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Abstract—An overview of the quantum computing paradigm 
with a focus on reliability is provided in a tutorial form intended 
for practitioners and researchers in the test and reliability 
community.  It is assumed that readers have little prior knowledge 
of quantum informatics.  An introductory description of the 
mathematical models of a qubit and quantum information 
processing operations and projective measurement is presented as 
background.  Discussions of quantum error sources and associated 
fault models are included using the concepts and notation 
explained in the background section. Topics related to the 
decoherence problem are also included.  The concept of a logical 
qubit and how quantum error detection and correction can be 
applied to enhance reliability of quantum computations is 
formulated using the notions of classical fault models and error 
detection and correction techniques.  The general concept of 
quantum error detection and correction as applied to enhancing 
quantum computational reliability is discussed including an 
example of one of the first such methods originally introduced in 
1995. 
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I. INTRODUCTION 
The theoretical concept of a quantum computer (QC) and 

quantum computation in general is usually attributed to a 
presentation and accompanying 1982 paper by physicist Richard 
Feynman when he first coined the term and provided an outline 
of possible computational operations [1].  Acknowledgement 
considering the origin of quantum computers must also be given 
to Paul Benioff in his consideration of the quantum mechanical 
model of Turing machines in his 1980 paper [2].  Feynman was 
concerned with the topic of physics simulations and poses the 
question “... how can we simulate quantum mechanics?”  
Feynman then answers this question by stating “Let the 
computer itself be built of quantum mechanical elements which 
obey quantum mechanical laws” and follows with a section 
titled “Quantum Computers – Universal Quantum Simulators.” 
Alternatively, Benioff proposed and explored the concept of a 
series of quantum state evolutions as mapped to a corresponding 
series of state transitions in the classical Turing model of 
computation.  

While Benioff and Feynman can be credited with 
formulating the initial concepts of a quantum computer, one of 
the first formal definitions of a complete quantum computational 
paradigm is due to Deutsch in his paper that appeared three years 
after Feynman’s paper [3].  Deutsch explained the concept of 
“quantum parallelism” that enabled QC speedup due to the fact 
that a given computation can be performed over a set of data that 

is simultaneously represented through the exploitation of 
quantum superposition.  The Deutsch computational paradigm 
consists of three requirements in terms of implementation; (i) 
the ability to initialize the information-carrying hosts to a known 
value, (ii) the ability to perform transformations of the data 
values after initialization, and (iii) the final step of measuring or 
observing the transformed information.  Due to some of the 
similarities of Deutsch’s 1985 computational paradigm to that 
of conventional electronic digital computation, the Deutsch 
model of computation is often referred to as the “gate” model 
for QC.  In considering the gate model of QC, intermediate 
transformations are analogous to the operation of a sequence of 
discrete logic gates or assembly instructions that transform 
subsets of the quantum information comprising the processing 
task. 

The fundamental unit of information in QCs is the quantum 
bit or “qubit.”  The term “qubit” appeared in a paper that is 
concerned with the subject of quantum information theory 
where a theorem analogous with Shannon’s noiseless coding 
theorem is developed for quantum information [4].  In contrast 
with a conventional bit that is modeled as taking on the value 
of an integer from the set, 𝔹 = {0,1} , a qubit is typically 
modeled as an element from a complex two-dimensional 
Hilbert vector space, ℍ! = (𝒱, ℂ,⟨|⟩) where |𝑣"⟩ ∈ 𝒱 is a two-
dimensional column vector in the group 𝒱  with a group 
operator of vector addition, ℂ is the field of complex scalars, 
and ⟨|⟩ denotes the inner product operation over two elements 
of 𝒱.   

The QC community uses the “braket” notation of quantum 
physics due to Dirac [5] where |𝑣"⟩ represents a column-vector, 
⟨𝑣" | a row vector, ⟨𝑣" |𝑤#⟩ the inner product, |𝑣"⟩⟨𝑤# | the outer 
product, and ⟨𝑣"⟩ the expected value.  It is noted that another 
common and more general mathematical model of the qubit is 
the 2 × 2 density matrix and it is equally valid.  The density 
matrix model is more general since it allows for a single qubit 
to be comprised of a statistical ensemble of pure states whereas 
the column vector model assumes the qubit is in the form of a 
single pure state.  The density matrix representation, 𝜌, of a 
qubit in a pure state, |𝑣"⟩, is given as 𝜌 = |𝑣"⟩⟨𝑣"| whereas the 
more general case where a qubit is represented as a statistical 
ensemble of k different pure states is given by 𝜌 =
∑ 𝑝"|𝑣"⟩⟨𝑣"|$
"%&  where 𝑝"  is the objective probability that the 

qubit can be in the pure state |𝑣"⟩. 

In terms of implementation, the physical representation of a 
qubit is an observable or measurable characteristic of a particle 
or quasi-particle.  Examples include the spin, location, and 
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energy levels attributed to fermionic particles such as electrons, 
the polarization, frequency, and spatial location of bosonic 
particles such as photons, or the energy levels of an ion.  Quasi-
particles are objects that behave or exhibit measurable quantum 
mechanical characteristics but are not actual particles.  
Examples of quasi-particles include quantum dots, diamond-
nitrogen vacancies, 2-dimensional anyons, and even 
macroscopic circuits that behave as quantum oscillators such as 
superconducting semiconductor circuits containing Josephson 
junctions.  When macroscopic objects exhibit microscopic 
quantum behavior, they are referred to as mesoscopic qubits.  An 
important concept regarding physical implementations of qubits 
is that, it is not the particle or quasi-particle that serves as the 
qubit, rather it is an observable characteristic of the particle that 
serves to represent quantum information.  The particle or quasi-
particle is simply the “host” information carrier. 

There are several different computational paradigms under 
consideration by the QC community both in terms of the 
underlying computational paradigm as well as the physical 
technology for representing qubits and associated operations 
that implement their transformation or processing.  These 
different paradigms can be considered as either modifications to 
the Deutsch gate model or as paradigms with substantially 
different approaches.  A common motivating factor for these 
alternative QC approaches is to exploit properties of the 
technology to enhance certain aspects including reliability, 
scalability, or both.  We restrict our focus in this paper to 
concentrate mainly on the gate model of computation since it is 
currently one of the more prevalent and popular approaches at 
the time of this writing.  

