Output
0,” to be coupled out of the device from the same port that
the input signal, labeled “Input 0,” is coupled into. When the
four-port coupler is operated in a classical mode, a beam is
incident into one of the coupler inputs causing it to route 25%
of the incident beam to each of the four outputs. This beam
division is caused by the transmission and reflection of signals
within the coupler. Each fraction of the input beam observed

Fig. 2. A TRNG comprised of SPS, SPDC, and five SPADs.

Fig. 3. Signal flow diagram of four-port directional coupler implementation
of the C4 operator.

at an output corresponds to one of the following components
of the original signal: a reflected component ρ, a transmitted
component τ , a right-directed component α, and a left-directed
component β. The four output beams of the directional coupler
drive SPAD[0:3].

In order to operate the coupler in the quantum realm,
the incident beam is reduced in intensity until only a single
photon is emitted. In this case, only one of the four detectors,
SPAD[0:3], will indicate the presence of output energy since
the single photon is an indivisible energy packet. Furthermore,
the particular SPAD detector that indicates the presence of
energy is random and is equally likely for a device with
equal reflection and transmission coefficients. Thus, in the
quantum realm, the four-port coupler operates as a C4 gate.
The combination of the C4 gate and the four SPAD[0:3]
detectors serves as a weakly random source of entropy wherein
the activation of SPAD[i] allows for the randomly generated
radix-4 digit i to be generated.

The technique of using the polarizing beam splitter and half-
wave plate to enable a single port to serve in a bidirectional
manner is acceptable for a table-top prototype version of the
proposed architecture. However, it is challenging to implement
QPIC structures that are based upon polarization encoding. To
implement the C4 operator within a QPIC, it is desirable to
only use location-based encoding for the radix-4 qudit. Thus,
an alternative structure may be used to implement the C4 gate
in the QPIC that has a distinctly separate incident and output
ports. By eliminating the bidirectional port in the C4 operator
such as that shown in Fig. 3, we can eliminate the need for



Fig. 4. Schematic of a photonic coupler cavity implementation of the C4

operator.

polarization encoding entirely. Such a structure is in the form
of an array waveguide that is implemented with a photonic
coupler cavity [13]. The schematic diagram for a cavity-based
C4 gate is included in Fig. 4.

The architecture shown in Fig. 2 includes an FPGA or CPU
core programmed to take advantage of two different random
sources of entropy from the SPS. One source is a sequence
of measurements based upon whether energy is detected at
SPAD[0:3]. The other source is the sequence of time intervals
between photon detection at any of the SPADs indicated by
the output of the SPAD-T detector. These two outputs from
the weakly random sources are modeled as random variables,
RV , denoted as X that have values of i ∈ {0, 1, 2, 3} when
SPAD[i] indicates the presence of a photon, and RV Y that
represents a time interval between subsequent SPDC pair
production events. When the C4 operator and measurement
SPADs are ideal, X is uniformly distributed and Y is a time
series of sub-Poissonian distributed time intervals [14].

TRNGs can be improved when they are based upon two en-
tropy sources as compared to a single source TRNG [15], [16].
However, appropriate two-source extractor functions must be
used to realize the improvements. One of the purposes of the
programmable element in our architecture is to host the two-
source extractor function that transforms the weakly random
sequences referred to as X and Y into a single extracted
sequence that is close to uniform. Although Y is ideally a
continuous RV , it is measured by way of an integrated high-
speed digital counter with a finite register length of r. Each
measured value of Y consists of r bits such that the variates
of Y are values yi ∈ {0, 1, · · · , 2r − 1} that are distributed
in a sub-Poissonian manner. The internal clock speed, register
width r, and accuracy of the SPAD-T measurement dictate the
entropy present in Y .

We use an extractor function, Extr(Y ; r), for the sub-
Poissoinian distributed RV Y that was recently introduced
in [17]. RV W is extracted from RV Y via Extr(Y ; r) and
is of the form of a corresponding sequence of r-bit variates,
wi that are ideally uniformly distributed. The variates, yi, of
Y in our TRNG architecture are of the form of a discretized
set of time intervals, ∆ti. The wi values are radix-R = 2r

values in the form of a bitstring of length r that have values
wi ∈ Fr = {0, 1, · · · , 2r − 1} where the number of different
bitstrings is also |Fr| = R and where R = 2r > 2. The
extractor function Extr(Y ; r) receives input from SPAD-T
and is implemented in the FPGA or CPU core.

