
Fast Minimization of Polynomial Decomposition
using Fixed-Polarity Pascal Transforms

Kaitlin N. Smith1 and Mitchell A. Thornton
Department of Electrical and Computer Engineering

Southern Methodist University
Dallas, Texas, U.S.A.

{knsmith,mitch}@smu.edu

D. Michael Miller
Department of Computer Science

University of Victoria
Victoria, British Columbia, Canada

mmiller@uvic.ca

Abstract—Polynomials can be represented as a weighted sum
of various powers of binomials where the weights are spectral
coefficients and the associated powers of binomials are basis
functions. The minimization problem is concerned with finding
a set of basis functions that result in a maximum number of
zero-valued spectral coefficients, or alternatively, wherein the
spectral vector has a norm that is as close to zero as possible. One
application of this minimization problem includes compression
of signals that are represented with fitted polynomials. This
problem can be considered to be a higher-radix generalization of
the fixed-polarity Reed-Muller minimization problem since poly-
nomial decomposition can be efficiently accomplished using the
properties of the fixed-polarity family of Pascal transforms. We
devise an efficient decomposition technique based on properties of
the Pascal transform and we formulate a heuristic minimization
algorithm to search for the minimal decomposition. Experimental
results are provided that compare the quality and performance
of the heuristic search to an exhaustive search for the minimal
decomposition. The experimental results indicate that finding
such a minimal decomposition can be achieved in a practical
amount of runtime.

I. INTRODUCTION

The Pascal transform can be represented by a square matrix
with component values that are either zero or a binomial
coefficient denoted as

(
n
k

)
and referred to as “n choose k.”

In general, the Pascal transform is a matrix of infinite dimen-
sion since the integer n increases without bound. However,
practical uses of the transform limit n to some upper value
resulting in a truncated, finite-dimensioned (n+ 1)× (n+ 1)
square transformation matrix. We shall refer to the truncated
Pascal transform as the “Pascal transform.”

The Pascal transform has several applications. In terms
of filter theory, the transform has found uses that include
continuous s- to discrete z-domain conversion [1], various
image processing filters [2], transformation of analog lowpass
to digital bandpass filters [3], and in defining a new class
of filters entirely [4]. With regard to topics in mathematics,
there are many applications and relationships based on the
transform including those described in [5]–[10]. With respect
to computational algorithms, the recursive definition of the
Pascal transform matrix as well as its orthogonality have
enabled the development of efficient or “fast” algorithms

1K. N. Smith was with Southern Methodist University. She is now at
the Department of Computer Science at the University of Chicago (email:
kns@uchicago.edu).

[11]–[14]. Pascal transforms are also of interest in the binary
and MVL switching theory communities for a variety of
reasons including the selected examples disclosed in [10], [15].

The set of kth-degree polynomials p(x) that result from the
expansion and simplification of the kth power of the binomial
of the form (x + 1)k are explicitly represented as row or
column vectors in the Pascal transform matrix for all k ≤ n
since the components in the kth row or column vector are the
coefficients of p(x). It should be noted that the index, k, in
reference to the row and column vectors of the transformation
matrices discussed in this paper have values 0 ≤ k ≤ n.

The generalized family of Pascal transforms disclosed in
[16] is based on concepts in binary-valued switching theory
due to the observation that the radix-2 Zhegalkin polynomial is
related to the positive-polarity Reed-Muller (PPRM) transfor-
mation matrix in the same way that polynomials of the form
p(x) = (x + 1)k are related to the Pascal transform [17]. In
fact, the PPRM transformation matrix can be computed by
replacing the Pascal matrix components with their modulo-2
value. Thus, the concept of a polarity number can be used to
determine whether each row or column vector comprising the
Pascal matrix is related to the (x+1)k or the (x−1)k term. In
this manner, the polarity number is formed as a binary value
where “1” represents a (x − 1)k term and “0” represents a
(x+1)k term. Thus, there exist a total of 2n different matrices
based upon the polarity value.

We are interested in a family of Pascal transform matrices
that can be further extended from the form described in [16]. In
particular, we are interested in the family of transforms where
the form of the binomial associated with each row or column
vector is generalized and of the form, (x± dk)

k, where dk is
any value, dk ∈ Z. In this case, rather than using a polarity
number to characterize the Pascal transform matrix, we use a
polarity vector, d, of dimension n with associated components,
dk.

