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Abstract

Conservative and reversible logic gates are widely
known to be compatible with revolutionary computing
paradigms such as optical and quantum computing. A fun-
damental conservative reversible logic gate is the Fredkin
gate. This paper presents efficient adder circuits based on
the Fredkin gate. Novel full adder circuits using Fredkin
gates are proposed which have lower hardware complexity
than the current state-of-the-art, while generating the
additional signals required for carry skip adder architec-
tures. The traditional ripple carry adder and several carry
skip adder topologies are compared. Theoretical perfor-
mance of each adder is determined and compared.
Although the variable sized block carry skip adder is
determined to have shorter delay than the fixed block size
carry skip adder, the performance gains are not sufficient
to warrant the required additional hardware complexity. 

1. Introduction

As proved by Landauer [4], using traditional irrevers-
ible logic gates such as AND or multiplexer types inevita-
bly leads to energy dissipation in a circuit regardless of the
realization technology. Bennett [2] showed that for power
not to be dissipated in an arbitrary circuit it is necessary
that the circuit be built from reversible gates. Reversible
logic gates are circuits that have the same number of
inputs and outputs and have one-to-one and onto mappings
between vectors of inputs and outputs; thus, the vector of
input states can be always reconstructed from the vector of
output states. Of course, Bennett’s theorem is only a nec-
essary and not sufficient condition, but its extreme impor-
tance is in the fact that it points out that every future
technology will have to use reversible gates to reduce
power when it will be impossible for classical technolo-
gies to keep Moore’s Law functioning. 

Optical logic gates have been proposed to perform
classic (irreversible) logic functions. Optical logic gates
have the potential to work at macroscopic (light pulses

carry information), or quantum (single photons carry
information) levels with great efficiency. Although a few
functional optical (classic) logic gate designs exist, pro-
ducing all logic functions is difficult [10]. The potential of
optical computing cannot be realized without logic func-
tions compatible with optical systems. Reversible and con-
servative logic functions are natural for optical [6].

Unlike classical bits that are realized as electrical
voltages or currents present on a wire, quantum logic oper-
ations manipulate qubits [1]. Qubits are microscopic enti-
ties such as a photon or atomic spin. Boolean quantities of
0 and 1 are represented by a pair of distinguishable differ-
ent states of a qubit. Because the qubit probabilities must
be preserved at the output of the quantum gate, it is noted
that all matrices representing them are unitary. An impor-
tant unitary matrix property is that of full rank. This prop-
erty implies that quantum gate matrix rows and columns
are orthonormal. Therefore, past results from spectral
methods for classic digital logic [12] are directly applica-
ble to quantum logic synthesis. Furthermore, since quan-
tum logic gates are represented by unitary orthonormal
matrices, they represent logically reversible gates. 

Adders are fundamental building blocks in many
computational units. The anticipated paradigm shift to
logic compatible with optical and quantum computing
requires compatible adder implementations. Faster adder
(generate and propagate carries with minimum delay) cir-
cuits have been investigated for several decades. This
paper continues that tradition by describing several adders
using the Fredkin gate (FG), a conservative reversible
logic gate compatible with optical and quantum comput-
ing. Section 2 provides definitions and background on
reversible and conservative logic concepts. This section
also introduces classical (irreversible) binary logic gates
implemented using FGs. Section 3 describes several ripple
carry and carry skip adders implemented in classical
binary logic and FGs. Also, Section 3 describes some opti-
mizations for conservative reversible logic gate adders.
Section 3 also compares size, performance, and imple-
mentation specific issues concerning the proposed adder



circuits. Section 4 gives some preliminary conclusions and
ideas for future circuit refinements.

2. Principles of conservative reversible logic

A gate is reversible if the gate’s inputs and outputs
have a one-to-one correspondence, i.e. there is a distinct
output assignment for each distinct input. Therefore, a
reversible gate’s inputs can be uniquely determined from
its outputs. A ramification of this definition is that revers-
ible logic gates must have an equal number of inputs and
outputs.