An extractor function Ext(X) transforms the weakly ran-
dom RV X into another RV denoted as V with a more uni-
form distribution. This extractor is needed due to imperfections
in the C4 operator wherein the internal reflection and trans-
mission coefficients may not be exactly equal. Considering the
binary encoding of the radix-4 xi variates, {00, 01, 10, 11},
and considering that a sequence of of xi variates in this form
result in a single bitstring that is weakly random, any of the
well-known conventional binary extractor functions can be
used.

Because X and Y are statistically independent, the com-
posite extractor is formed from Ext(X) and Extr(Y ; r)
and is denoted as S = V ||W = Ext(X,Y ; r) =
Ext(X)||Extr(Y ; r) where || denotes the concatenation oper-
ation and S is the extracted composite RV from the two source
extractor function, Ext(X,Y ; r). The choice of concatenating
V with W is arbitrary. Generally, any arbitrary permutation
of the bitstrings resulting from si = vi||wi = Ext(xi, yi; r)
would suffice.

Lemma 1: A TRNG with a quantum photonic source
as depicted in Fig. 2 and a composite extractor function
Ext(X,Y ; r) = Ext(X)||Extr(Y ; r) yields generated values
that are uniformly distributed when Ext(X) produces a uni-
formly distributed RV V and Extr(Y ) produces a uniformly
distributed RV W .

Proof 1: The probability that a variate of V is a value in the
set F4 = {00, 01, 10, 11} is 1

4 since V is uniformly distributed.
Likewise, the probability that a variate of RV W is a value
in the set Fr is 1

2r since W is also uniformly distributed.
Since RV s V and W are independent, the probability of the
r + 2 bit concatenated variate of RV S, or si = vi||wi is
P [V ||W ] = P [X ∩ Y ] = P [X]P [Y ] = 1

2r+2 . �

III. THEORY AND ANALYSIS

A SPAD is modeled as a function, fSPAD, that has an
output of 0V until the detection of a photon occurs at time t
when fSPAD produces a rising edge. The SPAD characteristic
behavior as modeled by fSPAD is fSPAD(t) = u(t)− u(t−
TSPAD) when SPAD-T detects an idler photon at time t. Here,
u(t) represents a unit step function and the constant TSPAD

represents the short pulsewidth characteristic of the SPAD. It
is noted that the characteristic pulsewidth TSPAD serves as a
limiting factor for the parameter r, the size of the register that
is used for yi variate values.

Considering the case of an ideal four-port directional cou-
pler, the state photon is maximally superimposed as |φ〉 =
|0〉+|1〉+|2〉+|3〉√

4
. Here, the probability that any of the four

basis states |i〉 , i ∈ {0, 1, 2, 3} results from a measurement of
energy present by SPAD[i] is p = 1

4 . Actual implementations
of four-port couplers, however, do not achieve this exact equal
probability distribution between output terminals. Therefore,
the TRNG pictured in 2 produces the bits corresponding to
the value of i for a measurement of |i〉 with p 6= 1

4 in
a realistic implementation. For this reason, we employ the
use of an extractor function to cause the generated bits of
the weakly random source denoted as RV X to yield RV



Fig. 5. Plot of time sequence of detected photon events by SPAD-0, SPAD-1,
SPAD-2, and SPAD-3 at times ti.

V = Ext(X) that is uniformly distributed. Within this work,
the von Neumann extractor is implemented as an example bi-
nary extractor function due to its simplicity. Higher efficiency
binary extractors such as the Toeplitz hashing extractor or the
Trevisan extractor can be used without loss of generality.

The sequence of measured time intervals between photon
detection events is representative of a sub-Poissonian process
and is denoted by RV Y [1][7][19]. The variates yi of
RV Y are discretized values representing each interval ∆ti.
The detection coincidence window values, Twin, are chosen
with respect to the SPS parameters to ensure that the time
intervals between detection pulses from SPAD-T are indeed
sub-Poissonian distributed thus minimizing photon number
bunching within a measurement interval.

The actual ∆ti ∈ R time intervals are positive, real, and
non-zero. Due to the fact that the TRNG is implemented
with a hybrid of photonic, analog, and digital electronic
circuitry, the observation and measurement of RV Y results
in a discrete positive integer-valued variate, yi, from the
interval yi ∈ [n1, n2]. The integer-valued yi measurement
estimates the actual real-valued ∆ti value via the relationship
yi = d∆ti × τe where τ is the clock period of a counter
within the TRNG that counts the number of τ time intervals
that elapse between adjacent photon detection events in time.

