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Abstract—In this work, we propose an alternative method
for generating the MUSIC (Multiple Signal Classification) pseu-
dospectra by utilizing the spectral properties of Cayley graphs.
Sensor readings are represented as multi-valued functions, which
are used to color the edges connecting nodes representing sym-
metry permutation group elements. This graph representation
yields decorrelating spectral information, enabling the effective
separation of the signal subspace from the noise subspace
required by the MUSIC algorithm. The proposed method is
applied to a direction-of-arrival estimation task, demonstrating
its ability to generate MUSIC pseudospectra for signal processing
applications.

Index Terms—Graph signal processing, KL transform, graph
spectra, discrete function

I. INTRODUCTION

MUSIC, first introduced in [1], is a foundational algorithm
widely adopted in signal processing applications. Over the
years, it has been extensively analyzed and refined [2], [3].
Its versatility has enabled its use in diverse areas such as
frequency detection, direction of arrival (DOA), source local-
ization, and acoustic and medical imaging [4]–[7]. MUSIC
operates by analyzing measurements obtained from multiple
sensors, which inherently correlate since they measure the
same signals. The algorithm leverages the correlation between
the signal space and the sensors while recognizing that the
additive noise values are uncorrelated. A crucial step in
the MUSIC algorithm is constructing the covariance matrix,
defined as Rx = Cov{x} = E{xxH}. This covariance
matrix reveals the orthogonality between the signal and noise
subspaces, as the two are uncorrelated. The eigenstructure of
the covariance matrix reflects this orthogonality: the eigen-
vectors associated with the largest eigenvalues span the signal
subspace, while those corresponding to smaller eigenvalues
define the noise subspace. Consequently, the number of large
eigenvalues corresponds to the number of signals. Although
noise increases the rank of the covariance matrix, it is isotropic
and spreads evenly, resulting in a uniform, smaller variance in
all directions. This isotropy ensures that the covariance spectra
typically consist of a few high values representing the signal
subspace and many smaller values associated with the noise
subspace.

The covariance spectra are also known as the Karhunen-
Loève (KL) spectra. The KL transform has been a cornerstone
technique in signal processing introduced in [8]. The KL
transform has been used in many applications, including signal

decorrelation and noise reduction [9]–[11]. The KL transform
matrix, which is constructed from the eigenvectors of the co-
variance matrix, has important properties that are directly used
in the MUSIC algorithm since the eigenvectors associated with
the smaller eigenvalues make up the Un noise subspace used
in the MUSIC algorithm. This noise subspace is orthogonal
to the signal subspace Un, as shown here: UnU

T
s = 0.

The spectral information of the standard covariance matrix
is commonly used; however, in some applications, such as
MUSIC, issues are associated with decorrelating signals when
the number of samples is low. To address these challenges,
more sample-efficient methods that use alternatives to the
covariance matrix are used depending on the arrangement of
the sensors. For example, a circulant matrix for circular sensor
arrays or a Hankel matrix for linear sensor arrays can be
used to decorrelate the signal information even from single
snapshots with low noise [12], [13].

In previous work, the main goal of the spectral analysis of
Cayley graphs is to minimize the representation of switching
functions [14]. In other related work, Cayley graphs with
different generator functions are used to obtain spectra related
to that of other transforms, including Walsh and Chrestenson
spectra for multiple-valued functions [15]–[17]. The previous
work, [18], has shown that the Cayley graph representation
of a multiple-valued function where the nodes represent the
elements of a symmetry group can be used to extract spectra
related to that of the KL spectra. Our work applies the
method described in [18] as a way of decorrelating the
signal subspace from the noise subspace while using a single
snapshot of measurements as the multiple-valued coloring
function. Here, a “single snapshot” refers to a single set of
measurements collected simultaneously from multiple sensors.
Unlike approaches that require time-averaging or multiple
measurements, our method operates on this single instance
of data, making it computationally efficient and suitable for
applications where repeated measurements are impractical or
unavailable.