If logic gates are classified according to the number of
inputs and outputs, a gate with  inputs and  outputs is
a  logic gate, where reversible gates must have

. Furthermore, a  reversible gate’s output vec-
tor is a permutation of the numbers 0 to .

A gate is balanced if its output equals one for exactly
one-half of its inputs. If a gate is not balanced, it is said to
be unbalanced. Reversible gates are balanced. The only
nontrivial reversible logic gate in classical digital logic is
the (1,1) reversible gate, i.e. the inverter. A gate not pos-
sessing the reversibility characteristic is said to be irre-
versible. All multiple-input single output logic gates in
classical digital logic are irreversible, e.g. AND, OR,
XOR, etc.

A circuit without constants on inputs which includes
only reversible gates realizes on all outputs only balanced
functions, therefore it can realize non-balanced functions
only with garbage outputs. An additional constraint of
reversible logic is that the fanout of every signal, including
primary inputs, must be one. In the classical paper [3],
Fredkin and Toffoli formulate the synthesis problem for
reversible logic. Classical logic synthesis methods cannot
be directly applied to design reversible logic circuits, and
reversible logic specific synthesis methods do not yet exist
[9]. Currently, logic functions constructed with reversible
logic gates are designed in an ad hoc fashion.

By definition, all reversible gates have an inverse, i.e.
a gate that “undoes” the logic function. A logic gate is said
to be self-invertible if the gate is equal to its own inverse.
In some works, the terms symmetric or dual are used, and
the ambiguous term invertible is also common. For exam-
ple, a gate  is self-invertible if, for every input ,

, or, equivalently, . Obviously, the
classic digital inverter is self-invertible.

A gate is zero-preserving if the all zeros input pro-
duces all zeros outputs. A gate is one-preserving if the all
ones input produces all ones outputs. A gate is said to be
controlled if one or more of its inputs causes a function to
be performed, conditionally, on its other inputs. The inputs
that determine whether the action is taken or not are called
the gate's control signals.

A gate is conservative if the Hamming weight (num-
ber of logical ones) of its input equals the Hamming
weight of its output. A conservative reversible gate is a
gate that is both conservative and reversible simulta-
neously. A consequence of a gate's reversibility and con-
servability is that conservative reversible gates are zero-
preserving and ones-preserving. A conservative reversible
logic gate effectively permutes its inputs to form its out-
puts. Conservative gates are not necessarily reversible as
several inputs with equal Hamming weights can be
mapped to a single output of the same Hamming weight.
For example, consider the two-input, two-output logic gate
where one output is the logical AND of the inputs, and the
other output is the logical OR of the inputs. This logic gate
is conservative and irreversible. Magnetic bubble circuits
initiated much research on conservative, but irreversible,
logic in the 1970s [5][11].

2.1. The Fredkin gate

Reversible logic elements, both with and without the
property of conservatism, can be defined in many different
logic systems. For the purposes of this paper, the class of
reversible elements that can be modeled as binary-valued
logic circuits will be called classical reversible logic ele-
ments. Much work has been done in defining and charac-
terizing classical reversible logic [2][3][11], and applying
the concepts toward power conservation and specific tech-
nology implementations [4][5][6]. This section will briefly
define basic results in classical reversible logic.

Consider the (3,3) conservative reversible gate with
inputs , , , and outputs , , , where

, ,

and
.

This gate is known as the Fredkin gate (FG) [3]. Fig. 1
shows the FG circuit symbol. The FG is sometimes called
the controlled permutation gate. The FG was considered a
primitive logical element in magnetic bubble circuits [5].

Over the years, several other reversible, nonconserva-
tive logic gates have been proposed, including the Feyn-
man gate, Toffoli gate, Kerntopf gate, Peres gate,
Margolus gate, and several gates by De Vos [9].
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Fig. 1. Fredkin gate circuit symbol and operation
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2.2. Classical digital logic using Fredkin gates

The FG can be used to create the inverse and signal
duplication (fan-out) functions. Fig. 2 shows the inverse
and fan-out function using a FG. The inverse function is
formed by tying the FG terminals to the power supplies.
Since fan-out is the dual of inverse, a fan-out function is
also created.