The reason that Feynman predicted that conventional 
computers were insufficient for simulating quantum phenomena 
is due to the very non-intuitive behavior of atomic-scale 
particles as postulated by the theories of quantum mechanics and 
quantum electrodynamics.  These phenomena include quantum 
superposition, uncertainty principles, entanglement, 
measurement, and others.  While we will briefly explore some 
of these properties in a following section with respect to their 
influence in QC reliability, the concept of quantum 
superposition and measurement is useful here to describe one of 
the major challenges of QC, that of decoherence. 

As an introduction, quantum superposition refers to the 
ability of a qubit to exist in a linear combination of basis states.  
In the gate-model of computation, quantum superposition is a 
key element in providing the quantum parallelism as explained 
by Deutsch.  The computational advantage arises from the fact 
that a group of qubits in superposition can simultaneously 
represent many different values.  Thus, if a computation is 
viewed as a function to be evaluated over a set of data values, 
that function need only be computed a single time when the 
input values are represented by a group of superimposed qubits.  
In contrast, a Turing machine would require that the function be 
evaluated individually for each of the values in the set of interest.  
Speed-up of such a computation in a Turing model can only be 
achieved by spatial parallelism wherein multiple Turing 
machines execute concurrently with different function 
arguments, or, with temporal parallelism such as a pipelined 
Turing machine. While quantum parallelism is a great advantage 
of QC, it does require that the qubits maintain their state of 

superposition during the computation, or, a coherent state.  
Furthermore, a quantum observation or measurement causes the 
superimposed state of the qubits to “collapse” into a basis value 
that is one of the superimposed states with respect to some set 
of basis vectors known as the “measurement basis.”  An 
unintentional measurement during a quantum computation can 
cause the advantage of quantum parallelism to be lost and 
extreme measures must be taken to prevent this from occurring.  
Another interesting phenomenon is that the measuring device 
used to make the observation defines the basis set with respect 
to how the superimposed qubits collapse.  That is, the 
measurement device affects which possible outcomes result 
from a set of qubits in superposition. 

Because the host particles adhere to the postulates of 
quantum mechanics, small external disturbances or influences 
from the external physical environment can inadvertently 
change the quantum state and can result in the occurrence of an 
unintentional measurement.  When a group of qubits suffer from 
such an unintentional measurement, they are said to “decohere.”  
Decoherence is one of the biggest challenges in QC and is a key 
factor in considering QC reliability.  Maintaining the coherence 
of a set of qubits requires careful control of the environment to 
prevent external influences from affecting the computation and 
such control can be a challenging requirement.  In fact, it is 
generally an accepted fact that prevention of decoherence will 
never be entirely achieved with only environmental isolation 
mechanisms.  Thus, the QC community is motivated to devise 
methods for reliable quantum computation in an environment 
where there is always a non-zero probability of decoherence. 

The prevention of decoherence poses a tradeoff in 
architectural and implementation considerations for a QC.  The 
tradeoff comes about because it is necessary to have the ability 
for qubits to interact with one another so that conditional 
computations can be implemented.  As an example of such an 
intentional interaction, it is necessary that the value of one qubit 
can conditionally affect the type of computation performed on 
another qubit.  However, enabling such interactions also means 
that decoherence events from the environment are likewise 
possible and can thus also affect the value of the qubits in the 
form of a decoherence event.  The tradeoff manifests in that 
implementations that provide for ease in conditional multi-qubit 
operations similarly provide ease for the external environment 
to cause decoherence events.  In terms of technology, the use of 
quantum photonics is a good example of this tradeoff.  The fact 
that interactions among bosons are difficult to achieve means 
that quantum computations using photons as host particles are 
generally less susceptible to decoherence events as compared to 
other host particles that are more sensitive to environmental 
influences; however, this same phenomenon is also the reason 
that it is difficult to implement high-fidelity QC gates requiring 
multi-qubit interaction using quantum photonic technology. 

Reliability in quantum computation is a big issue due to the 
inherent fragility of a qubit with respect to maintaining a state of 
coherence.  As is the case with electronic technology, QC 
reliability is likewise related to the particular form of 
implementation technology being used, as just mentioned with 
respect to the tradeoff example for quantum photonic 
technology.  Decoherence and other sources of error provide the 
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foundation for formulating fault models of quantum computing 
and these will be explored in more detail. 

Given a set of applicable fault models, methods to enhance 
QC reliability can be explored and are currently an active area 
of research.  The first general purpose quantum computers have 
begun to be available for use in the past few years as of this 
writing.  Because these QC rely on the use of physical qubits 
that are generally susceptible to decoherence and other errors, 
they are considered to be “noisy” quantum computers.  
Furthermore, because this class of QC are comprised of tens to 
hundreds of qubits, they are also considered to be predecessors 
to “intermediate scale” computers since it is recognized that 
practical QC will likely require a significantly increased number 
of qubits to tackle many practical processing jobs of interest.  
For this reason, the QC community considers the current and 
immediate future-generations of QC to be characterized as 
“noisy intermediate-scale quantum computers” (NISQ) as 
coined by John Preskill in a presentation he gave in 2017 [6].  
Due in large part to the decoherence tradeoff previously 
described, the QC community is in general agreement that the 
next generation of QC beyond the NISQ era will require the use 
of quantum error correction to enhance reliability as the number 
of qubits increases.  These next-generation QC will comprise 
“logical qubits” that are internally represented by a number of 
noisy physical qubits.  The use of multiple physical qubits to 
comprise a single logical qubit will provide the redundancy that 
is a well-known fundamental requirement for error detection and 
correction (EDAC) techniques.  A very active area of current 
research is the quest for finding such quantum EDAC 
frameworks that will enable the next-generation of QC with 
acceptable levels of reliability as well as scalability. 