In this work, we leverage the spectral properties of the
Cayley graph to extract signal information from sensor read-
ings using the MUSIC algorithm. Unlike traditional methods,
our approach does not require knowledge of sensor placement
or ordering. Instead, we construct a Cayley graph where the
edges are colored by a multi-valued function, representing
possible sensor readings for different permutations. A single
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snapshot measurement from all sensors is interpreted as a
multi-valued coloring function applied to the graph’s edges.
Rather than relying on multiplications or sensor array or-
dering, we represent sensor readings as graph nodes con-
nected by edges that encode their permutations. Our method
samples sensor measurements from a uniform linear array
(ULA) with low noise and uses single snapshot data to
estimate the direction of arrival (DOA) for multiple signals.
We compare the spectra and MUSIC pseudospectra obtained
from the Cayley graph method to those from the standard
covariance matrix. Our results demonstrate that the Cayley
graph representation achieves DOA estimates comparable to
the standard covariance method while eliminating the need
for multiplications. Furthermore, the Cayley graph spectra
closely resemble covariance-based spectra, suggesting that our
method can effectively approximate covariance-based spectral
information. These properties make the proposed Cayley graph
method a computationally efficient alternative for generating
MUSIC pseudospectra in signal processing tasks.

II. BACKGROUND

A. MUSIC Pseudospectrum

Obtaining MUSIC pseudospectra is an effective method for
identifying the directions or frequencies of valid signals from
noisy sensor measurements, as it infers signal characteristics
without requiring direct measurements at every possible value
bin [1]. Instead, as shown in Equation 1, the algorithm requires
a smaller set of measurements, which are used to characterize
the noise subspace. This noise subspace corresponds to the
eigenvectors of the covariance matrix associated with the
smallest M − K eigenvalues, where M is the number of
sensors and K is the number of signals. To estimate the
pseudospectrum, a steering vector a(θ) is iteratively evaluated
across potential parameter values, such as directions θ or
frequencies f . The steering vector interacts with the noise
subspace matrix Un, and the response is computed using the
MUSIC spectrum formula. In Equation 1, the pseudospectrum
P (θ) is calculated by evaluating the reciprocal of the pro-
jection of the steering vector onto the noise subspace. When
the steering vector becomes orthogonal to the noise subspace
Un, the denominator rapidly decreases, resulting in a sharp
peak in the pseudospectrum. This peak corresponds to the
valid signal parameters extracted from the noisy subspace.
This pseudospectrum can be used to find multiple parameters
by searching for the K largest peaks where K is the expected
number of correlated signals.

P (θ) =
1

aH(θ)UnUH
n a(θ)

(1)

a(θ) =
[
1 ejkd sin(θ) ej2kd sin(θ) · · · ej(M−1)kd sin(θ)

]T
The relationship between the steering vector a(θ) and the

orthogonality of the signal subspace Us to the noise subspace
Un is represented in Equation 2. This equation demonstrates
that the noise and signal subspaces are orthogonal, allowing

the covariance matrix Rx to be decomposed into additive
spectral components associated with the signal and noise
subspaces.

Rx = UsΛsU
H
s +UnΛnU

H
n (2)

In Equation 3, the relationship between the sensor readings
X and the original signal data S is modeled by representing
the responses of multiple signals at various sensor locations,
along with additive noise N that occurs at each measurement.
In this model, S represents the K distinct signals, which
are multiplied by the steering matrix A. The steering matrix
A consists of column vectors a(θi), each corresponding to
a potential signal direction or parameter. It models the spa-
tial correlation between the sensor readings and the signals.
Additive noise represents uncorrelated random fluctuations
affecting the measurements.

X = AS+N (3)
A = [a(θ1),a(θ2), . . . ,a(θM )]

S =
[
s1 s2 · · · sM

]T
In Equation 4, we demonstrate how the covariance matrix

E[XXH ] enables the separation of signal components from
noise. The signal components remain correlated, while the
noise components, being uncorrelated and isotropic, spread
uniformly with variance σ2 in all directions. This isotropic
nature of the noise results in a noise covariance matrix
proportional to the identity matrix, σ2I. The signal correlation
contributes to a covariance matrix Rs, which has rank K,
corresponding to the number of signals K. Consequently, the
eigenvalues associated with the signal subspace dominate, as
the signal subspaces and noise subspaces are separable. The
additive noise’s isotropic nature results in lower eigenvalues
spread uniformly across the noise subspace. This structure
ensures that the largest eigenvalues of the covariance matrix
R represent the signal subspace, while the smaller eigenvalues
correspond to the noise subspace.

