
Quantum Multiple Valued Kernel Circuits
Aviraj Sinha and Mitchell A. Thornton

Quantum Informatics Research Group, Darwin Deason Institute for Cyber Security
Southern Methodist University, Dallas, Texas, USA

{avirajs, mitch}@smu.edu

Abstract—Quantum kernels map data to higher dimensions
for classification and have been shown to have an advantage over
classical methods. In our work, we generalize recent results in
binary quantum kernels to multivalued logic by using higher
dimensional entanglement to create a qudit memory and show
that the use of qudits offers advantages in terms of quantum
memory representation as well as enhanced resolution in the
outcome of the kernel calculation. Our method is not only ca-
pable of finding the kernel inner product of higher dimensional
data but can also efficiently and concurrently compute multiple
instances of quantum kernel computations in linear time. We
discuss how this method increases efficiency and resolution for
various distance-based classifiers that require large datasets
when accomplished with higher-dimensioned quantum data
encodings. We provide experimental results of our qudit kernel
calculations with different data encoding methods through the
use of a higher-dimensioned quantum computation simulator.

Index Terms—multidimensional quantum computing, qudit,
quantum information processing, quantum machine learning,
quantum data clustering, quantum memory

I. INTRODUCTION

Quantum machine learning (QML) is a developing field of
quantum information processing in which quantum comput-
ers are used to perform machine learning tasks [1]. Many
methods use quantum primitives to speed up training of
classical methods such as the HHL algorithm for matrix
inversion and Grover’s algorithm to search for training pa-
rameters. Others use a classical computer to train a variational
quantum circuit consisting of parameterized gates that are
repeatedly adjusted based on a cost function; this variational
circuit architecture is similar to designing a neural network
structure and training its weights. The learning models that
use variational circuits are an example of an exploratory
approach to QML wherein the models offer a straightforward
implementation in a quantum device. Kernel methods are
similar to variational models; however, the main distinction
is that kernel methods optimize parameters in the form of
a linear combination. This means that training is accom-
plished in quadratic runtime due to calculating all pairwise
distances between the training data. This type of calculation
finds the optimal model for the desired classification task
[2]. Alternatively, variational methods are more efficient
and can be trained in linear time; however, there is no
guarantee that an optimal measurement will be achieved
and each implementation strategy is unique to the problem
under consideration. The method described here focuses on
exploring and improving the structure of quantum kernel
computations and, in particular, the generalization of kernel

calculations using qudits, also known as higher dimensional
quantum digits. We show that quantum kernel computations
can readily take advantage of higher dimensional qudits.

There are three parts of a quantum algorithm, data encod-
ing, processing, and measurement. Quantum algorithms first
encode data into an n-dimensional feature space known as
the Hilbert space Hn [3] before being input into a processing
portion, in this case a quantum kernel computation. The data
encoding method is an important contributor to quantum
speedup due to characteristics such as entanglement and su-
perposition. The structure that represents multiple data encod-
ings through the use of quantum superposition is described
as a quantum memory. We present the benefits of using a
qudit quantum memory that are realized due to the resulting
higher-radix system. Using a higher-radix system allows for
compact storage of encoded data as quantum superpositions
with additional benefit gained due to qudits enabling more
information to be represented in each individual encoding.

More specifically, using qudits instead of qubits results in
benefits for quantum kernel computations since the quantum
effects of superposition and entanglement result in greater
data density within the quantum circuit. The result is that
there will be more data encodings in superposition as well
as more information stored per data encoding. This improve-
ment in data storage naturally results in improvements in
quantum machine learning by allowing parallelized compu-
tation on large datasets and on high-dimensional data encod-
ings that represent a complex feature space. We demonstrate
how creating a qudit memory increases the efficiency of a
quantum kernel computation by comparing it to a kernel
computation based on the use of qubits. To our knowledge,
quantum machine learning methods have not taken advantage
of benefits provided by using higher-dimensional qudits.
There have been many quantum hardware advances that allow
qudits to be represented as higher energy states. A previous
implementation describes a photonic circuit that produces a
pair of 96-state qudits that can be used to create a total of
962 = 9216 dimensional quantum states [4]. In addition to
quantum speedups, there are some practical hardware benefits
of using qudits. First, the use of qudits avoids the challenge
of requiring large numbers of qubits thus reducing circuit
resource requirements and lessening the problems associated
with decoherence. Second, creating qudits is technically
achievable since it only involves removing restrictions that
are usually present in binary-basis circuits that purposely
restrict qubit implementations to use only two basis states.