The remainder of this introductory paper will provide basic 
background on the gate-model of QC to use as an example for 
reliability enhancement issues.  We will discuss quantum 
technology fault models, their basis in terms of error sources, 
and how they influence and guide quantum EDAC approaches.  
Additionally, we will describe an early quantum EDAC 
approach to show how it can enhance QC reliability. 

II. QUANTUM COMPUTATION BACKGROUND 

A. General Mathematical Model of a Qubit and Observables 
From a mathematical interpretation, a pure state qubit is an 

element of a two-dimensional Hilbert vector space, ℍ!, and can 
be represented as 

 |Ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩. (1) 

The scalar coefficients, 𝛼, 𝛽 ∈ ℂ, are known as the “probability 
amplitudes” of |Ψ⟩.  The basis vectors |0⟩, |1⟩ ∈ 𝒱 span ℍ! and 
are referred to as the “computational basis.”  Explicitly, the 
computational basis is given as 

 |0⟩ = <10= , |1⟩ = <01=. (2) 

Thus, the general form of qubit |Ψ⟩ is likewise explicitly written 
as 

 |Ψ⟩ = <
𝛼
𝛽=. (3) 

Furthermore, due to a postulate of quantum mechanics known 
as “Born’s rule,” [7] the following relationship must hold 
regarding the “probability amplitudes” of the qubit |Ψ⟩, 

 |𝛼|! + |𝛽|! = 1. (4) 

When either 𝛼 or 𝛽 are zero-valued, the qubit is said to be in 
a basis state, otherwise it is in a state of quantum superposition 
with respect to the computational basis.  Measurements of the 
state of a qubit are accomplished using observables that are 
modeled as Hermitian matrices formed as a sum of projection 
matrices formed from a set of basis vectors.  Thus, if a qubit is 
measured with respect to an observable formed from the 
computational basis, the result of the measurement is a scalar 
that is one of the eigenvalues of the observable.  Likewise, the 
measurement will force the quantum state to “collapse” into one 
of the eigenvectors of the observable that corresponds to the 
resulting eigenvalue of the observable.  If the observable is 
formed using the computational basis, then the measurement 
will cause the quantum state to collapse into either |0⟩ or |1⟩.  
Because the measurement causes the quantum state to transition 
to a basis vector that is one of the observable eigenvectors, the 
act of performing the measurement will cause the qubit to lose 
superposition with respect to the measurement basis.  This is 
known as a “projective measurement” since the observable is a 
sum of projection matrices formed from the measurement basis 
set.  Due to Born’s rule, the result of the measurement is 
probabilistic in nature.  The probabilities that the projective 
measurement of |Ψ⟩ causes collapse into |0⟩ or |1⟩, when the 
observable is constructed from the computational basis, is  

 𝑃[|Ψ⟩ → |0⟩] = |𝛼|! (5) 

 𝑃[|Ψ⟩ → |1⟩] = |𝛽|!. (6) 

It should be noted that this projective measurement does not 
include the possibility that an unintentional measurement due to 
external environmental influences, or decoherence, occurs.  
There are other models for measurement observables that 
include this possibility such as the “positive operator-valued 
measure” (POVM) that are commonly used. 

Due to Born’s rule, the norm of a pure state qubit is always 
unity and thus qubits can more accurately be described as unity-
magnitude vectors, or rays, in ℍ!.  Due to the complex-valued 
probability amplitudes, an alternative model of a qubit is 

 |Ψ⟩ = 𝑒"'C𝑐𝑜𝑠G!"H|0⟩ + 𝑒
"(𝑠𝑖𝑛G!"H|1⟩K, (7) 

where, 

 𝛼 = 𝑒"'𝑐𝑜𝑠G!"H, (8) 

 𝛽 = 𝑒"'𝑒"(𝑠𝑖𝑛G!"H. (9) 

In this form, 𝛾 is a global phase angle since it affects both basis 
vector components and 𝜙  is the relative phase angle since it 
represents the phase of the |1⟩ component with respect to that of 
the |0⟩ component.  Since the information content of a qubit 
only depends upon the values of the probability amplitudes of 
each basis vector component and their relative phase difference, 
the common multiplicative factor 𝑒"'  is irrelevant.  When a 
qubit is considered in the form of Equations (1) or (7), the only 
parameters that affect the information content are (𝛼, 𝛽)  or 
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alternatively, (𝜙, 𝜃) since the global phase, 𝛾, does not affect 
the relative phase difference between 𝛼 and 𝛽.   

Given these models of a qubit, a geometric interpretation is 
useful and is known as the “Bloch sphere.”  The Bloch sphere 
model is one where a pure state qubit is considered to be a point 
on the surface of a unit sphere centered at the origin.  In spherical 
coordinates, the magnitude is not considered since it is always 
unity by Born’s rule.  The relative phase 𝜙 represents the angle 
in a plane parallel to the x-y plane that is relative to the x-axis.  
The angle 𝜃 represents the angle in a plane perpendicular to the 
x-y plane and relative to the z-axis.  The transformations from 
the spherical to the rectangular coordinate model of a qubit are 
given by Equations (8) and (9). 

B. Quantum Computation 
A quantum computation applied to a qubit is modeled as a 

linear transformation of the qubit vector and is thus defined by 
a linear transformation matrix with complex components.  Since 
Born’s rule must always hold, and due to the fact that a qubit is 
physically a wave function solution of Schrödinger’s equation, 
all such transformation matrices are unitary meaning that their 
inverses are simply their conjugate transpose.  That is, a 
computation is represented by a unitary matrix U satisfying 
𝐔)& = 𝐔* = (𝐔+)∗.   Using the geometric interpretation of 
Bloch’s sphere, unitary transformations can be considered as 
rotation matrices that move the qubit position from one point on 
the sphere surface to another. 