A family of matrices comprise the inverses of generalized
Pascal matrices associated with each polarity vector d. They
are of interest as they are used to find the representation
of an nth-degree polynomial, p(x), as a weighted sum of
binomials that are raised to the power k where 0 ≤ k ≤ n. We
refer to this form of representation of p(x) as a “polynomial
decomposition.” The computation of this decomposition form
can be accomplished by assuming a particular polarity vector,



d, formulating the associated Pascal transformation matrix of
the size (n + 1) × (n + 1) where n is the degree of the
polynomial to be decomposed, computing the inverse of the
transformation matrix, and finally, computing the direct vector
matrix product of the inverse matrix with the polynomial
coefficient vector, a. The resultant product vector b then
yields the multiplicative scalar weights associated with each
binomial term, (x + dk)

k. In this manner, the polynomial
p(x) is represented as a sum of weighted binomials in the
form of bk(x + dk)

k for k = 0 to k = n. The sum of the
weighted binomials is then the binomial decomposition of the
polynomial, p(x) =

∑n
i=0 bi(x+ di)

i.
The objective of this paper is to find the polarity vector,

d, such that the resulting vector b contains as many zero-
valued coefficients as possible. In the event that there is no b
vector that contains at least one zero-valued component, then
we wish to find d that minimizes b. We define the minimum
weight b vector to be the vector whose L1 or L2 norms in Lp,
or Lebesgue, spaces is minimized. We refer to the process of
finding the polarity vector that results in a minimum weight
b vector as the “minimization of polynomial decomposition”
problem. When bi = 0, it is not necessary to know the
explicit value of the corresponding di to recreate p(x) since
the di value is multiplied by its corresponding zero-valued bi
coefficient.

The problem of finding the minimal polynomial decomposi-
tion can be considered an optimization problem for p(x) when
it is represented as a weighted sum of powers of binomials.
We consider the decomposition to be optimal in the sense
that it maximizes the number of zero-valued components in
the b vector. From this point of view, finding the polarity
vector that maximizes the compression of the polynomial is
analogous to the problem of representing a space- or time-
varying signal with as few non-zero spectral coefficients as
possible. This is a frequently encountered task in the efficient
representation of signals and images for efficient transmission.
Alternatively, the solution of this problem can also be viewed
as a higher-radix generalization of the problem of finding
the minimal polarity number for a fixed-polarity Reed-Muller
representation of a binary switching function. This causes
the problem to be of interest to the multiple-valued logic
community. The representation of a polynomial as a weighted
sum of powers of particular binomials is mathematically a type
of spectral representation wherein the various binomials raised
to integer powers comprise a set of basis functions that define
the particular transformation matrix for the decomposition. In
solving the minimization problem, we seek the basis function
set that yields the most compact spectral representation of the
polynomial. Furthermore, the identification of the appropriate
polarity vector, d, is equivalent to finding this optimal basis
set.

II. BACKGROUND AND THEORETICAL CONCEPTS

A. Pascal’s Triangle

Pascal’s triangle is an explicit arrangement of the combina-
torial coefficients in Eqn. 1 where the nth row of the triangle

contains the coefficients beginning with coefficient of the nth-
degree monomial on the left to the 0th-degree monomial (or
constant) on the right, or vice-versa.

(x+ y)n =

n∑
i=0

(
n
i

)
xiyn−i. (1)

We refer to the values in each row, the binomial coefficients,
as ak where k = 0, · · · , n. These values are also the coeffi-
cients of the simplified polynomial form of (x+ 1)n. We use
the term “simplified polynomial” to denote that the polynomial
is comprised of only a single term for each degree value n.
That is, each instance of the monomial, akxk, for a specific k
appears only once in the simplified and expanded polynomial
form of (x+ 1)n as shown in Table I.