For quantum kernel computations, the data encoding mech-
anism can be abstractly considered as feature mapping to a
higher dimension. In this case, the quantum Hilbert space
mapping is denoted as x→ |ϕ(x)⟩. This type of mapping to
a higher dimension, known as the “kernel trick” in machine
learning, eases the ability to create decision boundaries.
Kernel-based mapping is created by synthesizing a circuit
that evolves the basis |0⟩ state into the desired output
state Uϕ |0⟩ → |ϕ(x)⟩. The kernel itself is customized by
changing the quantum data encoding strategy for creating the
feature mappings. The synthesized inputs are then combined
into a circuit that finds the overlap between quantum states
⟨ϕ|ψ⟩. In method described here, we show that using higher-
dimensional qudits allows us to find the overlap between
multiple combinations of higher dimensional quantum states.
In addition to enhanced parallelism for kernel testing, the
ease of creating higher-dimensional states allows us to create
kernels that are difficult to simulate on a classical computer
that inherently uses only two binary states. This enhancement
yields a significant benefit in comparison to a classical
computing approach since it enables parallelized qudit kernel
computations thus gaining a quantum advantage.

Higher-dimensional qudits additionally increase storage ef-
ficiency and thus offer further enhancements to computation
speed. We describe the creation of a higher-dimensional
quantum kernel circuit based on the use of qudits that cal-
culate many groups of quantum kernel distances simultane-
ously. This technique requires the creation of a qudit memory
as a state generation circuit and is briefly summarized. The
quantum speedup in this method results from the way the
data is encoded as well as the use of qudits. We compare
the structure and efficiency of a qubit kernel computational
circuit with that of a radix-4 qudit kernel computational cir-
cuit. Additionally, we evaluate the qudit kernel computational
circuit using two different data encoding methods.

II. PREVIOUS WORK

The use of kernel methods to map data into a higher-
dimensional feature space through a feature mapping function
for conventional electronic computing is well known in the
machine learning (ML) community. A feature space is used
by a ML algorithm to create classification boundaries with
more ease. One way that a higher-dimensional state can be
created is through the use of kernels created by an inner
product computation. The inner product of two feature maps
must be mapped into a higher dimensional feature space
that measures distances between data points. One common
classification algorithm that uses kernels is the support vector
machine (SVM). The SVM separates classes of data points
using a line, or in multiple dimensions, a hyperplane. More
information about classical kernels can be found in [5]. Ker-
nel methods can be used as a quantum primitive in a hybrid
QML model wherein a classically running algorithm, such
as SVM, queries a quantum computer for kernel calculation
results [3].

Previous work investigates the usage and training of
quantum kernels for small datasets using a few radix-2

qubits on quantum devices. The research of [6] explores
quantum kernels that follow the pattern of inner product
interference routines and describes how to use them for
classification. Unlike hybrid models, this work performs the
entire classification task on the quantum device; indicating
that labels must be output by the quantum computer. The two
classifiers created are the Hadamard classifier and the swap
test classifier. The Hadamard classifier encodes data in the
two output branches of superposition. When the Hadamard
operator is applied, it results in overlap. In the swap test
classifier, a conditional swap gate is used to create an inner
product between the input and encoded weights. In both
methods, an ancilla qubit is used to create the interference, a
series of weights is synthesized by a series of gates and the
encoded data itself, and the resulting label qubit is produced.
For these methods, a projective measurement is used to create
an overlap and another measurement is used for creating the
label that is entangled with the data. This method makes use
of the fidelity between the quantum states of the training
dataset and test data.

The primitives used for interference generation are based
upon the original swap test for quantum fingerprinting [7].
Quantum fingerprinting was originally described as a way of
finding the overlap of two quantum states through interfer-
ence using a controlled swap gate. The quantum effect of
interference is used as a similarity measure of two quantum
states. The idea of the qubit inner product has been adapted
to machine learning to work as a kernel in a quantum support
vector machine.

In [8] there is a comparison between a quantum kernel and
a variational classifier implemented on a quantum computer.
The design ansatz or architecture is used with multiple
layers. A layer consists of Hadamard operations, a layer of
parameterized rotations, then a layer of entangling gates. This
variational architecture was modified to create a kernel inner
product by reversing the ansatz operations (i.e., conjugate
transpose) and replacing the rotational weights with different
values. This past work outlines the training of the kernel
rotational weights through a dual quadratic program. In con-
trast, it is noted that for a variational algorithm, a stochastic
gradient descent algorithm can be used.

Recent work has proven the quantum advantage of QML
algorithms by creating a kernel for certain data types. The
work of [9] constructs a dataset that is hard to classify based
on the discrete logarithm problem. A kernel is trained using
a similar technique as the kernel architecture and training
in [8]. The result is that the quantum classifier provides high
accuracy while a classical ML learner is reduced to randomly
guessing.

Recently, qudits have been used to improve quantum algo-
rithms as shown in the qudit-based Deutsch-Jozsa and quan-
tum database search algorithms. In [10] the binary Deutsch-
Jozsa algorithm is generalized to qudits. The algorithm can
distinguish between constant and balanced functions in a
single query. In addition, it can identify affine functions
in oracles. Also in [10], a quantum database search is
expanded to work with a qudit database, also referred to

as quantum memory. The main benefit of working with a
quantum database is the resulting enhanced parallelism of
computations. Using a similar technique, our multivalued
kernel method relies on a qudit memory. We will briefly
describe how the qudit memory can be implemented as a
state generation circuit using higher-dimensional qudit gates.
We also describe the exponential improvement of the higher-
dimensional quantum memory. Overall, our results show that
the usage of qudits for these types of quantum primitives
yield overall computational speedup when applied to QML.