R = E[XXH ] = E[(AS+N)(AS+N)H ] (4)

= AE[SSH ]AH + E[NNH ]

= ARsA
H + σ2I

Rank(Rs) = K, where K is the number of signals
dim(Un) = M −K, where M is the number of sensors

B. Autocorrelation Matrix

To obtain the spectral information similar to that of the KL
spectra without multiplications, we first describe the autocor-
relation matrix, F, and distinguish it from the autocorrelation
function [18]. The autocorrelation function Ru is typically
obtained by multiplying F with the signal, f , as Ru = Ff . Our
approach avoids matrix multiplication operations; instead, we
analyze the spectrum of F. F is data-dependent and contains
statistical information by capturing repetition within the signal
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[18]. Our experimental section shows how F results in a
Cayley graph by using a symmetry group operator in its
formation, enabling its spectrum to be equivalent to the KL
spectrum. To construct F for a 1D discrete signal, we first
represent the 1D signal as a vector, f . We also represent sliding
the signal f across various positions, denoting the shifted
signals as f(x ⊖ i), where i is the value used to slide the
signal by i samples. The sliding permutations of the signal are
denoted by the ⊖, corresponding to a group operator, to show
the shifting of the signal. The shifting before multiplication
with the original f results in a specific response component
of Ru. We can then arrange the various f(x ⊖ i) values for
different values of i to construct an autocorrelation matrix F
as given in Equation 5.

F⊖ = [f(x⊖ 0), . . . , f(x⊖ (N− 1))] (5)

C. Symmetry Group

We use the well-known symmetry group in our formulation
[19]. Previous research [18] demonstrates that the Karhunen-
Loève transform spectra correlate with those from the Cayley
graph associated with F formed using a symmetry group
operator. An example symmetry group is the permutation
group Sn that includes all permutations of n distinct objects,
where each permutation is a rearrangement of elements and
the group operator, ◦ is composition among the group element
permutations. For instance, the group S3 = (S, ◦) represents
string objects S = abc, bca, cab, bac, cba, acb, where each
element can be considered a distinct permutation of the other
elements. For example, group element bca, which represents
a cyclic left shift, followed by the rearrangement represented
by cab, representing a cyclic right shift, is the same as
first applying the identity element represented by abc. This
series of shifts can be summarized using the group notation,
(bca) ◦ (cab) = (abc).

Definition 1. A Cayley graph is a graphical representation
of an algebraic group. Consider group (G, ∗) and a subset
N of G. The Cayley graph representing G with respect to
N is denoted Cay(G,N). The vertex set of Cay(G,N) is the
elements of G, and the edge contains pairs of elements from
G, (x, y) such that y = x ⋄ n for some n ∈ N . Note that the
group product operation ∗ and the generator operation ⋄ are
not necessarily the same.

The vertex set of the Cayley graph, discussed in Definition
1 representing a permutation group comprises vertices corre-
sponding to si ∈ S and edges defined by element pairs (si, sj).
A generator function is used to assign edge weights/colors in
a Cayley graph. The choice of generator function is crucial,
as it “chooses” the particular spectrum to be extracted. By
using the operator ◦, the Cayley graph spectrum becomes
equivalent to the KL spectrum. The Cayley graph adjacency
matrix A = [eij ] is formed using the generator function given
in Equation 6. To use this generator function, we first apply the
symmetry group operation si ◦sj ; then, we apply the coloring

function f(·), which is the original discrete signal we use to
assign edge weights in the Cayley color graph.

ei,j = f (si ◦ sj) (6)

The spectrum of the Cayley graph is the set of eigenvalues
of its adjacency matrix, which are the roots (including their
multiplicities) of the characteristic equation of the matrix. Dis-
cussions on group theory and further explorations of Cayley
graphs are elaborated in [19].