Fig. 5 contains a plot describing TRNG detector activations.
The heralded detector output is indicated on the horizontal axis
representing the SPAD-T detector when it detects the presence
of an idler photon as shown via a tick mark labeled ti. ti is
the time at which the SPAD-T detects an incident idler photon
causing a rising edge of fSPAD. The vertical axis is labeled
with four events: the detection of a signal photon at one of
the SPAD[0:3] detectors.

Fig. 5 indicates two statistically independent random
processes. The first is modeled as RV X and is the
equally likely event that the signal photon is detected
by one of the SPAD[0:3] detectors. The second pro-
cess, denoted as event RV Y , corresponds to the event
that the idler photon is detected by SPAD-T at some
time interval ∆ti where ∆ti = ti+1 − ti. Alternatively,
the two sets of observations of RVs shown in Fig. 5
can be interpreted as the set of binary-encoded variates
of RV X observations, {00, 10, 01, 11, 11, 00, 11, 01, 00, 10}
and the set of observed variates of RV Y observations
{y1, y2, y3, y4, y5, y6, y7} that are the discretized values rep-

resenting {∆t1,∆t2,∆t3,∆t4,∆t5,∆t6,∆t7}. In terms of
information theory, each observation of X and Y yields some
amount of self-information of the corresponding extracted
values vi and wi, denoted as I(vi) and I(wi). The self-
information, in units of bits, that corresponds to the event that
RV A is observed to have an outcome of ai (i.e., A = ai) is
given in Eqn. 1.

I(A = ai) = −log2[P (A = ai)] (1)

In the case of the information content of the strings result-
ing from the composite extractor function, Ext(X,Y ; r) =
Ext(X)||Extr(Y ; r), the TRNG provides a series of bit
strings comprised of substrings, si, where si is the concatena-
tion of the r-bit string wi extracted from the yi variates using
extractor Extr(Y ; r) = wi, and the corresponding bit pairs vi
extracted from variates xi using the example binary extractor
function, the von Neumann extractor, vi = Ext(X). Thus, the
TRNG produces a series of substrings si that are comprised
of r + 2 bits formed as a concatenation si = vi||wi.

Lemma 2: The concatenated string of r+2 bits, si = vi||wi,
contains self information that is the arithmetic sum of the self
information of vi and wi.

Proof 2: From Lemma 1 it is proven that si, a variate of RV
S, is uniformly distributed where si = vi||wi and where vi and
wi are each independent variates. Thus P [si] = P [vi||wi] =
P [vi∩wi] = P [vi]P [wi] = P (vi)×P (wi) = (1

4 )( 1
2r ) = 1

2r+2 .
Using the definition of self-information in Eqn. 1:

I(si) = −log2[P (vi)× P (wi)] = −log2[P (vi)]− log2[P (wi)]

= I(vi) + I(wi)

�
For the ideal radix-4 Chrestenson operator in Fig. 5, the

self-information due to an observation of RV X is two bits.
For the RV W , the self-information due to the extracted value
wi is based on a substring of size r. Since the extracted wi

are ideally uniformly distributed, the self information is:

I(wi) = −log2[P (wi)] = −log2
[

1

2r

]
= log2(2

r
) = r

(2)

Information entropy is the expected value of the self-
information, H(A) = E{I(A)}. Thus, for Ntot observations
of A, assuming each A is comprised of k bits, the correspond-
ing information entropy in units of bits is given in Eqn. 3.

H(A) = E{I(A)} =

k×Ntot∑
i=1

I(A = ai)P [I(A = ai)] (3)

From probability theory, it is the case that P [I(A = ai)] =
P [−log2{P (A = ai)}] = P [A = ai], thus Eqn. 3 can be
simplified to the well-known form in Eqn. 4.

H(A) = E{I(A)} =

k×Ntot∑
i=1

P [ai]log2(P [ai]) (4)



Theorem 1: A TRNG with a quantum photonic source
SPS as depicted in Fig. 2 and a composite extractor function
Ext(X,Y ; r) = Ext(X)||Extr(Y ; r) harvests more entropy
from the SPS source than a TRNG that uses only the extractor
Ext(X) or only the extractor Extr(Y ; r).