Some single-qubit operations are well known and have 
specific names.  For example, the Pauli operators denoted as X 
(or “NOT”), Y, and Z operations represent 180○ rotations about 
the x-, y-, and z-axes respectively.  Some common single-qubit 
operations only affect the relative phase angle, 𝜙, such as the Z, 
S, and T operations that rotate the qubit in a plane parallel to the 
x-y plane by 180○, 90○, and 45○ respectively.  Other common 
single-qubit operations modify the probability amplitudes such 
as the Hadamard, H, and the “square-root-of-NOT”, V.  These 
are given in matrix form as 

 𝐗 = <0 1
1 0= , 𝐘 = <0 −𝑖

𝑖 0 = , 𝐙 = <1 0
0 −1= , 𝐒 = <1 0

0 𝑖 =,  

 𝐓 = W
1 0
0 𝑒"

#
$
X , 𝐇 = &

√!
<1 			1
1 −1= , 𝐕 =

&
!
<1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖=.

  (10) 

Multi-qubit operations are represented as transformations 
over the composite quantum state vector formed as the outer 
product of the single-qubit pure-state vectors.  As an example, 
two qubits |Ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩  and |Φ⟩ = 𝛿|0⟩ + 𝜎|1⟩ 
represent an overall quantum state as shown in Equation (11). 

 |ΨΦ⟩ = |Ψ⟩⊗ |Φ⟩ = (𝛼|0⟩ + 𝛽|1⟩)(𝛿|0⟩ + 𝜎|1⟩) 

 =𝛼𝛿|00⟩ + 𝛼𝜎|01⟩ + 𝛽𝛿|10⟩ + 𝛽𝜎|11⟩ (11) 

A multi-qubit unitary transformation matrix is of dimension 
2. × 2. where 𝑛 is the number of qubits involved.  Common 
examples of two-qubit transformations are in the form of the so-
called “controlled” operations although other types of multi-
qubit operations are also well-known.  The controlled two-qubit 
transformations can be interpreted in an analogous way to 
electronic gates that utilize an enable or control input such as a 

tri-state buffer.  One qubit serves as the “control” qubit and the 
other as the “target” qubit.  A controlled-U operation is an 
operation wherein the target qubit is transformed according to a 
2 × 2 unitary matrix U if, and only if, the control qubit has a 
non-zero probability amplitude with respect to the |1⟩  basis 
state.  For example, a “controlled-X” (or “controlled-NOT”) gate 
has a corresponding transfer matrix, CX, as 

 𝐂𝐗 = a
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

b. (12) 

C. Representations of Quantum Computations 
A quantum computation for the gate model paradigm can be 

considered as either a dedicated quantum circuit implemented in 
hardware or as a sequence of instructions to be executed by a 
QC.  For this reason, such computations are commonly referred 
to as “quantum circuits” although the term “quantum 
algorithms” would probably be more clear since a “quantum 
circuit” can represent a sequence of software instructions to be 
executed on a QC.  At present there are several high-level 
languages emerging for the purpose of writing QC programs as 
well as representations that would be closer in consideration to 
a QC assembly language.  One such QC assembly language is 
openQASM [8].  openQASM provides a set of mnemonics for 
common single- and multi-qubit operations that describe a 
particular quantum computation wherein each mnemonic 
represents the transformation of one or more qubits and thus is 
representative of a transformation matrix such as those shown in 
Equations (10) and (12).  From a software perspective, 
openQASM can be considered an assembly-level abstraction of 
QC software and from a hardware implementation point of view, 
it can be considered as an abstraction analogous to an RTL 
description. 

The QC community uses another common form to describe 
a quantum circuit that is graphical and can be considered as 
analogous to an electronic gate-level circuit diagram.  Different 
qubit transformations are represented with symbols and 
individual qubits supporting the computation are represented as 
horizontal lines.  The convention for these diagrams is that the 
diagram represents the passage of time from left to right.  Thus, 
a horizontal line representing a qubit indicates the initial 
quantum state at the leftmost point of the line and it indicates the 
final state at the rightmost side.  Qubit transformations at some 
point in time are represented by the presence of an operator 
symbol that intersects one or more qubit lines at the appropriate 
point in time.  As an example, consider the quantum 
computation shown in Fig. 1.  Note that the vertical dashed lines 
represent specific instances of time and are non-standard 
annotations added to Fig. 1 to aid in the explanation that follows. 

 
Fig. 1: Example Quantum Computation 

In Fig. 1, a two-qubit computation is illustrated where the 
topmost horizontal line represents qubit |Ψ⟩ and the bottommost 
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line represent qubit |Φ⟩.  On the left side of the diagram the 
qubits are shown as being initialized to values |Ψ⟩ = |0⟩ and 
|Φ⟩ = |0⟩ at time t0.  As the computation proceeds from left to 
right, |Ψ⟩ undergoes an H operation at a time following t0 and 
thus its state evolves to the value 𝐇|Ψ⟩ at time t1 while |Φ⟩ does 
not have any operation indicated in the interval from time t0 
through time t1.  However, a computation over a collection of 
qubits should be considered as an operation over the entire 
quantum state of the system, |ΨΦ⟩ .  Thus, the overall 
transformation matrix governing the time evolution of the 
system state from t0 to t1 is formed using the outer product, 𝐇⊗
𝐈, and transforms the overall state, |ΨΦ⟩ as (𝐇⊗ 𝐈)|ΨΦ⟩.  This 
is necessary at least because the system can be in a state wherein 
the two or more qubits are not mathematically separable; 
meaning that the overall quantum state vector cannot be 
expressed as a set of individual two-dimensional vector factors 
that are combined using the outer product.  The identity matrix 
I is used since no operator is present to transform |Φ⟩ before 
time t1 whereas |Ψ⟩ undergoes a transformation due to H.   