TABLE I
PASCAL’S TRIANGLE WITH CORRESPONDING BINOMIALS AND

SIMPLIFIED POLYNOMIALS

Binomial Power Binomial Polynomial
n = 0 (x + 1)0 (1)x0

n = 1 (x + 1)1 (1)x1 + (1)x0

n = 2 (x + 1)2 (1)x2 + (2)x1 + (1)x0

n = 3 (x + 1)3 (1)x3 + (3)x2 + (3)x1 + (1)x0

n = 4 (x + 1)4 (1)x4 + (4)x3 + (6)x2 + (4)x1 + (1)x0

A modified form of Pascal’s triangle exists that corresponds
to binomials of the form (x−1)n. This well-known alternative
form of Pascal’s triangle is identical to that given previously
with the exception that each alternating value in the triangle
is negated. The modified Pascal’s triangle is found in Table II.

TABLE II
MODIFIED PASCAL’S TRIANGLE IN TERMS OF SIMPLIFIED BINOMIALS

Binomial Power Binomial Polynomial
n = 0 (x− 1)0 (1)x0

n = 1 (x− 1)1 (1)x1 − (1)x0

n = 2 (x− 1)2 (1)x2 − (2)x1 + (1)x0

n = 3 (x− 1)3 (1)x3 − (3)x2 + (3)x1 − (1)x0

n = 4 (x− 1)4 (1)x4 − (4)x3 + (6)x2 − (4)x1 + (1)x0

B. The Pascal Transform

The Pascal transform refers to a linear transformation matrix
that contains components based upon the Pascal triangle [5],
[7]. The Pascal’s transform matrix can be expressed in a
lower triangular, PL, or a upper triangular, PU , form. Pascal’s
matrices are infinite in dimension, however, it is convenient
and common to utilize truncated versions of finite dimension
based upon the degree of the polynomial of interest. The rows
and columns of the Pascal matrices have an index encoding
that begins at zero so that the index values are equivalent to
the binomial exponent in the triangle. In truncated form, the
two different forms of the Pascal transformation matrices are
denoted as a finite dimensioned k× k form as PLk and PUk

where the indices are i, j = 0, 1, . . . , k − 1, and k − 1 = n.
Eqn. 2 contains the 4 × 4 truncated versions of the Pascal
transformation matrices.



PL4 =


1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

 PU4 =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

 (2)

The construction definitions for the lower and upper trian-
gular forms based on the binomial coefficients are provided in
Eqn. 3 and Eqn. 4.

PL = [pL;i,j ]
pL;i,i = pL;i,0 = 1∀i = 0, . . . , n− 1, pL;i,j = 0 if j > i

pL;i,j =

(
i
j

)
∀i, j = 0, . . . , n− 1 and i > j

(3)

PU = [pU;i,j ]
pU;i,i = pU;0,i = 1∀i = 0, . . . , n− 1, pU;i,j = 0 if j < i

pU;i,j =

(
j
i

)
∀i, j = 0, . . . , n− 1 and i < j

(4)

With respect to the binomial theorem, modified Pascal
matrices can be formed with respect to the modified Pascal
triangle that contain rows corresponding to simplified polyno-
mial forms of (x− 1)n. These are provided in Eqn. 5.

PML4 =


1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1

 PMU4 =


1 −1 1 −1
0 1 −2 3

0 0 1 −3
0 0 0 1

 (5)

The modified Pascal matrices may also be defined using the
binomial coefficients.

PML = [pML;i,j ]
pML;i,i = pML;i,0 = (−1)i+j∀i = 0, . . . , n− 1, pML;i,j = 0 if i < j

pML;i,j = (−1)i+j

(
i
j

)
∀i, j = 1, . . . , n− 1 and i > j

(6)

PMU = [pMU;i,j ]
pMU;i,i = pMU;0,i = (−1)i+j∀i = 0, . . . , n− 1, pMU;i,j = 0 if i > j

pMU;i,j = (−1)i+j

(
j
i

)
∀i, j = 1, . . . , n− 1 and i < j

(7)

Note that the forms of the Pascal and modified Pascal trans-
formation matrices are related by PLk = PT