III. BACKGROUND

A. Qubit Kernel

As background in describing kernels and quantum mem-
ory, the principle of entanglement is briefly reviewed. A
simple example of an entanglement generator, the Bell state
generator, is shown in Figure 1. The qubits are both initialized
to the binary computational basis state, |0⟩2 where the
subscript denotes the radix or dimension of the Hilbert space.
In standard linear algebraic notation, the computational basis
is ⟨0| = [1, 0], |0⟩ = [1, 0]†, ⟨1| = [0, 1], |1⟩ = [0, 1]†. The
idea is that the uppermost qubit evolves into a state of perfect
superposition among |1⟩ and |0⟩ due to the Hadamard gate
and it is then applied to the control port of a controlled-NOT
gate. Thus, the controlled-NOT gate serves as an entangling
gate resulting in the target qubit becoming entangled with
the value of the control qubit. Entanglement causes the
target value to be determined based upon the value that
the control qubit collapses into after measurement. As a
result, entanglement essentially allows the transmission of
data between two qubits instantaneously.

Fig. 1: Bell State Entanglement Generator

A parametrized form for a general qubit, |φj⟩, can be
written in terms of the Bloch sphere angles θj and ϕj in the
form shown in Equation 1 where (θj , ϕj) are identical to the
standard angles describing a point in the spherical coordinate
system and i2 = −1.

|φj⟩ = cos(
θj
2
) |0⟩+ eiϕj sin(

θj
2
) |1⟩ (1)

To understand how quantum gates can be synthesized
as state generation memory elements, we express them as
parameterized unitary matrices in terms of (θj , ϕj). A gener-
alized unitary matrix Uj is represented as a rotation matrix

with two parameters as shown in Equation 3. To create the
matrix we apply a series of Pauli-X and Pauli-Z operators
with parameterized angles (θj , ϕj) defining the desired qubit
|φj⟩ as shown in Equations 2. Evolving |0⟩ by applying
the synthesized unitary matrix, Uj , results in the generation
of the desired quantum state that stores data in the |φj⟩
state shown in Equation 4. In this sense, (θj , ϕj), can be
considered as the parameters found via a training process for
the state generation matrix Uj .

RX(θ) = e−iθX =

[
cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

]
RZ(ϕ) = e−iϕZ =

[
e−iϕ

2 0

0 ei
ϕ
2

] (2)

Uj = U(θj , ϕj) = RZ(ϕj)RY(θj)

= RZ(ϕj)RX(−π/2)RZ(θj)RX(π/2)

=

 cos
(

θj
2

)
− sin

(
θj
2

)
eiϕj sin

(
θj
2

)
eiϕj cos

(
θj
2

)  (3)

|φj⟩ = Uj |0⟩ =

 cos
(

θj
2

)
− sin

(
θj
2

)
eiϕj sin

(
θj
2

)
ei(ϕj) cos

(
θj
2

) [
1
0

]

=

[
cos

θj
2

eiϕj sin
(

θj
2

)]

= cos(
θj
2
) |0⟩+ eiϕj sin(

θj
2
) |1⟩

(4)

Using these concepts, we generalize the Bell state genera-
tor to implement an inner product kernel as shown in Figure 2
that is used to find the overlap of two quantum states, φ0 and
φ1, and is a modification of the original swap test in [3]. First,
the top control qubit is evolved into a state of superposition
using a Hadamard gate, |ΨΦ⟩ (t1) = 1√

2
(|0⟩ |0⟩ + |1⟩ |0⟩).

Then the first set of gate transformations are activated when
the top control qubit is |1⟩ and the second when the top
qubit is |0⟩ due to a negative control. The first gate, control-
U0 results in |ΨΦ⟩ (t2) = 1√

2
(|0⟩ |0⟩+ |1⟩ |φ0⟩) and embeds

the |φ0⟩ quantum state. Likewise, the second gate, negative-
control-U1, causes an evolution that embeds the |φ1⟩ quan-
tum state resulting in |ΨΦ⟩ (t3) = 1√

2
(|0⟩ |φ1⟩ + |1⟩ |φ0⟩) .

The second Hadamard gate computes the sum and difference
of the quantum states |φ0⟩ and |φ1⟩ in different superposition
branches as |ΨΦ⟩ (t4) = 1√

2
(|0⟩ |φ1⟩+ |1⟩ |φ1⟩+ |0⟩ |φ0⟩ −

|1⟩ |φ0⟩). When the M0 = |0⟩ ⟨0| projective operator within
the Pauli-Z measurement observable is applied to the up-
permost qubit |Ψ⟩, the probability that it collapses to |0⟩
is obtained, as shown in Equation 5. We can also use the
other projector of the same basis, M1 = |1⟩ ⟨1|, to obtain a
second probability distribution, Prob [|Ψ⟩ (t5) → |1⟩]. These
measurements result in binomially-distributed probabilities
that can be used to obtain the inner product value. Multiple
runs N of the quantum program referred to as “shots” can

be used to efficiently obtain an estimate of the probability
distribution from which the inner product can be computed
with simple algebraic relationships. Specifically, p0 = N0/N
and p1 = N1/N where N0 and N1 are the number of
measurements of |0⟩ and |1⟩ respectively. Using estimates
of the p0 and p1 values from the N shots, we obtain
Re{⟨φ0|φ1⟩} = 2p0 − 1 and Re{⟨φ0|φ1⟩} = 1− 2p1.