Next, at time t2, the two-qubit controlled-NOT operator is 
applied to the overall quantum state as indicated by the operator 
intersecting both horizontal lines immediately preceding time t2.  
In this case, the quantum state evolves by multiplying the 
quantum state at time t1 with the 4 × 4 transformation matrix CX 
that represents the controlled-NOT gate.  After time t2, two 
single qubit operations are applied.  Qubit |Ψ⟩  evolves 
according to an X operation and qubit |Φ⟩ evolves according to 
the Z operator.   Once again, these single qubit operators must 
be applied to the overall quantum state of the system, |ΨΦ⟩.  The 
transformation matrix is formed as the outer product, 𝐗⊗ 𝐙 
resulting in a state evolution of (𝐗⊗ 𝐙)|ΨΦ⟩ that represents 
the quantum state at time t3. A very important convention is that 
the topmost qubits always correspond to the leftmost operands 
in calculations of outer product expressions extracted from 
graphical quantum circuit representations.  This convention is 
important because the outer product operation is not 
commutative.  Finally, immediately preceding time t4, a 
measurement operation is applied to qubit |Φ⟩ and the result of 
the computation is complete at time t4. 

While this example computation is explained in a step-by-
step manner as it progressed, or evolved, in time, it should be 
noted that the entire computation as a whole can be expressed as 
a single 4 × 4 transfer matrix, 𝐓0123.  In this form, all of the 
intermediate operations can be combined into a single overall 
system transfer matrix as 

 𝐓0123 = (𝐗⊗ 𝐙)𝐂𝐗(𝐇⊗ 𝐈). (13) 

It is important to form the overall transfer matrix 𝐓0123 as the 
outer product of individual gate transfer matrices in reverse time 
order to ensure that the operations are applied to the initial 
system quantum state in the correct time-ordered sequence. 

When the overall transfer matrix is formed, the system 
quantum state at time t3 can be computed directly using the 
initial state at time t0 as 

 |ΨΦ⟩4% = 𝐓0123|ΨΦ⟩4&. (13) 

At time t4, a projective measurement is made as indicated by 
the rightmost and lowermost operator applied to qubit |Φ⟩.  The 

“Z” as annotated on the measurement symbol indicates that the 
measurement is made with respect to the computational basis 
and will thus cause the qubit to collapse to either |0⟩ or |1⟩ with 
the outcome of the measurement being one of the scalar 
eigenvalues of the Hermitian matrix Z that models the 
measurement observable.  To determine the probabilities for the 
possible occurrence of each of these measurement results, we 
apply Born’s rule to the probability amplitudes.  At time t3, the 
composite quantum state is computed using Equation (13) as 

 |ΨΦ⟩4$ =
&
√!
a
			0 			1
−1 			0

0 −1
1 			0

				1 			0
			0 −1

1 			0
0 −1

b a
1
0
0
0

b = &
√!
a
			0
−1
			1
			0

b. (14) 

In braket notation, this result is 

 |ΨΦ⟩𝒕𝟒 =
𝟏
√𝟐
(0 ∙ |00⟩ − |01⟩ + |10⟩ + 0 ∙ |11⟩). (15) 

The probability amplitudes for the two basis vectors |00⟩ 
and |11⟩ are included in Equation (15) to indicate that they are 
zero-valued.  This means that upon observation with respect to 
the computational basis, only two possibilities can result, either 
|01⟩ or |10⟩.  We observe that the probability amplitude for the  
|01⟩ basis is −1 √2⁄  and that for basis |10⟩ is +1 √2⁄ .  Taking 
the square of the probability amplitudes yields a probability of 
1/2 that |Φ⟩  will collapse into either |0⟩  or |1⟩ .  Thus, the 
measurement is equally likely to cause |Φ⟩  to collapse into 
either computational basis state. 

It should also be noted that, dependent upon the outcome of 
the measurement, the topmost qubit |Ψ⟩  must take on the 
opposite value of |Φ⟩!  This is remarkable since |Ψ⟩ was not 
measured and was previously in a state of superposition.  This is 
an example of another quantum mechanical phenomenon called 
“entanglement.”  Entanglement is a property that can only be 
created with the application of a multi-qubit operator or 
“entangling” gate and is responsible for a wide variety of very 
interesting applications.  From a mathematical point of view, 
entanglement can be observed to occur when the composite 
quantum state of two or more qubits is such that it is impossible 
to express the state as an outer product of two single qubit state 
factors as is the case with |ΨΦ⟩4%  in the example calculation 
shown in Equation (15). 

When two qubits are entangled, the measurement or 
observation of only one of the host particles can affect the other 
particle and cause it to lose its state of superposition even when 
it has not been explicitly measured.  This property has profound 
ramifications and was pointed out by Einstein, et. al as a side 
effect of the theory of quantum mechanics indicative that the 
theory may be incomplete [9].  However, this question of 
incompleteness posed by Einstein and his colleagues was later 
resolved, both theoretically and experimentally, indicating that 
the principle of quantum entanglement is an accurate and 
complete consequence of quantum mechanical theory.  A recent 
experiment that currently holds the world record for the longest 
distance of example of entanglement that was intentionally 
caused and measured by human activity, over 500 km, is the 
result of the Chinese government’s Micius satellite where they 
used photon entanglement in a secure encryption key 
distribution application [10]. 
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The graphical description of the quantum circuit in Fig. 1 
can be equivalently specified as an openQASM code fragment 
as shown in Fig. 2 

    . 
    . 
    . 
h    psi; 
CX   psi, phi; 
x    psi; 
z    phi; 
    . 
    . 
    . 

Fig. 2: openQASM Code Fragment for Fig. 1 Circuit 

III. ERROR SOURCES IN QUANTUM CIRCUITS 
The fact that two host particles can become entangled and 

can exist in this state with very large distances of spatial 
separation between them means that non-localized correlations 
can exist among qubits wherein a measurement, whether 
intentional or not, can affect the state of a computation.  While 
the Micius experiment demonstrated an advantageous use of 
entanglement, the presence of non-localized spatial correlations 
among a collection of qubits also indicates the inherent fragility 
in maintaining a coherent quantum state during a computation. 

To improve the reliability of a quantum computation, it is 
necessary to isolate the implementation from the external 
environment as much as possible.  However, observables at the 
subatomic scale are microscopically small.  Even an extremely 
minute amount of energy due to heat or cosmic radiation can 
affect a quantum computation if it happens to interact with a 
qubit that is in a state of superposition.  Such interactions cause 
information degradation to occur in a computation or even total 
loss due to decoherence.  This is one of the primary reasons that 
physical qubits are inherently noisy.  For this reason (and 
others) NISQ QC are typically run in a Monte Carlo-like mode 
wherein a given computation is repeated many times and the 
output values of the results are accumulated and reported as the 
result of the computation.  The inherent error rates due to 
environmental interactions and other sources render NISQ QCs 
as probabilistic computing devices and underscores the dire 
need for improving QC reliability. 