Proof 3: RV s X and Y are statistically independent
The Ntot-length sequence of {wi} is extracted from the
Ntot-length sequence {yi} that are discretized values of
{∆t1,∆t2, ...,∆tNtot

}. While the Ntot-length sequence {yi}
is a set of discretized sub-Poissonian distributed values of
{∆t1,∆t2, ...,∆tNtot

}, the corresponding {wi} sequence is a
set of uniformly distributed length-r substrings due to extractor
Extr(Y ; r) that are independent with regard to the signal
photon being placed into a state of superposition.

The maximum amount of entropy available from a sequence
of Ntot variates {vi}, denoted as HMAX(VNtot), is extracted
from RV X when the four-port directional coupler is ideal
and the von Neumann extractor has 100% efficiency and yields
2×Ntot random bits when Ntot SPAD[0:3] detection events
are processed by Ext(X). Thus, the entropy due to Ext(X)
is calculated on a per bit basis using Eqn. 4 resulting in
Eqn. 5. Note that we define a particular variate vi to be
represented as the bitstring b1b0 where each bj ∈ {0, 1}.
Because the maximum amount of entropy is an upper bound
that assumes Ext(X) results in an ideal uniform distribution
of bits, P (bj) = 1

2 for all j ∈ {0, 1}.

HMAX (VNtot
) =

Ntot∑
i=1

− 1∑
j=0

P (bj)log2[P (bj)]

 =

Ntot∑
i=1

− 1∑
j=0

( 1

2

)
log2

( 1

2

)

=

Ntot∑
i=1

 1∑
j=0

( 1

2

) = Ntot

(5)
Likewise, the maximum entropy harvested from a sequence

of Ntot observed wi substrings of length r, extracted from
RV Y by Extr(Y ; r) is denoted by HMAX(WNtot) and is
given by Eqn. 4 resulting in Eqn. 6. Each variate wi to be
represented as the bitstring cr−1cr−2 · · · c0 where ck ∈ {0, 1}.
Because the maximum amount of entropy is an upper bound
that assumes Ext(Y ) results in an ideal uniform distribution
of bits, P (ck) = 1

2 for all k ∈ {0, 1, · · · , r − 1}.

HMAX (WNtot
) =

Ntot∑
i=1

− r−1∑
k=0

P (ck)log2[P (ck)]

 =

Ntot∑
i=1

− r−1∑
k=0

( 1

2

)
log2

( 1

2

)
=

Ntot∑
i=1

r−1∑
k=0

( 1

2

) =
Ntot

2
(r)

(6)
Finally, the maximum entropy harvested from the sequence

of Ntot extracted substrings {si} of length r+2 using the com-
posite extractor S = Ext(X,Y ; r) = Ext(X)||Extr(Y ; r) is
given by Eqn. 4 resulting in Eqn. 7 as HMAX(SNtot). Note
that we define a particular variate si to be represented as the
(r + 2)-length bitstring vi||wi = b1b0cr−1cr−2 · · · c0 where
each bj , ck ∈ {0, 1}. Because the maximum amount of entropy
is an upper bound that assumes Ext(X,Y ; r) results in an
ideal uniform distribution of bits, P (bj) = P (ck) = 1

2 for
j ∈ {0, 1} and k ∈ {0, 1, · · · , r − 1}.

HMAX (SNtot
) =

Ntot∑
i=1

− 1∑
j=0

P (bj)log2[P (bj)] −
r−1∑
k=0

P (ck)log2[P (ck)]



= −
Ntot∑
i=1

 1∑
j=0

P (bj)log2[P (bj)] +

r−1∑
k=0

P (ck)log2[P (ck)]



= −
Ntot∑
i=1

 1∑
j=0

( 1

2

)
log2

( 1

2

)
+

r−1∑
k=0

( 1

2

)
log2

( 1

2

)

= −
Ntot∑
i=1

− 1∑
j=0

( 1

2

)
−

r−1∑
k=0

( 1

2

) =

Ntot∑
i=1

[
(1) +

( r

2

)]

=
Ntot

2
(r + 2)

(7)
Comparing the maximum entropy HMAX(SNtot

) in Eqn. 7
with HMAX(VNtot) in Eqn. 5, we can calculate bounds on the
value of r to ensure HMAX(SNtot) > HMAX(VNtot):

Ntot

2
(r + 2) > Ntot =⇒ r > 0

Likewise, comparing the entropy HMAX(SNtot
) in Eqn.