The two input AND gate (AND2) can be generated by
the FG by grounding one terminal. The two input OR gate
(OR2) can be generated by the FG by tying one terminal to

. Fig. 3 shows the AND2 and OR2 functions using a
FG. Obviously, the AND2 and OR2 circuits are irrevers-
ible, as are their respective logic functions. Higher order
AND and OR gates can be constructed using FGs arranged
in a binary tree. A  bit gate requires  FGs. An input
passes through a maximum of

(1)

FGs.
The two input XOR gate (XOR2) can be generated by

connecting two FGs as shown in Fig. 4. Furthermore, the
equivalence operation is performed simultaneously. Wider
XOR gates can be created by appending an additional FG
per input to the circuit in Fig. 4.

3. Adder Circuits

The simplest and most straightforward adder architec-
ture is the ripple carry adder. Ripple carry adders utilize
only one major circuit element, the full adder. Each full
adder generates the sum and carry bits due to its input
addend bits and its carry input bit. Unfortunately, the rip-
ple carry adder delay increases linearly with the width of
the adder.

Many other adder circuits have been proposed to
reduce the delay in addition [7]. Most circuits strive to
compute the more significant carries more quickly. Theo-
retically, carry lookahead adders represent the best possi-
ble performance. However, carry lookahead adders

achieve their speed through parallel carry computations,
thus, employ a large number of gates. The carry skip adder
presents a hardware and performance compromise
between the ripple carry adder and the carry lookahead
adder. The paper will examine ripple carry and carry skip
adder circuits using the simplest conservative reversible
logic gate, the FG.

3.1. Ripple carry adder

The full adder is the basic building block in the ripple
carry adder, and most other adder circuits. The full adder
computes the sum bit  and carry output bit  based on
its addend input bits  and , and its carry input bit .
The sum bit and carry output bits are

, (2)

and

. (3)

The worst case through the ripple carry adder is when a
carry generated in the first stage must “ripple” through all
adder stages. 

Several researchers have proposed full adder circuits
based on the FG. Fig. 5 shows a recently proposed exam-
ple [8]. Although the circuit in Fig. 5 can be redrawn to
avoid the fan-out of , this paper proposes the full adder
circuit in Fig. 6. The proposed circuit implements the full
adder with one fewer FG and avoids signal fan-out, which
is forbidden in a strict reversible computing paradigm.

3.2. Carry skip adder

The carry skip adder reduces the delay due to the
carry computation. Consider the full adder’s operation. If
either input is a logical one, the cell will propagate the
carry input to the carry output. Therefore, the th full
adder carry input, , will propagate to its carry output,

Fig. 2. Fredkin gate implementation of NOT/FAN-OUT
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, when . Furthermore, multiple full adders,
called a block, can generate a “block” propagate signal to
detour the incoming carry around to the block’s carry out-
put signal. Fig. 7 shows a four bit carry skip adder block.
Each block is a small ripple carry adder producing the
block’s sum and carry bits. However, each block quickly
calculates whether the block’s carry input is propagated to
its carry output. 

The block carry input  is propagated as the block
carry output , if the block propagate  is one. The
block propagate signal is generated with an AND gate.
Fig. 8 shows the proposed carry skip compatible full adder
constructed with FGs. Strictly reversible logic implemen-
tations do not allow fan-out, thus the full adders circuits in
Fig. 5 and Fig. 8 are not applicable. Fig. 9 shows a circuit
without fan-out created from the addition of a fan-out gate
to the circuit in Fig. 8. 

The carry skip adder worst case delay is the when the
carry generated in the very first full adder ripples through
all full adder stages in the first block, generates  for
the first block, skips all the intermediate blocks, and rip-
ples through the full adder stages of the last block.