In comparing quantum error models to those for classical 
electronics, close analogies are that errors due to decoherence 
are similar to so-called “soft errors” due to intermittent external 
and natural phenomena such as errors due to radiation.  Errors 
due to device imperfections are closer to so-called “hard-errors” 
that occur due to manufacturing tolerance variations. 

A. Errors due to Decoherence 
Errors due to interaction with the environment are 

considered as decoherence events.  The degree to which a QC is 
coupled to the environment obviously affects the level of 
decoherence that can be expected.  Another factor is the inherent 
susceptibility of the host-carrying particle to the effects of 
external influences. 

By using models for the stochastic nature of the external 
environment, two special cases of decoherence can be 

characterized as “depolarization” and “dephasing.” These forms 
of decoherence are parametrized in the form of decay constants 
known as the “relaxation time,”	𝑇& , and the pure “dephasing 
time,” 𝑇( .  When energy levels are used as the information-
bearing observable, the relaxation time is related to a decay 
constant for the amount of time that a qubit will transition or 
“relax” from a higher energy level to a ground state.’ That is, the 
qubit is said to become “depolarized” when it transitions to the 
ground state.  Typically, the ground state is assumed to represent 
|0⟩ and the next higher energy level represents |1⟩ when energy 
levels are used as the information-bearing quantum observable.  
In this case T1 defines the average decay time for a qubit to 
transition from |1⟩ to |0⟩.  As an example, the probability that a 
qubit |Ψ⟩ is in the higher-level energy state |1⟩ at time t after 
being initialized or evolved to state |1⟩is proportional to 

 𝑃(|Ψ⟩ = |1⟩) = 𝑒)
(
)*. (15) 

𝑇( is the “dephasing time” that describes how long the relative 
phase, 𝜙, stays intact.  If a qubit is in coherence with a relative 
phase of 𝜙, the dephasing time 𝑇( refers to the time constant of 
the decay before the relative phase becomes unstable and begins 
to change or rotate in the x-y plane from a geometric 
interpretation.  Typically, 	𝑇& > 𝑇(, and the time for a QC gate 
to reliably operate must be less than either of these time 
constants if a reliable QC is desired wherein a given 
computation is assumed to consist of hundreds or thousands of 
single and two-qubit gates. 

When depolarization or dephasing occur, they are 
instantaneous events due to a discrete interaction with the 
environment as a point process.  The exponential decay models 
can be considered as point process probability mass functions.  
Furthermore, such events can be considered as uncorrelated, 
independent, and thus indicative of a Markovian point process.   

B. Errors due to Device Imperfections 
As previously discussed, a quantum gate operation is 

specified by a unitary matrix, U. When such a gate is 
implemented in some technology, the physical devices used to 
implement the operation will be fabricated with some degree of 
error tolerance.  These error tolerances manifest as, and can be 
represented as, deviations in the form of the ideal gate transfer 
matrix U.  Thus, the reliability of any particular instance of 
unitary transformation gate is related to the distribution of errors 
present among the tolerance variations.  Manufacturing and 
error models are generally dependent upon the specific form of 
technology being implemented.  If errors due to manufacturing 
tolerances are modeled as additive then, a general model for the 
actual operation performed by the manufactured gate is 
represented as a transformation due to 𝐔80498:  rather than the 
intended and ideal transformation 𝐔.  The relationship between 
𝐔 and 𝐔80498:is, 𝐔80498: = 𝐔(𝐈 + 𝐔*𝐄𝒂<<), where 

 𝐔80498: = <𝑢== + 𝜖== 𝑢=& + 𝜖=&
𝑢&= + 𝜖&= 𝑢&& + 𝜖&&

= , 𝐄8<< = <
𝜖== 𝜖=&
𝜖&= 𝜖&&=.

  (16) 

The coefficients of the 𝐄8<< matrix can be modeled as random 
variables according to some appropriate probability density 
function such as a normal pdf.   
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Error matrices may also be modeled as multiplicative errors 
and generally this form is more convenient since their effect on 
a particular computation can be ascertained by simply inserting 
the error matrix 𝐄29:4 in the computation of the overall circuit 
transfer matrix as was demonstrated in Equation (13).  The 
multiplicative error matrix can be inserted into the overall 
computation by placing it in the chain of direct multiplicative 
factors in the position corresponding to the time in which the 
error occurs. 

If the manufacturing error manifests as an additive error to 
the relative phase resulting in an actual phase angle of 𝜙 + 𝜙> 
rather than the intended 𝜙  phase angle, then a multiplicative 
error matrix results indicated as 

 𝐔80498: = 𝐔<1 0
0 𝑒"(+= = 𝐔𝐄𝝓. (17) 

Note that the form of 𝐄( is identical to the single-qubit phase 
gates, Z, S, and T, as given in Equations (10), when the phase 
error, 𝜙>, takes on values of 180○, 90○, and 45○, respectively. 

Numerous variations for formulating 𝐔80498: can be derived 
and are highly dependent on the technology and associated 
manufacturing processes used.  When device imperfection 
errors are small, they may sometimes be neglected since the 
measurement process yields a basis state and is thus somewhat 
self-correcting.  For example if a manufacturing error causes a 
perturbation to the probability amplitudes of a qubit that evolves 
to |Ψ⟩ = (𝛼 + 𝛼>)|0⟩ + (𝛽 + 𝛽>)|1⟩ rather than |Ψ⟩ = 𝛼|0⟩ +
𝛽|1⟩, then for sufficiently small probability amplitude errors, the 
measurement outcomes are unlikely to change since 

 |𝛼 + 𝛼>|! ≈ |𝛼|!,				|𝛽 + 𝛽>|! ≈ |𝛽|!. (18) 

However for large circuits, numerous small errors can 
accumulate, particularly if the error distributions are not 
symmetric about a non-zero mean.  In this case, manufacturing 
errors can become significant sources of unreliability. 