III. CAYLEY GRAPH TRANSFORM

A. Cayley Graph Generation

We use F in Equation 5 and replace ⊖ with the symmetric
permutation group operator ◦. This notation is used since
the shift permutations of the autocorrelation are a subset of
the symmetric permutation operations. The resulting matrix
is in Equation 7, where the j in i ◦ j represents a valid
one-dimensional permutation of the indices before using the
signal function f(·) as each column. The operator replace-
ment demonstrates that F can be described using symmetric
permutation group operations by having the left side of the ◦
operator represent the signal index elements i, and the right
side represents the symmetric permutation group element. We
can further represent the signal index elements by i and thus
the application of the permutation as i ◦ j. In this notation, i
can represent unique index elements across the signal, and j
can represent the unique permutations.

F◦ = [f(i ◦ 0), f(i ◦ 1), . . . , f(i ◦ (N − 1))] (7)

We have shown that F is created by applying a symmetric
group operator implemented as shifting permutations on the
original signal indices, enabling it to be represented as a
Cayley graph. We use the generator function in Equation 6
to construct the Cayley graph using the symmetry permutation
operator ◦ between every index element and valid permutation
group element. In this Cayley graph, we can then interpret i
as the starting node and j as the ending node for a directed
edge. In this notation, (i, j), i is a node representing the
signal index element si, and j is the node representing a valid
permutation element sj . Edges that connect signal indices
to different permutations follow the notation i ◦ j since we
permute the original signal index element i depending on the
permutation element j. To create the graph, we simply connect
every node representing a signal index element to every node
representing a permutation element as an edge (i, j) with edge
colors determined by the generator function in Equation 6. The
function f(·) is defined as the original 1D signal f(·).

Note that the indexable form of the generator Equation 6 is
ei,j = f j(i). In this alternative function notation, f j(i) is used
to index the j permuted signal f ; this can also be interpreted
as a function to access the precomputed i-th row and j-th
column of the F autocorrelation. As discussed in Section II-C,
edges with either the original or permuted signal values being
zero would result in the edge not being present. We can keep
nonzero edges as described by E = {(i, j) | f j(i) > 0}, i, j ∈

94. 



V , where the permuted signal function f j(i) indexed by i is
used to remove edges with zero values.

The directed Cayley graph adjacency can be generated using
three types of lists: source nodes, which represent signal
index elements; target nodes, which represent permutation
elements; and edge colors, derived from the permuted function,
as demonstrated in Algorithm 1.

Algorithm 1 Generating Cayley graph

1: for j = 1 to Nrows do
2: f = F[:, j] ▷ Select permuted function
3: for i = 1 to length(f) do
4: if f [i] > 0 then
5: si ← append(si, i) ▷ Index node
6: sj ← append(sj , j) ▷ Permutation node
7: e← append(e, f[i]) ▷ Colored using function
8: end if
9: end for

10: end for

B. CG for Music Pseudospectrum

Cayley graphs with symmetry group elements provide an
alternative approach to approximating spectral information,
similar to KL spectra, and enable applications such as the
decorrelation of signal information from noisy sensor readings
needed to generate the MUSIC pseudospectrum. This ability
stems from the symmetric adjacency matrix of the Cayley
graph, which facilitates decorrelation by leveraging its math-
ematical properties. Symmetric matrices, as established by
the spectral theorem, have orthogonal eigenfunctions or basis
vectors, enabling effective separation of signal components.
For instance, the KL transform achieves maximal decorrelation
by utilizing the eigenvectors of the symmetric covariance
matrix to align with specific axes. Similarly, our experimental
results demonstrate that the spectra of Cayley graphs, where
edges are colored by sampled sensor readings, maximize zero
values, mirroring the behavior of KL spectra. This highlights
the Cayley graph’s capability to decorrelate signals and dis-
tinguish correlated signal data from noise. The prevalence of
symmetric matrices in Cayley graphs, particularly those of
Abelian groups, is fundamental to achieving this decorrelation.