Uk and PMLk =
PT

MUk, respectively.
The various Pascal and modified Pascal matrices have

properties that allow for the transformation of polynomial
functions. For instance, the Pascal transformation matrices
PL = [pL; i, j] and PU = [pU ; i, j] are “unitriangular”
meaning they are triangular matrices with diagonal elements
pL; i, i = pU ; i, i = 1. Since the determinant is equal to
the product of the diagonal elements, and all of the diagonal
elements are unity, the determinants of PL, PU , PML, and
PMU , are equal to one. Another important characteristic of
the Pascal and modified Pascal matrices is their relationship
through inversion such that

P−1U = PMU (8)

and

P−1MU = PU . (9)

C. Pascal’s Matrix for Polynomial Simplification

One of the most well-known applications of Pascal’s tri-
angle is its use in representing simplified polynomials that
correspond to a binomial of the form (x+ 1) raised to some
positive integer power n as shown in Table I or to a binomial
of the form (x − 1) raised to some positive integer power n
as shown in Table II. To convert from binomial to simplified
polynomial form,

a = Pb (10)

is evaluated where b holds the binomial coefficients, a holds
the polynomial coefficients, and P is either PU or PMU .

D. Fixed Polarity Pascal Transforms

The preceding section described how the simplified poly-
nomial expansion of linear combinations of binomials of the
form (x + 1)n and (x − 1)n can be obtained using Pascal’s
matrix. Polynomial expressions with mixed forms of binomials
can be formulated.

A family of the upper triangular version of Pascal’s transfor-
mation matrix may be formulated by selecting some column
vectors from PU and the remaining column vectors from
PMU . The resulting matrix, denoted PpU is characterized by
an integer p referred to as the “polarity number” of this form of
Pascal’s matrix. The polarity number is the decimal equivalent
of the binary string formed by assigning a zero (0) to those
columns from PU and a one (1) to those columns from PMU .
The string is read from left to right with the most significant
bit corresponding to the binomial exponent n = 0. We refer to
these forms of Pascal’s transformation matrices as the fixed-
polarity form since each polarity number refers to a specific
matrix structure.

The “fixed-polarity Pascal transform” (FPPT) matrices can
be applied in determining the simplified polynomial expan-
sions of weighted linear combinations of powers of binomials
of the form (x+1)n and (x−1)n. While this method offers a
convenient method and one that potentially requires less effort
than manual symbolic polynomial multiplication, the inverse
problem of finding a decomposition of a polynomial into a
weighted sum of binomials is more difficult and is the focus
of this paper. This calculation is of importance since we are
concerned with finding the coefficients, bi, associated with the
binomial expansion of a polynomial, p(x), that is characterized
by its corresponding a vector expressed as

b = P−1a (11)

.
The notation for a FPPT matrix with a polarity p is defined

as PpUk. The polarity value p indicates whether the ith column
vector of PpUk is equivalent to that of PUk or PMUk if it
has a value of 0 or 1, respectively, in its binary form. The
dimension of the matrix is indicated by k and is related to the



largest integer power n of the polynomial or binomial that can
be processed by PpUk matrix as k = n+1. Thus, the polarity
number for the upper triangular matrix in Eqn. 2 would be
p = 00002 = 010 to form P0U4 and the polarity number for
the upper triangular matrix in Eqn. 5 would be p = 11112 =
1510 to form P15U4. These transforms can be referred to as
the positive-polarity and negative-polarity Pascal transforms,
respectively. An example of a mixed polarity transform for
n = 3 and p = 00112 = 310 is

P3U4 =


1 1 1 −1
0 1 −2 3

0 0 1 −3
0 0 0 1

 (12)

The positive-polarity, P0U4 = PU4 and negative-polarity,
P15U4 = PMU4 Pascal transforms, as shown in Eqns. 8 and 9,
are inverses of each other. This property simplifies the process
of applying Eqn. 11 for b whenever p holds only zeros or ones.
Determining the inverse of a mixed polarity Pascal transform
is slightly more complex, but it can be accomplished with
algorithms such as the those described in [16].

