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Abstract—Quantum computing using qudits of dimension
higher than two can offer performance and application benefits
beyond those when using standard, two-dimensional qubits.
There is thus reason to develop higher-dimensional quantum
computing hardware, including for photonic quantum computers.
But unlike for qubit-based quantum computing, software for
modeling higher-dimensional components is less developed and,
for nonlinear quantum photonic components in particular, is ef-
fectively non-existent. We demonstrate how Cirq, Google’s quan-
tum programming package that can simulate higher-dimensional
quantum algorithms, can be leveraged as a multi-dimensional
quantum photonic component design tool. Although Cirq is
intended for superconducting quantum computers, its ability
to work with user-specified unitary matrices having dimension
greater than two allows for behavioral modeling of quantum
photonic circuit components. Specifically, we show examples
of modeling time-coincident entangled photon comb generators
and electro-optic modulators as mixers for frequency-encoded
quantum informatics.

Index Terms—quantum computing, photonics, Cirq, higher-
dimensional, qudit

I. INTRODUCTION

Quantum photonic integrated circuit (QPIC) fabrication ca-
pability is rapidly emerging as several foundries offer services
supporting a variety of processes and wavelengths. Many of
these foundries provide Software Design Kits (SDK) with
standard cell libraries that enable QPICs to be designed at
fabless facilities.1 Concurrently with these advances, design
automation tools continue to improve; however, they are still
restricted in capability when compared to classical electronic
ASIC toolsets. Support for behavioral modeling is especially
limited, particularly for nonlinear photonic components. The
simulation tools commonly available to quantum photonic
designers are either based upon partial differential equation
(PDE) solvers or are models of interconnected components in
terms of S-parameter matrices. While these tools are adequate
for circuits comprised of a few components, computational
complexity restricts scalability to even moderately sized cir-
cuits that can now be built given advances in QPIC fabrication

1Meaning those that concentrate on designing chips, and not on fabricating
them.

and the availability of SDKs for fabless designs. Therefore,
there is a need for a high-level behavioral modeling capability
that enables a designer to develop moderately large circuits
with rapid iteration that requires only edge-device classes of
computers.

Most quantum informatic behavioral modeling tools, such
as TKET, Qiskit, Q#, QuantumSkynet, Cirq and others [1]–
[5], support the discrete variable (DV) quantum computing
(QC) paradigm. Some tools, such as Strawberry Fields [6] and
PennyLane [7] from Xanadu Quantum Technologies, do sup-
port photonic QC with simulation capabilities, but Strawberry
Fields is designed for continuous variable (CV) QC and is not
applicable for the DV quantum photonic circuits we consider
here. Furthermore, most of these tools are limited to simulating
binary, or two-dimensional qubit gates only. Exceptions to the
two-dimensional restriction are the Cirq and QuantumSkynet
DV QC simulators.

To our knowledge, there are no behavioral-level simula-
tors for quantum photonic circuits. To address this deficit
in behavioral-level simulation of QPIC circuits with higher-
dimensional and nonlinear components, we describe a method
whereby the Cirq simulation tool can be used to simulate
quantum photonic components—whether targeting table-top or
QPIC implementations—without modifying Cirq source code.

Certain quantum photonic effects such as entanglement
are typically accomplished with nonlinear components [8].
Furthermore, nonlinear components are also included in most
QPICs because photons are highly non-interactive under linear
operators. Nonlinear components are leveraged for phenomena
such as parametric down-conversion (PDC) and four-wave
mixing (FWM), which are used for several purposes and which
can be implemented using certain crystalline materials such as
as beta-barium borate or lithium niobate, resonant microrings,
and EOM cells.