C. Errors due to Measurement 
While measurement can have the desirable effect of self-

correcting certain small errors as previously described, it also 
poses a more serious contribution to QC unreliability due to the 
entanglement phenomenon discussed in a previous section.  
When two or more qubits become entangled due to an external 
environmental effect or a device imperfection, unintended 
entanglement can cause the measurement of one subset of qubits 
to cause another set to simultaneously collapse.  Because 
observables are implemented such that they perform a 
measurement with respect to a particular basis set, known as the 
measurement basis, measurement device errors can cause the 
basis set to be imprecise and to deviate from the intended 
measurement basis.  In this case the measurement is with respect 
to probability amplitudes that are likewise transformed to the 
measurement basis and can thus affect observed outcomes.  This 
latter type of measurement error is of particular concern in 
quantum informatics metrology or sensing applications. 

IV. QUANTUM FAULT MODELS 
Quantum fault models can be formulated as transformation 

matrices that are inserted within the intended computation, such 

as the matrices 𝐄8<< and 𝐄( in Equations (16) and (17).  It is 
the case that such fault models can be specified in terms of the 
single-qubit Pauli operators, X, Y, and Z. 

Here we consider an error model where some event, 
whether due to an external disturbance or to a device 
imperfection, results in an erroneous unitary transformation on 
one or more qubits, hereafter referred to as a “unitary error.”  A 
unitary error event resulting in depolarization can cause a “bit-
flipping” error and the corresponding fault model is represented 
by an unintended Pauli-X operation that occurs at the time of 
depolarization.  Likewise, a “phase-flip” error refers to the 
relative phase changing by 180○ and has a corresponding fault 
model represented by the Pauli-Z operator.  The Pauli-Y matrix 
represents a phase-flip error followed by a bit-flip error due to 
the relationship 𝐘 = 𝑖𝐗𝐙.  Since the scalar multiple i represents 
a global phase shift of 90○ it can be ignored in terms of 
information content changes. 

A single qubit unitary fault model can be formulated as a 
linear combination of Pauli matrices as 

 𝐄29:4 = 𝜖𝐈𝐈 + 𝜖𝐗𝐗 + 𝜖𝐘𝐘 + 𝜖𝐙𝐙. (19) 

Born’s rule leads to the result that the scalar coefficients of the 
unitary fault model in Equation (19) must satisfy 

 |𝜖𝐈|𝟐 + |𝜖𝐗|! + |𝜖𝐘|! + |𝜖𝐙|! = 1. (20) 

Small errors result in a fault model where the |𝜖𝐈|!  value is 
relatively large as compared to the other coefficients.   

Multi-qubit fault models can be formulated as outer products 
of single qubit fault models in the form of Equation (19).  A fault 
model over k qubits in an n qubit circuit, where 𝑘 ≤ 𝑛, can be 
formulated as a linear combination of matrices of dimension 
2$ × 2$ with corresponding scalar coefficients.  Each individual 
2$ × 2$ matrix used to form the sum is itself calculated as the 
outer product of k scaled 2 × 2	Pauli matrices. 

Since a qubit can be uniquely specified by a probability 
amplitude and a relative phase value, the ability to correct phase-
flips and bit-flips along with the linearity resulting from the 
theory of quantum mechanics implies that any arbitrary unitary 
error has a corresponding fault model that can be specified as a 
multiplicative error matrix in the form of Equation (19).  
Furthermore, fault models can likewise be calculated over any 
number 𝑘 ≤ 𝑛  qubits using the process described for 
formulating 2$ × 2$ fault matrices.  This observation leads to 
the encouraging result that the existence of techniques that are 
fault tolerant based on phase-flip and bit-flip errors are sufficient 
to correct any possible unitary error. 

V. QUANTUM ERROR CORRECTION 
An extremely active area of current research is focused on 

quantum error detection and correction (QEDAC).  QEDAC is 
considered to be one of the leading candidates for enabling the 
evolution to the next generation of QC that utilize fault tolerant 
logical qubits for computations rather than the direct use of 
noisy physical qubits in NISQ implementations.  While 
classical error correction methods provide some fundamental 
principles for QEDAC, the drastic differences in the underlying 
technology and computational paradigms require new 
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techniques and methodologies to be developed.  Classical error 
correction for fault tolerance has been found to be very robust 
in terms of fault models.  For example, the “stuck-at” fault 
model has been shown to cover a wide range of different 
physical faults, even when some of those faults are not, in a 
strict sense, due to a bit being permanently stuck at a single 
logic level.  Unfortunately, the stuck-at fault model is not 
particularly useful in QC as are many of the other classical fault 
models.  One reason for this circumstance is that a quantum 
state is a continuously varying quantity rather than a discrete 
quantity.  Both probability amplitudes and relative phase values 
are continuous.  An analogous fault model that is comparable 
to classical fault models is the bit-flip model due to 
depolarization.  Somewhat related analogies to QC phase errors 
may be those related to timing fault models.  

Voltage-mode digital electronics enjoys virtually unlimited 
fanout as long as voltage-restoring buffering is permissible and 
the accompanying inserted buffer latencies are permissible.    A 
basic premise in classical error correction is the exploitation of 
redundancy as used, for example, in a repetition code to correct 
bit-flip errors.  For example, a three-bit repetition code can be 
implemented where three physical bits represent a single logical 
bit.  Such a code is capable of correcting all single bit-flip errors 
since the logical bit is assumed to take on the value of the 
majority of physical bits. 

Unfortunately, it is theoretically impossible to copy the 
value of one qubit to that of another, except for the pathological 
case where the qubit being copied is in a basis state.  This 
impossibility poses a unique challenge for QEDAC and it arises 
from a fundamental theorem in quantum informatics known as 
the “no-cloning theorem.”  The no-cloning theorem places 
severe restrictions on the use of redundancy in a QC and 
prevents the direct use of repetition codes that rely on fanout.  
Nonetheless, there have been significant developments in 
QEDAC.  Although there have been many recent developments 
in QEDAC, to keep this tutorial succinct and accessible to 
readers with an introductory knowledge of QC as provided in 
the previous sections, we will only explore one of the first 
QEDAC techniques due to Shor [11]. 