3.3. Carry skip adder block using Fredkin gates

The carry skip adder propagate the block carry input
to the next block if block group propagate signal  is one.
The conventional skip block in Fig. 7 uses the AND-OR
gate combination. A carry skip block based on FGs can be
constructed by replacing the AND and OR gates with their
respective FG implementation in Fig. 3. However, the
carry skip block can be modified to take advantage of the
more complex logical function performed by the FG.

The proposed carry skip block replaces the AND2-
OR2 gate combination with a single FG. Fig. 10 shows the
block diagram of the carry skip adder block constructed
with FGs, where the “FFA” block is a Fredkin full adder
circuit from either Fig. 8 or Fig. 9. The three FGs in the
middle of Fig. 10 perform the AND4 operation generating
the block propagate signal . (The schematic looks awk-
ward. However, recall that FGs are reversible, thus sym-
metric with respect to inputs and outputs.) The single FG
in the left side of Fig. 10 performs the AND-OR function
to create the carry skip logic and block carry out signal

. The FG propagates the block’s carry input to the
next block if the block propagate signal  is one; other-
wise, the FG propagates the most significant full adder
carry  to the next block.

The traditional carry skip AND-OR logic in Fig. 7
and the FG carry skip logic in Fig. 10 do not possess
equivalent truth tables. The AND-OR carry skip generates
a block carry out, i.e. , when the most significant
full adder carry  equals one, the block propagate 
equal one, and the block carry input signal  equals
zero. The FG carry skip logic generates block carry out
signal  under the same inputs. Either result is
appropriate, because  cannot equal one when 

ci 1+ pi xi yi⊕=

Fig. 7. Four bit carry skip adder block
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and . However, it must be noted that the Fredkin
carry skip logic more faithfully adheres to the spirit of
carry skip addition by propagating the correct value of 
to . Thereby, carry propagation performance is
improved in block inputs that are possible.

The FG carry skip logic in Fig. 10 can improve carry
propagation if the block carry propagate signal  is one.
When , the block carry input  should propagate to
the next block, regardless of the result of the carry  cre-
ated by the full adders within the block. Because the tradi-
tional AND-OR carry skip logic in Fig. 7 must account for
sending  when , it does not perform its carry skip
operation efficiently. Consider the carry skip adder block
in Fig. 7 when , , and . Obviously, the
block’s carry out  is one. Now consider when the
same block performing its next operation with  and

. Therefore, the full adders must generate . The
carry ripple through the full adders will take some time.
Meanwhile, the AND-OR logic will “postpone” generat-
ing the  until  is resolved. The Fredkin carry skip
logic in Fig. 10 passes  to  whenever ,
regardless of . The time savings can be significant as
block sizes increase.

The full adder in Fig. 5 requires five FGs, but does not
generate the required propagate signal . Both the full
adder’s sum bit  and the carry bit  are generated by
passing through three FGs. This full adder cannot generate
the propagate signal without at least one additional FG.
The full adder in Fig. 8 requires four FGs, and generates
the propagate signal  required by carry skip adder cir-
cuits. Both the full adder’s sum bit  and the carry bit 
are generated by passing through three FGs. To avoid fan-
out, the full adder in Fig. 8 is modified to become the cir-
cuit in Fig. 9. An additional FG is required to replicate the
propagate signal. The delay to generate  is three FG
delays (from  to ), and the delay to generate  is four
FG delays (from  to ). The delay for  would
appear to be five, but the full adder carry in signal is not a
controlled input, instead it is the fourth FG’s control sig-
nal. Therefore, the maximum datapath length is four FG
delays from  to .

A  bit full adder requires  and  FGs using the
circuits in Fig. 8 and Fig. 9, respectively. The  input
AND gate requires  FGs. Therefore, a  bit carry
skip adder block requires  and  FGs by using the
full adder circuits in Fig. 8 and Fig. 9, respectively.