7 with HMAX(WNtot
) in Eqn. 6, we can calculate bounds

on the value of r, the length of the substring wi, to ensure
HMAX(SNtot

) > HMAX(WNtot
):

Ntot

2
(r + 2) >

Ntot

2
(r) =⇒ Ntot > 0

Thus, as long as Ntot consists of at least one observation and
the register size for the time interval measurements is at least
one bit in width, the entropy harvested from the dual source
TRNG proposed here is always greater than the entropy from
a similar TRNG that uses only one random source alone.

�

IV. TRNG IMPLEMENTATION

A QPIC implementation of the TRNG architecture C4,
implemented as a four-port directional coupler. The C4 is
realized in a novel way by nanoscale frustrated total internal
reflection (FTIR) couplers that intersect at a 90◦ angle [18],
[19]. These couplers are comprised of thin trenches, backfilled
with atomic layer deposition (ALD), that cut across a waveg-
uide at 45◦ to promote total internal reflection (TIR) between
the waveguide and trench.

The FPGA or CPU in Fig. 2 receives output from SPAD-T
and SPAD[0:3]. Internally, the processing logic implements the
extractor functions and produces a random bit stream as output
in addition to other signal conditioning and control functions.
Fig. 6 depicts a block diagram that partially illustrates the
FPGA/CPU functionality of the proposed TRNG.

The parameters of the TRNG denoted as τ and R in Fig. 6
denote the internal sampling clock period (τ ) that is smaller
than the measurement coincidence window. The radix value,
R = 2r is used to quantize the timing intervals ∆ti that yield
the sub-Poissonian distributed variate yi ∈ [n1, n2]. The fixed-
point timer logic (FPTL) begins a processing cycle at each
detection at SPAD-T. The FPTL computes ∆ti = ti+1− ti as
a r-bit word yi. The FPTL contains an internal incrementer
register reset by each rising edge on the output of SPAD-T and
is configured as an up-counter that increments every τ time



Fig. 6. Block diagram of digital processing portion of the TRNG.

units to compute ∆ti. When an idler photon is detected by the
SPAD-T, the incrementer first outputs its current discretized
count value yi to the extractor block labeled [TT:18] in Fig.
6, then it resets and begins counting again from zero. The
output value of the incrementer is the quantized value of ∆ti
representing an observation of RV Y for the previous time
interval between photon detections with a resolution set by
parameter τ . Note that yi is not necessarily restricted to being
r bits in length as is its extracted value, wi.

The block labeled [TT:18] implements the extractor function
denoted as Extr(Y ; r) as described in [17]. It produces an r-
bit value wi whose value is in the set Fr = {0, 1, ..., 2r−1}
which is uniformly distributed and produced from the input
quantized yi values derived from corresponding ∆ti values
that are both sub-Poissonian distributed. This block also con-
tains a buffer of a length suitable length to store Ntot different
yi and wi sample values. The [TT:18] extractor block receives
Ntot quantized yi values, applies them to the Extr(Y ; r)
function, and yields Ntot different wi output values using
the methodology described in [17]. The outputs of SPAD[0:3]
are stored in two-bit registers labeled register 0-3 depending
upon the SPAD that outputs a pulse. The registers have values
that are strobed in only when the SPAD-T rising edge occurs.
After an appropriate delay in the SPAD-T output signal the
demultiplexer logic outputs a bit pair of “00,” “01,” “10,” or
“11,” depending on the activated SPAD.

The binary Ext(X) extractor logic contains an internal
buffer of length 2 × Ntot. When 2 × Ntot bits representing
variates of RV X have been accumulated, the binary extractor
function evaluates, ensuring that vi of RV V are equiprobable.
The composite extractor Ext(X,Y ; r) = Ext(X)||Ext(Y ; r)
receives the Ntot extracted bitstrings of length r, denoted as
variates wi, from the [17] Ext(Y ; r) block and the correspond-
ing 2×Ntot extracted bits from the binary Ext(X) function
block. It then concatenates each r-bit value wi with bit pairs vi
and ideally outputs Ntot concatenated bit strings, si = vi||wi,
each of length r + 2.

V. CONCLUSION

A new TRNG architecture is presented that outputs high
bandwith bitstreams through the implementation of a high-
dimension quantum photonics element that places a quad-rail
encoded photonic qudit in a state of equal and maximal super-
position. Additionally, the TRNG extractor function incorpo-
rates an additional source of randomness through the analysis
of the random sequence of photon pair generation times. This
TRNG is suitable for implementation on an integrated circuit
containing both photonic and electronic processing devices.
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