While it is relatively straightforward to use Cirq with
linear photonic components such as beam splitters and phase
shifters—a user needs only to characterize their behavior in
terms of a unitary matrix—the implementation of nonlinear
component models is not as obvious. In this paper, we simulate
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certain microring and EOM nonlinear quantum photonic com-
ponents using the linear transfer matrix descriptions available
in the Cirq tool. We show how the concept of the diffusion
operator, commonly used in Grover’s search algorithm, can be
adapted to derive a cascade of unitary linear transfer matrices
that provide a model with the required simulation response,
and we present a method for representing arbitrary nonlinear
transfer functions as a cascade of appropriately-initialized
linear transfer matrices within the Cirq framework. We em-
phasize that although the resulting models may not be directly
realizable if they do not correspond to known implementations
of nonlinear devices, our method still behaviorally models the
nonlinear QPIC components, allowing designers to explore
high-level options before capturing lower-level abstractions.

One advantage of the approaches described here is that
quantum photonic circuits may be simulated quickly, easily,
and with fewer computational resources than would be re-
quired if designers resorted to using low-level partial differ-
ential equation (PDE) solvers. PDE solvers often require the
time-consuming procedure of developing an appropriate, low-
level geometric model, and the computational requirements
of using those models often require enterprise-level comput-
ing resources. Even when such resources are available, they
are often not practically scalable for large photonic circuits.
Our methods only require the specification of behavioral-
level transfer matrices thereby allowing for more efficient
development of larger photonic circuitry.

II. BACKGROUND

In attempt to make this paper accessible, we briefly review
background concepts and provide references for further review.

A. Frequency-bin Encoding

Energy is a quantum observable, and for quantum photonic
circuit implementations, photon energy is directly proportional
to frequency as Ephoton = ℏω. All quantum observables can
be in a state of superposition before observation, meaning the
wave function of a photon can be expressed as a superposition
of multiple wavelengths leading to the interesting notion of
a “multi-colored” photon. Frequency-bin information encod-
ing for quantum photonic communications is very attractive
given the maturity of classical optical components used in
telecommunication applications such as “Wavelength Division
Multiplexing” (WDM); the ability for multiple wavelengths
to be in superposition allowing higher-dimensional quantum
states; the allowance of room-temperature quantum photonics;
and the fact that photons are true “flying qubits” [9].

Mathematically, a four-dimensional frequency-bin encoded
quantum photonic state or wave function can be expressed
as |Ψ⟩ = a0 |0⟩ + a1 |1⟩ + a2 |2⟩ + a3 |3⟩ where each basis-
ket corresponds to one of four superimposed wavelengths,
{ω0, ω1, ω2, ω3}. An example quantum photonic communi-
cations system can be constructed using fiber optic cable
for a channel and using transmitter and receiver circuitry
that manipulates the superimposed frequencies within one or
more photon’s wave functions. In a photonic architecture,

modification of the frequency content beyond amplitude and
phase variation may only be performed with nonlinear devices.

B. Higher-dimensional Quantum Gates

For binary-dimensioned qubits, the Hadamard matrix
evolves a single basis state into a superposition of all ba-
sis vectors, and its generalization in higher dimensions is
the Chrestenson operation [10]–[12]. The four-dimensional
Chrestenson operator, C4, is given in Equation 1.

C4 =
1√
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (1)

The four-dimensional C4 gate implemented with frequency-
bin encoding corresponds to a device that transforms a wave
function comprising a single wavelength, a pure state of
the form |Ψ⟩ = |j⟩ for j ∈ {0, 1, 2, 3}, into a perfect
superposition, |Ψ⟩ = a0 |0⟩ + a1 |1⟩ + a2 |2⟩ + a3 |3⟩ where
a∗jaj = |aj |2 = 1

4 .
The two-qudit “Controlled-Modulo-Add” gate is another

useful operator; it is denoted as Ah,k where h is the activation
value or the |h⟩ component that causes the target qudit to be
evolved. That evolution is application of a 4×4 transfer matrix
that increases the value of each non-zero basis component by
k(mod4). The generalized transfer matrix for an r-dimensional
gate of this form is given in Equation 2,

Ah,k =



D0 0r · · · · · · · · · · · · 0r

0r D1 0r · · · · · · · · · 0r

... 0r
. . . 0r · · · · · · 0r

...
... 0r Dj 0r · · · 0r

...
...

... 0r
. . . 0r

...
...