Fig. 2: Qubit Innerproduct Kernel

Prob [|Ψ⟩ (t5) → |0⟩] = ⟨ψ(t4)|M†
0M0|ψ(t4)⟩

= ⟨ψ(t4)|0⟩ ⟨0|0⟩ ⟨0|ψ(t4)⟩
= ⟨ψ(t4)|0⟩ ⟨0|ψ(t4)⟩

=
1

2
(⟨φ1|+ ⟨φ0|)

1

2
(|φ1⟩+ |φ0⟩)

=
1

4
(⟨φ0|φ1⟩+ ⟨φ1|φ0⟩+ 2)

=
1

2

(
Re{⟨φ0|φ1⟩}+ 1

)
(5)

B. Data Encoding in Quantum Storage

There are many data encoding methods for storing data
in a quantum state, such as angle encoding, which involves
rotating qubits and storing the value in the probability of
the qubits, and basis encoding, which simply stores the
discrete 0 or 1 states of the qubits [3]. The data encoding
method of choice is equivalent to the type of feature map
of the kernel. As a result, the strength of quantum kernel-
based machine learning algorithms depends on the type of
data encoding strategy selected, the training method for the
variational parameters that transform the encodings, as well
as the effectiveness of the synthesis method. We will not
focus on a particular synthesis method or training of qudits
in higher dimensions but rather the overall structure of the
kernel computation itself. For the evaluation of our kernel
method, we will first use modulo-addition gates to create the
qudit equivalent of basis encoding, then we will use random
rotation matrices to represent a set of qudit angle encoded
state generation operators.

C. Qudit Gates

Next, we generalize the entanglement-based kernel com-
putation method to use qudits. The Chrestenson gate in
Equation 6 is a generalized form of the Hadamard operator
and is defined by a matrix that is parameterized by the radix
of computation. The gate represented by the C4 transfer
matrix allows a radix-4 basis qudit to evolve into a quantum
state of equal superposition among all four basis qudits,

|0⟩4, |1⟩4,|2⟩4, and |3⟩4 where the subscript “4” indicates
the Hilbert vector space dimension.

C4 =
1√
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (6)

A2,U =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 u00 u01 u02 u03 0 0 0
0 0 0 0 0 0 0 0 u10 u11 u12 u13 0 0 0 0
0 0 0 0 0 0 0 0 u20 u21 u23 u24 0 0 0 0
0 0 0 0 0 0 0 0 u30 u31 u33 u34 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(7)

The qudit controlled gate Ah,k results in the target state
|k⟩ when the state of the control qudit is |h⟩. The process of
entanglement in higher dimensional qubits has been theoret-
ically analyzed and described in detail in [11], [12]. The im-
plementation of a higher-dimensioned quantum entanglement
operator as a state preparation circuit is described in [13].
In Equation 7, we generalize the applied matrix to contain
a general radix-4 unitary U for the synthesis of different
data encoding types. This higher dimensional unitary matrix
requires expanding the number of rotational parameters. We
can create the radix-4 equivalent of the rotation matrix
by calculating the outer product of two radix-2 rotation
matrices as shown in Equation 8. In Figure 3, the Chrestenson
gate is applied to a computational basis state to generate
perfect superposition of the topmost qudit, |ΨΦ⟩ (t0) =
(C4 ⊗ I4) |00⟩4 = 1

2 (|0⟩4 + |1⟩4 + |2⟩4 + |3⟩4) |0⟩4. Next,
a controlled entangling gate represented by A2,U is applied
that evolves the target qudit according to a unitary operator
U parameterized by higher-dimensional Bloch sphere angles
in response to the control qudit’s |2⟩ probability amplitude
value, shown in the black circle. U is synthesized in a
generalized manner as the qubit-based operators previously
described and is shown in Equation 8.

U = U(θ0, ϕ0)⊗U(θ1, ϕ1) = U(θ0, ϕ0, θ1, ϕ1) (8)

|ΨΦ⟩ (t1) = A2,U × (C4 ⊗ I4) |00⟩4
=

1√
4
(|0⟩ |0⟩+ |1⟩ |0⟩+ |2⟩ |φ⟩+ |3⟩ |0⟩)

(9)

The series of qudit-controlled unitary gates form a mul-
tivalued control gate (MVCG) that is a series of A gates
with every possible control basis value present as shown in
Figure 4. The MVCG gate enables the advantages of using
higher-dimensional gates. While a qubit controlled-NOT gate
will only perform a single operation on the target qubit,
the MVCG gate allows the selection of multiple different

Fig. 3: Radix-4 Qudit Entanglement

entangling gates, depending on the control activation value.
As a result, the MVCG is sometimes referred to as a
quantum multiplexer [14]. In Equation 4, a 4-dimensional
qudit MVCG is depicted with each Uk of dimension 4 × 4
representing a single operation that is applied to the target
qudit based upon the value of the control qudit’s probability
amplitude for each basis component, |k⟩. In terms of notation,
04 represents the 4×4 null or “all-zeros” component matrix.