In Equation 8, we illustrate how the Cayley graph trans-
forms sensor measurements X into decorrelated signal in-
formation by applying it to the signal-noise model previ-
ously described in Equation 3. By representing correlated
signal responses as a symmetric adjacency matrix, the Cayley
graph enables the decomposition of sensor readings into two
components: the correlated signal, represented by AΛCGA

T ,
and the isotropic noise, represented by σ2I, as shown in
Equation 8. A key property of this decomposition is that
the dense graph capturing noise remains isotropic, while the
spectral information of the correlated signals retains a rank
approximately equal to the number of signals. This separation
highlights the Cayley graph’s ability to effectively decorrelate
sensor data.

CG(X) = CG(AS+N) (8)
= CG(AS) + CG(N)

= AΛCGA
T + σ2I

Although the Cayley graph spectra are not identical to
the KL spectra, they offer an alternative way to represent
decorrelation information. Instead of calculating variance, our
method evaluates the effects of multiple permutations on
measured sensor values. From the Cayley graph spectra, we
can analyze the degree to which the set of permutations varies
the sensor measurements. For example, if a specific index
node is connected to multiple permutation nodes with edges
of the same value, this indicates that permutations do not
impact the variation at that component and, as a result, indicate
low variation. Since the connections from the index node to
its permutations are all similar in value, the clustering of
similar edges would result in zero values in the spectra of
the adjacency matrix, a property commonly seen in spectral
clustering [20].

Different function mappings may reduce the impact of
permutations, grouping similar sensor readings into clusters.
This grouping reduces the number of spectral coefficients
required for representation. Randomly connected edges, in
contrast, spread decorrelation coefficients, leading to less
effective decorrelation regardless of the permutations applied.
Applying a permutation matrix P to the original function f
as f ′ = Pf can further optimize the separation of the signal
and noise subspaces. This optimization can be expressed as
argmaxP

Tr(ΛCG)
σ2 . The effect of different function mappings

on the spectra of Cayley graphs has been explored in [21].
Imperfect decorrelation, where some signal information mixes
with the noise subspace, may require adjustments to the noise
subspace, such as reducing it below the standard M − K
values. Nevertheless, the noise subspace is clearly represented
in the eigenvectors of the Cayley graph. This illustrates the
robustness of our method in extracting decorrelation informa-
tion and its potential for applications where covariance-based
methods are limited.

IV. EXPERIMENTAL RESULTS

For our experimental results, we evaluate our method’s abil-
ity to detect the directions of arrival (DoA) of multiple signals
using a single snapshot. In our Cayley graph method, the single
snapshot is represented as a multiple-valued coloring function
f(·), where f(m) corresponds to the m-th component of the
snapshot, xm = amej(m−N+1

2 )ϕm . Here, am is the complex
amplitude of the m-th plane wave, and ϕm is its electrical
phase angle. For comparison, we construct the covariance
matrix by computing the outer product xxH , where x is the
single snapshot. The noise power (Pn) is set to 1×10−5, with
noise modeled as a Gaussian distribution with zero mean and
variance equal to the noise power. An SNR of 55 dB is used
to model low-noise scenarios.
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(a) Covariance-based Eigenvalues for Angles 25° and 50°

(b) Covariance-based MUSIC Spectrum for Angles 25°
and 50°

Fig. 1: Covariance spectra and MUSIC pseudospectra for
signals at 25° and 50° angles

For the qualitative visual results, we simulate two signals
received by 10 sensors from angles of 25° and 50°. In
Figure 1a, the covariance method produces only one nonzero
eigenvalue, as the rank of the outer product operation is
limited to one since only a single snapshot is used. From
the MUSIC pseudospectrum, shown in Figure 1b, we can
see the covariance method misclassifies the angles. The the
largest peak us located near 25° while not detecting the second
peak. This example highlights a limitation of the covariance
method in the single snapshot case. While it is effective for
signal decorrelation, it struggles to capture noise information
from a single snapshot due to the rank deficiency of the
covariance matrix. Additionally, we observe the presence of
other spurious peaks, further demonstrating the challenges in
accurately identifying the signal angles with this method.