To further generalize the polynomial decomposition in terms
of a polarity vector, d, the inverse matrix, P−1, is based upon
the use of a P matrix where each column vector corresponds
to the coefficients of an expanded polynomial of the form
(x+dk)

k where the vector d is comprised of components di ∈
Z. It is noted that this relationship allows a polynomial, p(x)
to be expressed either as a polynomial coefficient vector a, or
alternatively, as a vector of “pairs,” (bi, di). This relationship
is expressed in equation form as

p(x) =

n∑
i=0

aix
i =

n∑
i=0

bi(x+ di)
i (13)

.
The inverse Pascal transform matrices that are formulated

with a polarity vector fortunately have constructive definitions
and can be generated explicitly without resorting to formulat-
ing the forward Pascal transformation matrix and then using
a general algorithm to find the inverse matrix. Additionally,
due to the triangular property of the inverse matrix, the
forward matrix can be used with an iterative back-substitution
algorithm to solve for the b vector thus avoiding the need to
compute the inverse matrix entirely. Both of these results are
derived and shown in [16].

III. BINOMIAL DECOMPOSITION MINIMIZATION

The FPPT can be used to transform a polynomial into a sum
of weighted binomials in the form of (x+1)n and (x−1)n. In
a polynomial of degree n, there are a total of 2n polarity values
p that can be used to form the transformation matrix associated
with the FPPT. Because each polarity creates a different PpUk,
and thus a corresponding P−1pUk, the final weights of b are
highly influenced by p. For example, consider finding the
binomial coefficients for the polynomial 1+3x+3x2+x3 with
the coefficient vector of aT = [1, 3, 3, 1] using p = 00002 to

form the transform P0U4. Knowing that P−10U4 = P15U4, b is
calculated as

b = P15U4a =


1 −1 1 −1
0 1 −2 3

0 0 1 −3
0 0 0 1



1

3

3

1

 =


0

0

0

1

 .

Thus, 1 + 3x + 3x2 + x3 = (x + 1)3. The L1 distance norm
of b for p = 00002 is 1 and the L2 distance norm of b
for p = 00002 is 1. If the FPPT from Eqn. 12 with polarity
p = 00112 was used to find b from aT = [1, 3, 3, 1], a different
binomial decomposition would result. This is shown by

b = (P3U4)
−1a =


1 −1 −3 −5
0 1 2 3

0 0 1 3

0 0 0 1



1

3

3

1

 =


−16
12

6

1


resulting in the binomial −16(x + 1)0 + 12(x + 1) + 6(x −
1)2 + (x − 1)3 = 1 + 3x + 3x2 + x3 = (x + 1)3. The L1

distance norm of b for p = 00112 is 35 and the L2 norm of
b for p = 00112 is approximately 12.905. Since the distance
of p = 00112 is greater than that of p = 00002, p = 00002
can be considered a more minimized FPPT for the polynomial
1+3x+3x2+x3 = (x+1)3. The calculated L1 and L2 distance
norms (rounded to three decimals), total zero coefficients, and
resulting b vectors for all polarities can be found in Table III.

TABLE III
CALCULATED DISTANCE OF BINOMIAL COEFFICIENTS, b, FOR

aT = [1, 3, 3, 1] AT VARIOUS FPPT POLARITIES, p

p bT # zero coeff. L1 distance L2 distance
00002 [0, 0, 0, 1] 3 1 1
00012 [8,−12, 6, 1] 0 27 15.652
00102 [0, 0, 0, 1] 3 1 1
00112 [−16, 12, 6, 1] 0 35 20.905
01002 [0, 0, 0, 1] 3 1 1
01012 [−16, 12, 6, 1] 0 35 20.905
01102 [0, 0, 0, 1] 3 1 1
01112 [8, 12, 6, 1] 0 27 15.652
10002 [0, 0, 0, 1] 3 1 1
10012 [8,−12, 6, 1] 0 27 15.652
10102 [0, 0, 0, 1] 3 1 1
10112 [−16, 12, 6, 1] 0 35 20.905
11002 [0, 0, 0, 1] 3 1 1
11012 [−16,−12, 6, 1] 0 35 20.905
11102 [0, 0, 0, 1] 3 1 1
11112 [8, 12, 6, 1] 0 27 15.652

As observed in Table III, polarity values that allowed for a
larger number of zero coefficients were most favorable in terms
of minimized binomial representation. If zero coefficients are
not present in b, then distance of b should be calculated
via L1 and L2 distance norms in order to determine the
polarity value that allows for the smallest weights in b.
Another important observation from Table III is that weights
can appear at different polarities that have equal distances.
An example of this repetition lies in the fact that both halves
of the table representing the ranges of p = [00002 : 01112]



and p = [10002 : 11112] are identical. This repetition
appears because the polarity of the first term in the binomial
expression is irrelevant since it is raised to the zeroth power
(i.e. (x+ 1)0 = (x− 1)0).