MVCG4 =


U0 04 04 04

04 U1 04 04

04 04 U2 04

04 04 04 U3


Fig. 4: Multiple Valued Control Gate

IV. CONTRIBUTION

A. Qudit Memory

To create the multivalued kernel computation circuit, it
is necessary to represent the data in a higher-dimensional
quantum memory circuit. To create the higher-dimensional
circuit structure we apply the C4 gate on the control qudits
of the MVCG as shown in Figure 5. By applying the C4

gate to the previously described quantum multiplexer, we
can create a series of entangled data and address values that
are in superposition. The resulting Equation 11 represents
a circuit structure that is described as a quantum memory
in [15] and is represented by Equation 10. The |j⟩ control
qudit serves as an address qudit that is entangled with the
corresponding data in the form of quantum states |φ⟩ that
are in superposition. N is the normalizing factor that results
in the equiprobable probability amplitudes to cancel when
squared; for our case N is 4, due to our single radix-
4 qudit. Quantum memory is an essential requirement for
many quantum machine learning algorithms. Due to the four
control states of the qudit, the amount of data stored in the
superimposed state of a single particle increases from two
to four. In addition, the dimension of each individual qudit
representing encoded data increases from two to four in this
radix-4 example. In the small illustrative example shown
in Figure 5 and described by Equation 11, there is only a
single controlling address qudit n = 1, thus the memory data

stored in superposition only represents four distinct values.
When there are multiple address/controlling particles n > 1,
the amount of data increases exponentially with respect to
the value of n of the form rn where r is the single qudit
Hilbert space dimension (or radix value) and n is the number
of qudits. This exponential increase in data storage can be
achieved when the qudit memory circuit is generalized to
utilize n > 1 address qudits.

Fig. 5: Qudit Memory

1√
N

N∑
j=0

|j⟩4 |0⟩4 −→
1√
N

N∑
j=0

|j⟩4 |φj⟩ (10)

|ΨΦ⟩ (t2)
= A3,U ×A2,U ×A1,U ×A0,U × (C4 ⊗ I4) |00⟩4
=

1√
4
(|0⟩ |φ0⟩+ |1⟩ |φ1⟩+ |2⟩ |φ2⟩+ |3⟩ |φ3⟩)

(11)

B. Loading Quantum Data

In addition to choosing an appropriate quantum data
encoding method, quantum memory architectures must be
specified for selecting multiple unitary operators U in quan-
tum form that result in the corresponding quantum states
|φj⟩. In the case of radix-2 quantum read-only memory or
QROM, the operators used to create the states are stored
as described in [16], whereas in QRAM, quantum states are
loaded from conventional electronic data circuits as described
in [15]. In Figure 6 the quantum state generation circuit for
a QROM is represented by the overall transformation circuit
with transfer matrix Tdata and the processing portion is
likewise represented by Tproc. To control which data values
are accessed from the QROM, a quantum computation is
performed that generates the address qudits to be applied to
the QROM denoted here as Taddr.

The overall algorithm representing a data processing ap-
plication is specified by the collection of Tproci circuits with
the overall transformation matrix Tcirc formed as Tcirc =∏k

i=1(Taddri ⊗Tproci)QROM(Taddri−1
⊗Tproci−1

). The
set of controlling qudits can be considered to be an address
analogous to a conventional addressable memory unit. When
implemented within a general data processing algorithm, the
QROM can be embedded multiple times at any location in the
serial cascade and would generally follow the portion of the
algorithm that generates an address but precedes the portion
of the algorithm that actually processes the addressed data.
An example of such a structure is shown in Figure 6.

In the case of the quantum qudit memory embedded within
the kernel calculation circuit, it is possible to use the four
different basis states for the Taddr qudit to retrieve the

Fig. 6: Quantum Algorithm Containing k Instances of QROM
Structures

corresponding stored values within Tdata that is embedded
within the four unitary matrices Uj as shown in Figure 5.
To create the controlled-Uj gates, the process described in
[17] can be used to add a control qudit to the synthesized Uj

gates that comprise Tdata. Generalizing this form of QROM
architecture allows an arbitrary number of quantum states to
be generated from a corresponding set of synthesized Uj

operators that, in turn, represent a large dataset. Thus, the
quantum kernel algorithm can be implemented over a large
set of values.