...
...

... 0r
. . . 0r

0r 0r 0r 0r · · · 0r D(r−1)


(2)

where,

Di =

{
M0 = Ir, i ̸= h

Mk, i = h

with Mk representing the single qudit modulo-add-k transfer
matrix as a permutation that is conditionally applied to the
target qudit, depending on the state of the activation qudit.

C. QMUX, QROM, Kernel and Entanglement Generators

The general form of a four-dimensional quantum multi-
plexer (QMUX) is shown in Figure 1a where the uppermost
qudit, |Ψ⟩, can be considered the “control” and the lowermost
qudit, |Φ⟩, can be considered the “data” since |Ψ⟩ selects the
target transfer matrix used to evolve |Φ⟩. The QMUX can also
be considered an instance of a quantum read-only memory
(QROM) where |Ψ⟩ serves as the address qudit and |Φ⟩ as the
data qudit [13]. For example, any arbitrary quantum state of
the form |Ωk⟩ = a0,k |0⟩ + a1,k |1⟩ + a2,k |2⟩ + a3,k |3⟩ can
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be “stored” within a target unitary transfer matrix, Uk, as a
projector matrix of the form Uk = |Ωk⟩ ⟨0|; the ancilla input
|Φ⟩ can be initialized to |0⟩; and the address qubit |Ψ⟩ = |k⟩
can be used to choose which of the “stored” |Ωk⟩ should
be evolved. As is always the case with quantum circuits, a
superposition of the quantum multiplexer data outputs can
be computed by placing the control qudit, depicted as |Ψ⟩
in Figure 1a, into an initial state of superposition. Figure
1b illustrates addition of an C4 gate to evolve |Ψ⟩ into
a state of superposition before the multiplexer. Figure 1c
illustrates addition of a restoring C4 gate, which is useful in a
variety of applications including in quantum machine learning
applications [14].

Restricting the form of the target transfer matrices, Uk, to
be single-qudit Modulo-Add gates, Mk, results in a higher-
dimensional generalization of two-dimensional Bell state en-
tanglement and detanglement circuits [12]. Figure 1d illus-
trates an example case of a four-dimensional entanglement
generator: a two-qudit entangling circuit can be constructed
with a C4 gate followed by a sequence of Ah,k gates (i.e.,
controlled Mk gates). Note that the case of A0,0 is not
included since A0,0 = I16. The omission of one or more Ah,k

gates in Figure 1d results in a partial entanglement generator
[12].

Circuits of the form in Figure 1 are a general and powerful
way to construct quantum circuits with arbitrary transfer
matrices in a manner analogous to classical switching circuits
constructed as arrays of multiplexers or as stored switching-
function truth tables in ROM circuits. Indeed, the synthesis
of any desired algorithm can be accomplished as a cascade of
circuits in the form of those in Figure 1 in a manner analogous
to synthesizing classical switching functions with multiplexer
or ROM circuits.

Fig. 1. QMUX, QROM & Entanglement generators for four-dimensional
qudits.

D. Grover’s Search Algorithm

Our approach for modeling an entangled frequency-bin pair
generator leverages the oracle and diffusion operator concepts
from Grover’s search algorithm, and in the interest of space,
we leave details to [15]–[17].

E. Entangled Photon Frequency Comb Generation

A ‘microring resonator’ (MRR) evanescently coupled to a
waveguide is often used for the nonlinear optical production