The spectrum obtained using our Cayley graph transform,
derived from the spectrum of the Cayley graph adjacency
matrix with edges colored by the snapshot function, is shown
in Figure 2a. While the number of nonzero eigenvalues is
higher, the results still demonstrate a significant degree of
signal decorrelation, as indicated by the presence of numerous

(a) CG-based Eigenvalues for Angles 25° and 50°

(b) CG-based MUSIC Spectrum for Angles 25° and 50°

Fig. 2: Cayley graph spectra and MUSIC pseudospectra for
signals at 25° and 50° angles

zeros in the spectrum. However, the increased signal presence
in the noise subspace is evident, with three nonzero eigen-
values observed. Despite this, our method proves to be more
accurate, as shown in Figure 2b. The two largest distinct peaks
in the spectrum are observed at 25.1° and 49.9°, which are very
close to the expected angles of 25° and 50°. This highlights
the effectiveness of our approach in accurately detecting the
desired angles.

Table I provides a detailed comparison of the covariance
method and the CG method for locating a single angle of
arrival for 50 trials across different numbers of array elements:
10, 20, and 40. The table highlights two metrics: the mean bias,
which measures the absolute error, and the standard deviation
of the detected angles. The experiments were conducted with
a fixed noise power of 0.1 and an angle of 45 degrees. For an
array size of 10 elements, the covariance method achieves a
mean bias of 0.19, which is lower than the 0.31 observed with
the CG method. However, the CG method demonstrates better
consistency, as indicated by its smaller standard deviation of
0.0416 compared to 0.068 for the covariance method. This
suggests that while the CG method is slightly less accurate in
smaller arrays, its angle estimates are more stable under noise.
When the number of elements increases to 20, the CG method
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shows a significant improvement in accuracy, reducing its
mean bias to 0.14. The covariance method maintains a lower
bias at 0.06, but the CG method continues to exhibit greater
stability with a standard deviation of 0.0281 compared to 0.038
for the covariance method. At 40 elements, both methods
achieve similar levels of accuracy, with the mean bias being
0.06 for the covariance method and 0.07 for the CG method.
The standard deviation for both methods is also very low, at
0.020 and 0.0213, respectively, indicating highly consistent
angle detection results for larger arrays. These results show
that while the covariance method initially has a lower bias,
the CG method achieves comparable accuracy as the array size
increases and consistently provides more stable estimates. This
makes the CG method particularly valuable for applications
that require reliable angle detection with minimal variation,
especially in scenarios with larger sensor arrays.

TABLE I: Bias and variance comparison of Covariance and
CG methods for angle detection. Results are averaged over 50
trials, with a test angle of 45 degrees and a constant noise
power of 0.1. The table shows the mean bias and standard
deviation of the detected angle for different numbers of array
elements.

Number
of Array
Elements

Covariance
Mean Bias

Covariance
Std Angle

CG
Mean Bias

CG
Std Angle

10 0.19 0.068 0.31 0.0416
20 0.06 0.038 0.14 0.0281
40 0.06 0.020 0.07 0.0213

V. CONCLUSION

Our research demonstrates that the resulting Cayley graph
spectra closely align with the KL spectra of multiple-valued
discrete functions, resulting in comparable applications in
signal decorrelation. Experimentally, we show that the Cayley
graph method produces spectra and MUSIC pseudospectra
similar to those generated by the standard covariance matrix,
particularly in direction of arrival (DOA) applications. A
notable advantage of the Cayley graph approach is its com-
putational efficiency, as it avoids the multiplication operations
required to compute the covariance matrix. Additionally, our
method is versatile, as it imposes no assumptions about the
placement of antennas, enabling flexibility in scenarios where
antenna configurations are embedded into the matrix structure.
Future work could explore extending our method to more
complex sensor arrangements beyond the traditional uniform
linear array (ULA) and investigate how different mappings
of the coloring function impact performance. Furthermore, we
can evaluate the potential for reducing computational time that
comes from bypassing covariance matrix calculations. Beyond
DOA, our method could also be applied to broader signal-
processing tasks, including feature extraction and dimensional-
ity reduction, to highlight its potential for diverse applications.
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