C. Qudit Kernel

As previously discussed, a quantum kernel computation
circuit enables one to find the overlap of quantum states. In
the multiple-valued case, this is the overlap between every
possible combination of quantum states. In Equation 12,
when the rightmost C4 gate of Figure 7 is applied to the
controlling qudit (i.e. address qudit) of the quantum memory,
a similar result is achieved as that of the swap test in that
multiple sums and differences of each quantum state are
generated. In Equation 13, a projective measurement operator
is applied as described by a generalized radix-4 Pauli-Z
observable. This observable is formed in part using the M0

projector where M0 = |04⟩ ⟨04|. The M0 projector yields
the probability that the measured qudit collapses to state |04⟩.
The result is that the probability distribution contains the sum
of every possible inner product combination in constant time
as expressed in Equation 13. Normally, finding every possible
combination between n points is proportional to n(n−3)/2.
Thus, by using the qudit-based method, all combinations
can be calculated in the linear time required to synthesize
the circuits resulting in a quadratic runtime reduction. As a
result, this circuit can compute more than a single kernel
overlap in one operation and it can be used to efficiently
find the overall similarity among multiple higher-dimensional
quantum states.

When the quantum algorithm represented by Tproc is a
kernel calculation, we can calculate the distance between
multiple points in higher dimensions. In this way we can
reduce the number of calls to a quantum computer since
this is equivalent to finding multiple kernels at once and
adding their differences. This can be used to speed up kernel
enhanced algorithms that require multiple kernel calculations
such as K-nearest neighbors clustering algorithms. A K-
dimensional qudit can be used to create, calculate and sum

K distances in the Hilbert space. We can create a classifier
by encoding one of the synthesized states as ϕ0 and finding
the kernel distance from the remainder of encoded data in
the cluster φ2, φ3 . . . φi. If the resulting probability of our
kernel is close to unity (1), the sample is close to that class
cluster and can thus be classified as part of that class.

Fig. 7: Qudit Innerproduct Kernel

|ΨΦ⟩ (t3) = (C4 ⊗ I4) |ΨΦ⟩ (t2) =
1√
16

[(|0⟩ |φ0)⟩+ |1⟩ |φ0⟩+ |2⟩ |φ0⟩+ |3⟩ |φ0⟩)+

|0⟩ |φ1)⟩+ i |1⟩ |φ1⟩ − |2⟩ |φ1⟩ − i |3⟩ |φ1⟩+
|0⟩ |φ2)⟩ − |1⟩ |φ2⟩+ |2⟩ |φ2⟩ − |3⟩ |φ2⟩+
|0⟩ |φ3)⟩ − i |1⟩ |φ3⟩ − |2⟩ |φ3⟩+ i |3⟩ |φ3⟩)] (12)

Prob [|Ψ⟩ (t4) → |0⟩4]
= ⟨ψ(t3)|M†

0M0|ψ(t3)⟩ = ⟨ψ(t3) |0⟩4 ⟨0|0⟩4 ⟨0|ψ(t3)⟩4
=

1√
16

(⟨φ0|+ ⟨φ1|+ ⟨φ2|+ ⟨φ3|)
1√
16

(|φ0⟩+ |φ1⟩+ |φ2⟩+ |φ3⟩)

=
1

16
(2 | ⟨φ0|φ1⟩ | +2 | ⟨φ0|φ2⟩ | +2 | ⟨φ0|φ3⟩ |

+ 2 | ⟨φ1|φ2⟩ | +2 | ⟨φ1|φ3⟩ | +2 | ⟨φ2|φ3⟩ | +4)

=
1

8
(| ⟨φ0|φ1⟩ | + | ⟨φ0|φ2⟩ | + | ⟨φ0|φ3⟩ | + | ⟨φ1|φ2⟩ |

+ | ⟨φ1|φ3⟩ | + | ⟨φ2|φ3⟩ | +2)

(13)

V. EVALUATION

To evaluate the higher-dimensional similarity metric, we
synthesize unitary radix-4 gates that encode data and generate
corresponding create quantum states. We implemented the
qudit kernel computation circuit in Figure 7 using the Google
cirq circuit simulator with various unitary matrices. For
the first part of the experiment, shift matrices are used,
also known as modulo addition operators [18]. The shift
gates are actually higher-dimensional versions of the Pauli-
X operator for radix-4. The Pauli-X transfer matrix applies
the operation (|φ⟩ + |1⟩) (mod 2) to the input state |φ⟩,
where |φ⟩ can be |0⟩ or |1⟩. The radix-4 equivalents of
the Pauli-X gate are shown in Equation 14 representing
(|φ⟩+|0⟩) (mod 4), (|φ⟩+|1⟩) (mod 4), (|φ⟩+|2⟩) (mod 4)
and (|φ⟩ + |3⟩) (mod 4). The generated quantum state |φ⟩
can be formed from either the |0⟩4, |1⟩4, |2⟩4, or |3⟩4 radix-
4 basis states. When these operators are used, the quantum
states stored within the memory circuit contain multiple basis
encodings that have the form of Equation 15 where |φ⟩ is a
discrete state value.