As another example, consider the family of Laguerre poly-
nomials for degree n = [2 : 6]:

1

2
(x2 − 4x+ 2) (14)

1

6
(−x3 + 9x2 − 18x+ 6) (15)

1

24
(x4 − 16x3 + 72x2 − 96x+ 24) (16)

1

120
(−x5 + 25x4 − 200x3 + 600x2 − 600x+ 120) (17)

1

720
(x6−36x5+450x4−2400x3+5400x2−4320x+720) (18)

For Eqns. 14-18, the minimized polarity for a binomial
decomposition can be found with the FPPT according to the
minimizing criteria previously described:

1) Search through polarities for one that calculates a b with
a maximum number of zero coefficients.

2) If no set of weights, b, contains zero, determine minimum
L1 distance for all polarities and return all polarity values
equal to the minimum distance.

3) If no set of weights, b, contains zero, determine minimum
L2 distance for all polarities and return all polarity values
equal to the minimum distance.

as a note, the fractional scalar was omitted from a to keep
the polynomial weights integer values. No polarity produced
zero coefficients in b, so the calculated distance was used to
find the minimal decomposition. The results for polarization
minimization of the Laguerre polynomials based off distance
calculations can be found in Table IV.

IV. BRANCH AND BOUND METHOD

The previous results performed an exhaustive search over
all polarity numbers to find the minimum. Clearly, this is an
impractical approach for polynomials of large degree. Thus, a
heuristic approach based upon a branch and bound paradigm is
formulated as follows. Given a polynomial p(x) =

∑n
i=0 aix

i,
the procedure FACTOR performs a branch and bound recursive
search to find a binomial factorization of that polynomial∑n

i=0 bi(x + di)
i, all di ∈ {+1,−1} for i > 0, with a

minimum number of bi 6= 0. The initial call to FACTOR
should be FACTOR(a, b, d, n) where a specifies the n-degree
polynomial to be factored and b and d have all entries set to
0. The final binomial factorization is placed in global values
BESTb and BESTd that are initially undefined. The function
nterm returns the number of nonzero entries in its argument.
It returns n+ 1 if the argument is not yet defined.

Lines 6-11 handle the terminal case for the recursion at
which point the current expansion (in b and d) is checked to
see if it has fewer terms than the best solution found so far.
Lines 13-15 check the current expansion and prune the search
if it can not lead to a solution better than the current best.

1: procedure FACTOR(a, b, d, n)
2: k ← n
3: while k > 0 and ak = 0 do
4: k ← k − 1
5: end while
6: if k = 0 then
7: b0 ← a0, d0 ← 0
8: if nterm(b) < nterm(BESTb) then
9: BESTb← b

10: BESTd← d
11: end if
12: else
13: if nterm(b) = nterm(BESTb)− 1 then
14: return
15: end if
16: for u = 1,−1 do
17: bk ← ak

18: qk ← u
19: a1← a minus polynomial expansion of ak(x+ u)k

20: FACTOR(a1, b, q, k − 1)
21: end for
22: end if
23: return
24: end procedure

To clarify the approach, we first consider using only terms
of the form v(x+ 1)k. For example, consider the polynomial
2x3 + 7x2 + 4x+ 3. To begin the binomial expansion has no
terms. The highest order term of the polynomial is 2x3 so we
add 2(x + 1)3 to the expansion and subtract 2(x3 + 3x2 +
3x+1) from the polynomial so we now have the polynomial
x2−2x+1 and expansion 2(x+1)3. The highest order term of
the polynomial is now x2 so we add (x+1)2 to the binomial
expansion to get 2(x+1)3+(x+1)2 and subtract x2+2x+1
from the polynomial leaving −4x.