of entangled signal-idler photon pairs since it can induce a
FWM process. The MRR structure can be implemented within
a QPIC wherein photons with single-basis frequency-bin wave
functions of the form |Ψ⟩ = |k⟩ are provided by a pump laser
with wavelength ω0 and coupled into the ring. The MRR is
designed to have a circumference of n×λ where λ is the wave-
length corresponding to ω0. This geometry enables the MRR
to have multiple resonant frequencies located at ±Nvg/λ,
where vg is the velocity of light in the material comprising the
structure. A circular standing wave forms within the MRR as
pump photons accumulate within the ring. Due to a nonlinear
FWM process, some fraction of these photons decompose
into a time-coincident pair referred to as a “signal” and an
“idler” photon. The signal photon’s wave function comprises
a superposition of frequency-bins spaced at ∆ω intervals in
the frequency domain given the total circumference of the
ring, or alternatively, the MRR’s “Free Spectral Range” (FSR),
ω0 + N × ∆ω where N is a positive integer. The FSR is
the spacing between ring resonances, where the mode dwells
longest in the ring. That long group delay time increases
the probability of a spontaneous nonlinear collision event
that produces frequency-entangled signal and idler photon
pairs. Likewise, the idler photon’s wave function comprises
a superposition of frequency-bins located at ω0 − N × ∆ω.
Thus, the total quantum state of the signal/idler pair forms a
frequency comb [18]–[20]. A QPIC designer can complement
a MRR-based frequency comb with a bandpass filter to limit
the number of frequency-bins and thus set the dimension, D, to
be the number of resonant MRR frequencies that fall within the
filter passband. Additionally and importantly, the signal/idler
photonic wave functions are entangled in frequency, such that
changes to the signal photon’s probability amplitude at a
specific frequency-bin, ω0+K×∆ω, for some constant value
of K, to also affect the idler’s image frequency-bin located at
ω0 −K ×∆ω.

F. Electro-optic Modulators

The EOM is a quantum photonic device that can be
used for a variety of purposes and can be implemented as
a QPIC component [8], [21], [22]. EOMs are particularly
useful in quantum informatics applications that use frequency-
bin encoding, because they can transfer energy from one
frequency-bin to another in a photon’s wave function, which
effectively modifies the probability amplitudes of the bases
comprising the photon. Physically, EOMs operate using the
electro-optic effect of a material to modulate the phase term of
a photonic wave function with an externally-applied classical
voltage signal thereby instantiating an electric field across
the material. The applied voltage signal is typically time-
varying in the radio frequency (RF) range [23] and changes
the optical refractive index in a crystal. When the applied RF
voltage is periodic with frequency, ωdrive, and the frequency
component within a photon’s wave function is ω0, the EOM
evolves the wave function to contain frequency components at
ω0 ± N × ωdrive where N is an integer. While some of the
generated frequencies may fall outside the discrete and finite
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set of frequencies selected by the QPIC designer to represent
information, they can be removed by coupling the output of the
EOM to passband filters that move energy from the unwanted
frequency components back into the desired frequency bins of
the photonic wave function.

EOMs are often used in quantum photonic informatics
circuits to apply an RF sine wave voltage with a photonic
wave function comprised of a single basis wavelength, ω0

(e.g., a pump laser operating at ω0). In this case, the EOM can
be viewed as generating sidebands within the wave function,
thereby increasing its optical bandwidth. The resulting wave
function, assuming an idealized EOM, contains energy in
discrete frequency bins that span N ∈ {−∞,+∞} but where
the amplitudes vary according to the Jacobi-Anger expansion
of e−izcos(θ) in terms of Bessel functions of the first kind,
JN (z), as given in Equation 3.

e−izcos(θ) =
∞∑

N=−∞
(−i)

N
JN (z)e−iNθ (3)

III. MODELING COMPONENTS WITH CIRQ

A. Cirq Overview

Cirq is a Python library that allows for specifying quantum
circuits at the transfer matrix level and executing circuits
on quantum hardware or simulators. Quantum gates can be
specified by directly providing transfer matrices, including
for D-dimensional qudits, which allows for modeling systems
based on photonic, superconducting semiconductor, or any of a
variety of technologies. For the application of interest here, DV
quantum photonics, some allowable gate operators within the
Cirq environment do not reflect physical reality. For example,
specification of deterministic multi-qudit controlled-gates is
possible in Cirq, but because of the difficulty of achieving in-
teraction between two photons is extremely difficult to realize
in actual circuitry. However, we can use such controlled-gates
in the construction of behavioral models for nonlinear quantum
photonic components.