M0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

M2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , M3 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


(14)

|φ⟩4 = |a⟩4 , a ∈ {0, 1, 2, 3} (15)

When using the modulo addition operators as the Uj

matrices, the data is represented by its qudit equivalent in
the form of basis encoded memory. That is, it does not store
values in the probability amplitudes of the quantum states,
which means that the states are not in superposition. Unlike
basis encoding which simply stores data as 0 or 1 discrete
basis states of a qubit, the qudit data is stored as the 0, 1,
2, or 3 basis states. Likewise, rather than using control-X
gates we use the higher-dimensional equivalent of controlled-
modulo addition gates. Basis state encoding is used for the
first test evaluation since it is among the simplest and easiest
to interpret. We note that other, more efficient, quantum data
encoding and memory circuits can also be applied such as the
previously mentioned angle or probability amplitude types of
encodings.

For the second set of results, we analyze the similarity
metric distribution using n-dimensional random unitary ma-
trices for Uj . We generate random unitary matrices following
the steps in [19], that are implemented in the Python library
scipy-stats. Random generation of these matrices can be
created through the randomization of the rotation parameters
shown in Equation 8. When random unitary rotations are
performed on a single qudit, the qudit equivalent of angle-
encoded data is created. Equation 16 shows the resulting data
values stored in the four probability amplitudes of a single
qudit. Like qubit angle encoding, the sum of squared magni-
tudes of the probability amplitudes (i.e., αj values) must be
equal to unity (1) due to Born’s rule or, alternatively, the laws
of probability theory. That is, |α0|2+|α1|2+|α2|2+|α3|2 = 1.

|φ⟩4 = α0|0⟩4 + α1|1⟩4 + α2|2⟩4 + α3|3⟩4 (16)

A. Qudit Basis Encoding

In our illustrative example, four data points are stored. The
results show the result of the qudit memory circuit when each
unitary matrix is denoted as U0, U1, U2, U3. Since all four
matrices are different, all four measurement values are in
equal superposition.

The calculations using Equation 13 reveal that the sim-
ilarity of the encoded quantum data states in the memory
can be found by measuring the probability that the qubit
collapses into state |0⟩4 upon measurement. Using different
combinations of shift matrices can reveal that this is a
similarity metric that can be used between multiple states.

The resulting probabilities from the example circuits show
that using qudit basis encoding results in a similarity metric

with five discrete levels. The similarity of the quantum states
for a variety of matrix combinations is shown in table I. We
observe that there are only five possible similarities between
these four states when higher dimensional basis encoding is
applied. The first row indicates that when all matrices are
different the similarity is 0.25, when one pair are the same
the metric increases to 0.3675, and when two pairs are the
same the similarity metric is 0.5. Only when all operators
are the same and result in the same quantum state, does the
similarity metric yield a perfect unity value (1). The qubit
equivalent is more strict in that it only has two levels of
similarity between the quantum basis states, |0⟩2 or |1⟩2. In
comparison, we show the advantage that the use of radix-4
qudits allows more flexibility for quantum state comparison
approaches by providing for five possible levels of similarity.

TABLE I: Qudit Basis Encoding Similarities

Unitary Matrices Used Measurement P (|0⟩)
{U0,U1,U2,U3} 0.25
{U0,U0,U2,U3} 0.3675
{U0,U0,U1,U1} 0.50
{U0,U0,U0,U3} 0.6250
{U0,U0,U0,U0} 1

B. Qudit Angle Encoding

To test the kernel calculation method for other encod-
ing strategies such as angle encoding, we generalize qudit
gates as random unitary matrices that represent generalized
rotations on a hyper-Bloch sphere. When the four random
unitary matrices are created and used in the circuit for 10,000
trials, a histogram in Figure 8 is created around the mean
measurement probability. This result indicates that when the
four unitary matrices are random, the average measurement
probability is 0.25 as would be expected. This histogram
estimates the probability mass function (PMF) that represents
measurement outcome with respect to an observable formed
to measure |0⟩4.

Fig. 8: Random Qudit Angle Encoding Similarities

Overall, the overlap of multiple kernel values can produce
informative results that are useful for efficient classifica-
tion algorithms through the use of higher-dimensional qudit
processing. Unlike the usage of the modulo-addition gates
representing basis encoded data, which yield discrete levels,
angle encoding allows for encoding a continuous range of

possible similarities that can be used to classify values
with a variable degree of confidence and thus are highly
applicable to the emerging area of quantum machine learning
algorithms.

VI. SUMMARY

The methods described in this work show that data can
be efficiently encoded into higher dimensional qudits rep-
resented by a state preparation circuit that implements a
quantum memory for qudits. The use of qudits results in
an increase in dimensionality of the data as well as an
increase in the amount of data in superposition; both of which
are advantageous for quantum kernel computations. When
the qudit memory is implemented within a quantum kernel
computation circuit, we are able to not only find the inner
product of a higher dimensional kernel but to also efficiently
obtain multiple groups of quantum kernels in linear time.
This approach is validated using the Google cirq tool and we
have shown that multiple kernels can be calculated in parallel.
This can be useful for various distance-based classifiers that
require the calculation of many higher dimensional kernels.
To evaluate the method, we analyzed the possible outcomes
of the quantum kernel computational approach using different
data encodings. We validated the method using the qudit
equivalent of both basis and angle encoded quantum memory
and processing. Overall, the similarity metric produced by
higher dimensional data can give informative results for
multiple quantum states with finer resolution achieved by
angle versus basis encoded data sets.