Consider the  carry skip adder block in Fig. 10 gen-
erating a block carry out  generate via carry ripple
through the full adders. (The full adder circuit in Fig. 9 is
used throughout the remainder of this paper.) The least
significant full adder requires a path delay of four FGs to
generate  from the addends. Then, the carry “ripples”
through the subsequent full adders with a path delay of

two FGs per bit. Finally,  is generated by the FG in the
left of Fig. 10. Therefore, the delay to generate block carry
out  (via ripple) with a  bit carry skip adder block is

. (4)

Consider the  carry skip adder block in Fig. 10 gen-
erating a block carry out  generate via a carry skip.
Each full adder requires a path delay of four FGs to gener-
ate  from the addends. (All full adders generate 
simultaneously.) Then, all propagate signals for the carry
skip adder block are combined with a  bit AND gate
with delay given by (1). Finally,  is generated by the
FG in the left of Fig. 10. 

. (5)

The total (worst case) delay  of an  bit carry
skip adder with fixed block size  is the sum of the ripple
carry delay through the first carry skip adder block, the
skip delays through the intermediate blocks, and the ripple
carry delay through the last block, or 

. (6)

However, the assumption

(7)

is valid for the small block sizes  applicable to carry skip
adder designs. Thus, (6) can be written

. (8)

Minimizing  with respect to block size  gives

 or . (9)

Substituting (9) into (6) gives the shortest delay for a fixed
block size carry skip adder

. (10)

3.4. Variable block carry skip adder

Varying the size of the carry skip blocks can reduce
the total worst case delay, since carries generated or
absorbed in the adder center have shorter data paths [7].
Without loss of generality, the first and last carry skip
blocks are  bits wide, and the carry skip adder is divided
into  blocks, where  is even. Assuming that carry skip
block sizes are

. (11)

Summing the number of bits in the blocks, equating to ,
and rearranging gives

. (12)
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The total (worst case) delay  of an  bit carry skip
adder with the variable block sizes is the sum of the ripple
carry delay through the first carry skip adder block, the
skip delays through the intermediate blocks, and the ripple
carry delay through the last block. Assuming the variable
block sizes in (11), the total delay is 

. (13)

Inserting (7) into (13), and rearranging gives

. (14)

Using the identity

(15)

to simplify (14) yields

(16)

Inserting (12) into (16), and collecting terms gives

. (17)

The optimal number of blocks is found with

 or . (18)

Therefore, the optimal variable block size carry skip adder
has delay

. (19)

4. Conclusions

The focus of the work described here centered on
finding good architectures for adder circuits based on the
FG.  The new full-adder cells have the desirable properties
of minimizing critical path (in terms of unit FG delays)
and of avoiding fanout.  A CSA structure is proposed and
analyzed in terms of technolgy independent implementa-
tions.  It is necessary to perform technolgy independent
analyses because quantum or optical logic implementa-
tions are not available.

To verify the functionality of our circuits, they were
implemented in standard CMOS using the circuit in
Fig. 11 for a FG.  We heavily emphasize the fact that a FG
based implementation in CMOS is not an optimal or even
desirable way to implement addition circuits, rather we
used this as a means to validate our architectures. FG full

adders were simulated using Fig. 11.  The timing numbers
measure the elapsed time between application of a test
vector and the rising edge of the outputs. The left and right
numbers in Table I are the timing information for pro-
posed FG full adders in Fig. 8 and Fig. 9, respectively. 
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TABLE I
TIMING OF FULL ADDER FIG. 8 AND FIG. 9

(TIMES ARE IN UNIT FREDKIN GATE DELAYS)

1.72/1.83 1.56/2.06 1.00/1.00

1.72/1.89 1.28/1.44 -

1.94/1.94 1.89/1.56 1.00/1.39

Fig. 11. Fredkin gate CMOS implementation

X2

X1

X0

Y2

Y1

Y0

xi yi ci

si

pi

ci 1+