B. Frequency Comb Generator Model

As previously described, an MRR with appropriate tuning
and filtering components can be used to implement a sig-
nal/idler pair of photons whose wave functions comprise a
superposition of entangled frequency bins. One such circuit
is shown in Figure 2a: a single photon pump laser operating
at wavelength ω0 produces time-coincident signal/idler pairs
[24], [25]. Figure 2b shows the energy content of the sig-
nal/idler pairs in the frequency domain. This design provides
increased tunability since the feed and drop waveguides that
couple photons into and out of the MRR each have two
symmetric-point coupling regions with the MRR. This forms
Mach-Zender Interferometer (MZI) structures that, with the
addition of electrical thermal heating components (not shown),
allow for controllable variability in the position of the fre-
quency bins in the photonic wave functions.

As shown in Figure 2a, the MRR structure is excited by
coupling a pump photon source to the “add” port. Because

Fig. 2. 4-dimensional entangled pair generation: (a) MRR-based implemen-
tation with dual MZI for tuning and, (b) Frequency spectrum of the 2-photon
quantum state, |ΦΨ⟩.

Cirq is designed for QC circuit specifications, the total number
of qudits must be declared. Instead of declaring a single qudit
as the wave function of a single pump photon with energy
equal to ℏωa, we initialize the signal/idler pair wave functions
that will be produced as |ΨΦ⟩ = |00⟩. We note that |ΨΦ⟩ could
be initialized to any arbitrary single basis vector without loss
of generality in our modeling approach.

Next, to generate all possible frequency components in
equal superposition, we apply a four-dimensional Chrestenson
operator, C4, to both |Φ⟩ and |Ψ⟩. At this point, each qudit
contains a perfect superposition of all possible frequency
components in the four-dimensional spectrum, which is not
true of the physical functionality of the MRR circuit, because
it is impossible for the idler wave function to emerge with
frequency components greater than the pump frequency, ω0,
and likewise, the signal wave function cannot contain fre-
quency components less than ω0. Therefore, the next step is to
remove the undesired frequency components in |ΨΦ⟩, and we
do so using Grover’s oracle and diffusion filters as previously
discussed. Using the oracle development approach of [17], we
create a unitary matrix that selects the desired frequencies and
we label this operator as “wavelength select.” Because the
wavelength select transfer matrices vary in structure depending
on the desired frequencies, we developed a Python script that
receives the dimension and desired wavelengths as input and
then computes the corresponding wavelength select matrix as
output.

The wavelength select operator applies a “marking” process
to the desired frequencies by applying a 180◦ phase shift to
the desired frequencies in the input spectrum. In physical,
QPIC terms, this procedure is a simple example of dispersion
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management. Following the wavelength select operators, we
apply diffusion filters that amplify the magnitudes of the prob-
ability amplitudes corresponding to the “marked” frequencies
and attenuate the magnitudes of the unmarked frequencies
via the “inversion about the mean” approach of [15], [17].
Wavelength select and diffusion filters are applied iteratively,
with successive iterations providing additional amplification
and attenuation. However, as discussed in [16], using too many
iterations can cause undesirable effects whereby amplifica-
tion/attenuation from a previous stage is actually reversed. For
the examples in this work, we experimentally decided to apply
two iterations.

Figure 3a depicts the Cirq model in the form of a cascade of
linear operators. This model was configured with appropriate
wavelength select and diffusion operators to produce the state
|ΨΦ⟩ = a03 |03⟩+a12 |12⟩ using the Cirq simulator. Projective
measurements were added to the outputs of the model of
Figure 3a, and Figure 3b illustrates simulation results for
100, 000 shots. Ideally, |a03|2 = |a12|2 = 1

2 for perfect
superposition among the two basis functions, but some error
is present in the simulation results due to two predominant
factors. First, the finite number of shots, results in sampling
error since the probability amplitudes are estimated. Second,
applying wavelength select and diffusion filters is—just like
Grover’s search—a heuristic approach and not a theoretically-
errorless solution. With 100, 000 shots, we see that the largest
occurrence of the undesired basis vector, |21⟩, when compared
to basis state |12⟩ is still attenuated by approximately 17.5 dB.