Future work into selecting qudit data encoding methods,
synthesizing the qudit circuits, and training parameters will
allow for further evaluation of the qudit kernel algorithm.
Comparing different classification metrics for qudits and
qubits will allow for gaining more insight into the advan-
tages of these techniques. In addition, we can expand the
description of our qudit-based kernel algorithm to a multi-
qudit system to explore the behavior due to growth of dataset
size and its effect on qudit kernel calculations. Synthesizing a
multi-qudit kernel requires more calculations to produce the
multi-controlled unitary gates comprising the memory. We
plan to incorporate additional multi-dimensional synthesis
optimization methods into the MustangQ quantum circuit
synthesis tool [20] to reduce the overall quantum volume
of the resulting circuits in order to decrease the effects of
spontaneous decoherence during a kernel calculation.

REFERENCES

[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671,
pp. 195–202, 2017.

[2] M. Schuld, “Supervised quantum machine learning models are kernel
methods,” arXiv:2101.11020v2 [quant-ph], pp. 1–26, Apr. 2021.

[3] M. Schuld and F. Petruccione, Supervised Learning with Quantum
Computers. New York: Springer, 2018.

[4] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara,
B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J.
Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation
of high-dimensional entangled quantum states and their coherent
control,” Nature, vol. 546, no. 7660, pp. 622–626, Jun. 2017. [Online].
Available: https://doi.org/10.1038/nature22986

[5] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels:
support vector machines, regularization, optimization, and beyond.
MIT press, 2002.

[6] C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione,
“Quantum classifier with tailored quantum kernel,” npj Quantum
Information, vol. 6, no. 1, May 2020. [Online]. Available:
https://doi.org/10.1038/s41534-020-0272-6

[7] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum
fingerprinting,” Physical Review Letters, vol. 87, no. 16, Sep. 2001.
[Online]. Available: https://doi.org/10.1103/physrevlett.87.167902

[8] V. Havlı́ček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212,
Mar. 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-
0980-2

[9] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust
quantum speed-up in supervised machine learning,” Nature Physics,
vol. 17, no. 9, pp. 1013–1017, Jul. 2021. [Online]. Available:
https://doi.org/10.1038/s41567-021-01287-z

[10] Y. Fan, “A generalization of the Deutsch-Jozsa algorithm to
multi-valued quantum logic,” in 37th International Symposium on
Multiple-Valued Logic (ISMVL'07). IEEE, May 2007. [Online].
Available: https://doi.org/10.1109/ismvl.2007.3

[11] K. N. Smith and M. A. Thornton, “Entanglement in higher-radix
quantum systems,” in 49th International Symposium on Multiple-
Valued Logic (ISMVL). IEEE, May 2019. [Online]. Available:
https://doi.org/10.1109/ismvl.2019.00028

[12] ——, “Higher dimension quantum entanglement generators,”
ACM Journal on Emerging Technologies in Computing Systems,
vol. 16, no. 1, pp. 1–21, Oct. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3345501

[13] ——, “Entangled state preparation for non-binary quantum
computing,” in 2019 IEEE International Conference on Rebooting
Computing (ICRC'19). IEEE, Nov. 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8914717

[14] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high-
dimensional quantum computing,” Frontiers in Physics, vol. 8, Nov.
2020. [Online]. Available: https://doi.org/10.3389/fphy.2020.589504

[15] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access
memory,” Physical Review Letters, vol. 100, no. 16, Apr. 2008.
[Online]. Available: https://doi.org/10.1103/physrevlett.100.160501

[16] B. C. Travaglione, M. A. Nielsen, H. M. Wiseman, and A. Ambai-
nis, “ROM-based computation: quantum versus classical,” Quantum
Information and Computation, vol. 2, no. 4, 2002.

[17] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P.
Lanyon, and J. L. O'Brien, “Adding control to arbitrary unknown
quantum operations,” Nature Communications, vol. 2, no. 1, Aug.
2011. [Online]. Available: https://doi.org/10.1038/ncomms1392

[18] M. A. Thornton, D. W. Matula, L. Spenner, and D. M.
Miller, “Quantum logic implementation of unary arithmetic
operations,” in 38th International Symposium on Multiple Valued
Logic (ISMVL 2008). IEEE, May 2008. [Online]. Available:
https://doi.org/10.1109/ismvl.2008.27

[19] F. Mezzadri, “How to generate random matrices from the classical
compact groups,” NOTICES of the AMS, vol. 54, pp. 592–604, 2007.

[20] K. N. Smith and M. A. Thornton, “A quantum computational
compiler and design tool for technology-specific targets,”
in 19th International Symposium on Computer Architecture
(ISCA'19). ACM/IEEE, Jun. 2019. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3307650.3322262