The next step is to add −4(x+ 1) to the expansion giving
2(x+ 1)3 + (x+ 1)2 − 4(x+ 1) and subtract the same from
the polynomial giving 4. The final step is to subtract 4 from
the polynomial and add 4 to the expansion giving 2(x+1)3+
(x+1)2− 4(x+1)+4 which is the final expansion since the
polynomial is 0.

The above is an iterative approach that is the initial solution
found by the recursive procedure FACTOR. By backtracking
and trying terms of the form v(x−1)k in place of each choice
of v(x + 1)k the recursive search finds the best solution for
this example to be 2(x+1)3+(x− 1)2 which has two terms.

Note that the search is not exhaustive over all polarity
assignments as it is pruned by ignoring search paths that will
lead to a solution with the same or a higher number of terms
than the best solution found so far during the search. More
elaborate pruning rules could be used if just minimizing the
number of terms is not sufficient.

Table V provides a timing comparison between the bounded
search and brute force search methods.

V. CONCLUSION

We have defined a minimization problem for polynomial de-
composition that has applications including lossless compres-
sion of signals represented by fitted polynomials. This problem



TABLE IV
POLARIZATION MINIMIZATION FOR LAGUERRE POLYNOMIALS

Polynomial # Minimized L1 p Minimized L1 b Minimized L2 p Minimized L2 bT

(# matching ) (# matching)
2 0112 [−1,−2, 1] 0112 [−1,−2, 1]

(2) (2)

3 00112 [2,−3, 6,−1] 00112 [2,−3, 6,−1]
(2) (2)

4 011112 [−15, 4, 30,−12, 1] 011112 [−15, 4, 30,−12, 1]
(2) (2)

5 0111112 [−56, 95, 140, 0111112 [−56, 95, 140,
−110, 20,−1] −110, 20,−1]

(2) (2)

6 00011102 [−417,−546, 315, 00011102 [−417,−546, 315,
−1100, 225,−42, 1] −1100, 225,−42, 1]

(4) (2)

TABLE V
TIMING COMPARISON (CPU SEC.) BETWEEN BRANCH AND BOUND AND BRUTE FORCE SEARCH WHEN CALCULATING bT

degree aT p bT heuristic timing brute force timing
4 [0, 7, 3, 5, 1] 000102 [0, 0, 0, 1, 1] 2.32E-5 2.85E-2
5 [−2, 8,−13, 11,−5, 1] 0001012 [0, 0, 0, 1, 0, 1] 2.94E-5 6.49E-2
6 [2, 2, 21, 16, 16, 6, 1] 00001002 [0, 0, 0, 0, 1, 0, 1] 2.64E-5 1.35E-1
7 [2, 9, 22, 35, 35, 21, 7, 1] 000000002 [0, 0, 1, 0, 0, 0, 0, 1] 1.74E-5 3.09E-1
8 [0, 5, 25, 55, 70, 56, 28, 8, 1] 0000000002 [0, 0, 0,−1, 0, 0, 0, 0, 1] 2.44E-5 7.31E-1
9 [4, 11, 55, 79, 132, 125, 84, 36, 9, 1] 00000100002 [0, 0, 0, 1, 1,−1, 0, 0, 0, 1] 3E-5 1.71
10 [2, 18, 64, 156, 245, 273, 217, 121, 45, 10, 1] 001100000002 [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1] 2.52E-5 3.97
11 [2, 8, 46, 149, 316, 456, 461, 330, 165, 55, 11, 1] 0100000000002 [0,−1, 0, 0, 1, 0,−1, 0, 0, 0, 0, 1] 2.4E-5 9.43
12 [0, 4, 78, 182, 529, 771, 931, 791, 495, 220, 66, 12, 1] 00010001000002 [0, 0, 0, 1,−1, 0, 0,−1, 0, 0, 0, 0, 1] 6.04E-5 22.7
13 [0, 12, 62, 255, 681, 1266, 1709, 1715, 1287, 715, 286, 78, 13, 1] 001000000000002 [0, 0,−1, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 1] 2.6E-5 51.8

can also be considered as higher-radix generalization of the
fixed-polarity Reed-Muller minimization problem in binary-
valued switching theory. We have shown that the computation
of a polynomial decomposition can be efficiently accomplished
using previous results that exploit the structure of the fixed-
polarity Pascal transformation matrices thus alleviating the
need to explicitly compute the inverse transformation matrices.
Furthermore, we have devised, implemented, and evaluated a
heuristic searching method that finds the minimal decomposi-
tion given a finite set of polarity vectors. This implementation
has practical runtime characteristics, allowing the method to
be applicable for high-degree polynomials.