C. Electro-Optic Modulator Model

Our EOM model operates as a mixer that generates all
possible harmonic sidebands and images about a single input
frequency. This can be realized by driving the EOM with
an RF sinusoid at a chosen frequency ωdrive that yields
frequency bins matching those of the MRR FSR. The exact
value of ωdrive is obfuscated in our Cirq behavioral models
since we compute with quantum state functions wherein the
actual frequency-bin values are represented by the qudit basis,
{|0⟩ , |1⟩ , |2⟩ , |3⟩ , · · · }. In keeping with our DV two-photon,
signal/idler approach, the EOM model has two input qudits,
|ΨΦ⟩, and the output wave function contains all the side bands
and their images. The EOM model is inspired by the combined
concepts of the QROM [13] and high-dimensional bipartite
entangled state generators [12]. The idea is to initially generate
all possible superpositions of the input signal qudit, |Ψ⟩, with
a Chrestenson gate specified as a C4 operator in the Cirq
model file. The resulting superpositions may contain as few as
a single frequency bin when the input |Ψ⟩ state is already in a
perfect superposition, or as many as all possible superpositions
when the input |Ψ⟩ state is in the collapsed form of a single
basis vector.

From the viewpoint of a QROM, the result of C4 |Ψ⟩ is
the “address” qudit accessing the memory where the EOM
output response for a particular overall input state, |ΨΦ⟩, is
stored. Instead of using arbitrary unitary matrices, Uk, as the
target single-qudit transformations of |Φ⟩, we note that the

desired frequency-bin sidebands should be integer multiples of
the input frequency bins represented by the initial state, |ΨΦ⟩.
By restricting the Uk target transfer matrices to be Modulo-
Add transfer matrices, we ensure that the produced sidebands
are integer multiples of the FSR of a preceding MRR stage.
So, the location of the non-zero values of the Mk matrices
can be understood to physically correspond to the choice of
RF drive frequency and its relation to the separation between
frequencies of the multicolor photons in play.

We assume that the input state, |ΨΦ⟩, comprises bases
consistent with the discrete frequency-bins dictated by a
preceding MRR’s FSR, but such a state can still be in the
form of an arbitrary wave function. Consequently, we did not
find a universal EOM model, but rather a non-unique family
of EOM models when the qudit dimension is restricted to
D = 4. Note that, in Figure 4a, the cascade of C4 gates has a
restoring effect on the upper qudit. But there are some input
states for which we found no model using both Mk gates and
the constraints on the input state, so while it is possible that
unitary matrices exist for such a QROM structure, we opted to
prepare more complex EOM models—shown in Figure 4b—
for these situations, involving additional Mk and C4 gates.
The resulting six EOM models are color-coded based on which
should be used in a simulation for an input state of the form
|ΨΦ⟩ = ajk |jk⟩+apq |pq⟩. Figure 4c is a “lookup” table with
the row input jk corresponding to |jk⟩ and the column input
pq corresponding to |pq⟩.

As an example of the simulation results, we consider an
arbitrary case where the input state to the EOM is |ΨΦ⟩ =
1√
2
|03⟩+ 1√

2
|12⟩. After generating this input state using the

approach of Section III-B, we applied the “blue” model of
Figure 4b and simulated it with 100, 000 shots to produce
Figure 3c, which executed in 5-10 seconds on a laptop
computer. While the distribution envelope of Figure 3c does
not vary in accordance with the Jacobi-Anger distribution as
would occur in an actual physical implementation, this can
be remedied by adding wavelength select and diffusion filters
to manipulate the probability amplitudes of the EOM output
state.

IV. CONCLUSIONS AND FUTURE WORK

This work presents a method for behavioral simulation of
nonlinear quantum photonic components using the DV QC
simulator Cirq with specific examples of a tunable micror-
ing resonator excited by a single photon laser source and
an electro-optic modulator configured to act as a frequency
mixer. Future work will investigate models of other common
structures and optimize the models described here.
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