REFERENCES

[1] T.-B. Deng, S. Chivapreecha, and K. Dejhan, “Unified Pascal matrix for
first-order s - z domain transformations,” IEEE Transactions on Signal
Processing, vol. 57, no. 6, pp. 3090–3094, 2009.

[2] M. F. Aburdene and T. J. Goodman, “The discrete Pascal transform and
its applications,” IEEE Signal Processing Letters, vol. 12, no. 7, pp.
493–495, 2005.

[3] Y. Choo and C. G. K., “On Pascal matrix for transforming lowpass
analog to bandpass digital filter,” IEEE Signal Processing Letters,
vol. 16, no. 2, pp. 77–80, 2009.

[4] T. J. Goodman and M. F. Aburdene, “Pascal filters,” IEEE Transactions
on Circuits and Systems–I, vol. 55, no. 10, pp. 2130–2139, 2008.

[5] G. S. Call and D. J. Velleman, “Pascal’s matrices,” The American
Mathematical Monthly, vol. 100, no. 4, pp. 372–376, 1993.

[6] M. F. Aburdene and J. E. Dorband, “Unification of Legendre, Laguerre,
Hermite, and binomial discrete transforms using Pascal’s matrix,” Multi-
dimensional Systems and Signal Processing, vol. 5, no. 3, pp. 301–305,
1994.

[7] A. Edelman and G. Strang, “Pascal matrices,” http://web.mit.edu/
18.06/www/ Essays/pascal-work.pdf, MIT, Cambridge, MA, Tech. Rep.,
2003.

[8] S. M. Z. and L. L. Steil, “The k-binomial transforms and the Hankel
transform,” Journal of Integer Sequences, vol. 9, no. 1, pp. 06.1.1:1–19,
2006.

[9] T. J. Goodman and M. F. Aburdene, “On discrete Pascal transform, Pois-
son sequence and Laguerre polynomials,” Electronics Letters, vol. 43,
no. 14, 2007.

[10] C. Moraga, R. Stanković, and M. Stanković, “The Pascal triangle
(1654), the Reed-Muller-Foutier transform (1992), and the discrete
Pascal transform (2005),” in 46th Int. Symp. on Multiple-valued Logic.
IEEE Computer Press, 2016, pp. 229–234.

[11] M. Aburdene, R. Kozick, R. Magargle, J. Maloney, and C. Coviello,
“Discrete polynomial transform representation using binary matrices and
flow diagrams,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, 02 2001,
pp. 1141 – 1144 vol.2.

[12] A. N. Skodras, “Fast discrete Pascal transform,” Electronics Letters,
vol. 42, no. 23, 2006.

[13] Q. Zhong, A. K. Nandi, and M. F. Aburdene, “Efficient implementation
of discrete Pascal transform using difference operators,” Electronics
Letters, vol. 43, no. 24, 2007.

[14] D. B. Gajić and R. S. Stanković, “Fast computation of the discrete
Pascal transform,” in 47th Int. Symp. on Multiple-valued Logic. IEEE
Computer Press, 2017, pp. 149–154.

[15] R. S. Stanković, J. Astola, and C. Moraga, “Pascal matrices, Reed-Muller
expressions and Reed-Muller error correcting codes,” Zbornik Radova,
vol. 18, no. 26, pp. 145–172, 2015.

[16] K. Smith and M. Thornton, “Fixed polarity Pascal transforms with
symbolic computer algebra applications,” in Proceedings of IEEE Pacific
Rim Conference on Communications, Computers, and Signal Processing
(PacRim), 2019.

[17] V. Suprun and D. Gorodecky, “Matrix method of polynomial expansion
of symmetric Boolean functions,” Automatic Control and Computer
Sciences, vol. 47, no. 1, pp. 1–6, 2013.