A. Extending the 3-qubit Replication Code into a QEDAC 
As an initial step, we will consider the possibility of 

utilizing a logical qubit, |Ψ⟩ = 𝛼|0p + 𝛽|1p, that is encoded 
with three physical qubits.  We prepare the three qubits to be in 
a state of superposition with the same probability amplitudes 𝛼 
and 𝛽, such that the logical qubit, |Ψ⟩, in terms of the three 
physical qubits, |𝑎𝑏𝑐⟩, is encoded as 

 |Ψ⟩ = 𝛼|0p + 𝛽|1p ⟹ 𝛼|000⟩ + 𝛽|111⟩. (21) 

That is, the logical qubit is encoded with the three physical 
qubits as  

 |Ψ⟩ ⟹ |𝑎𝑏𝑐⟩ = 𝛼|000⟩ + 𝛽|111⟩. (22) 

In such an encoding, single bit-flip errors, indicated by a caret 
symbol, would cause one of the following representations of 
physical qubits to occur; 

 

 |𝑎t𝑏𝑐⟩ = 𝛼|100⟩ + 𝛽|011⟩, (23) 
 u𝑎𝑏v𝑐p = 𝛼u010⟩ + 𝛽|101⟩, (24) 
 |𝑎𝑏�̂�⟩ = 𝛼|001⟩ + 𝛽|110⟩. (25) 

To determine if any of the three physical qubits has suffered 
a bit-flip error, a two-qubit syndrome state is computed that 
indicates errors in the physical qubits.  Once a single bit-flip 
error is detected, it can be corrected by conditionally performing 
another bit-flip in an intentional manner using a CX gate.  The 
syndrome computation uses the exclusive-OR or modulo-2 
addition operation to compute a pair of observables of the form 
|𝑎 ⊕ 𝑐, 𝑏 ⊕ 𝑐⟩ .  When measured, the syndrome causes the 
physical qubits to be projected to basis states due to 
entanglement relationships between the two syndrome bits and 
the actual physical qubits.  The measured syndrome can take on 
the following possible values and meaning: 

 |00⟩ ⟹ no	single	bit	flip	occured, (26) 
 |10⟩ ⟹ |𝑎⟩	single	bit	flip	occured, (27) 
 |01⟩ ⟹ |𝑏⟩	single	bit	flip	occured, (28) 
 |11⟩ ⟹ |𝑐⟩	single	bit	flip	occured. (29) 

In the case that a small single-qubit error occurs rather than 
a bit-flip, one of the probability amplitudes changes by some 
amount, ±𝛿, and the physical bits would have evolved into one 
of the following six states 

 |𝑎� 𝑏𝑐p = (𝛼 ± 𝛿)|000⟩ ∓ 𝛿|100⟩ + 𝛽|111⟩, (30) 
 |𝑎� 𝑏𝑐p = 𝛼|000⟩ + (𝛽 ± 𝛿)|111⟩ ∓ 𝛿|011⟩, (31) 
 |𝑎𝑏v𝑐p = (𝛼 ± 𝛿)|000⟩ ∓ 𝛿|010⟩ + 𝛽|111⟩, (32) 
 |𝑎𝑏v𝑐p = 𝛼|000⟩ + (𝛽 ± 𝛿)|111⟩ ∓ 𝛿|101⟩, (33) 
 |𝑎𝑏�̂�⟩ = (𝛼 ± 𝛿)|000⟩ ∓ 𝛿|001⟩ + 𝛽|111⟩, (34) 
 |𝑎𝑏�̂�⟩ = 𝛼|000⟩ + (𝛽 ± 𝛿)|111⟩ ∓ 𝛿|110⟩. (35) 

As long as the error is sufficiently small, the projective 
measurement of the syndrome will almost certainly indicate that 
it has value |00⟩ most of the time with probability 1 − |𝛿|! and 
thus causes the physical qubit to be projected back to its original 
state utilizing the self-correcting capability inherent in the 
projective measurement as previously discussed.  Even when the 
unlikely situation that the syndrome measurement does result in 
a value other than |00⟩, causing the physical qubit with the small 
error to be projected to its erroneous state, it will be a correct 
syndrome indicating which physical qubit is in a flipped state 
and therefore permitting it to be identified and corrected. 

The analysis of this extension of the conventional three-bit 
replication code into the quantum realm by using three physical 
qubits to represent a single logical qubit has just been shown to 
correct single bit-flips, including small bit-flip errors.  
Furthermore, this approach is directly analogous to the 
conventional three-bit replication code for digital electronics for 
bit-flip error models.  However, as we previously discussed, 
qubits may also suffer from phase-flip errors and the two-qubit 
syndrome used here will not detect this class of faults. 

A phase-flip error causes the logical qubit in the state 
|Ψ⟩ = 𝛼|0p + 𝛽|1p to evolve into the erroneous state |ΨCDD⟩ =
𝛼|0p − 𝛽|1p.  The likelihood of a phase-flip error occurring is 
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actually increased when the QEDAC just described is 
employed. 

B. The 9-qubit QEDAC due to Shor 
One of the first such QEDAC schemes is due to Peter Shor 

and was published in his 1995 paper [11].  Shor’s QEC encodes 
a single logical qubit into nine physical qubits and can be 
considered as a further extension of the classical three-bit 
replication code into quantum technology as was just described 
for bit-flip errors, but this time it is generalized even more to 
allow for dealing with phase-flip errors. 

The technique requires the preparation of three different 
groups of three physical qubits resulting in a total of nine 
different physical qubits that represent a single logical qubit.  
Each group of three physical qubits is in a form similar to that 
in the preceding subsection.  The idea is that using a replication 
of three groups of three physical qubits permits comparisons or 
syndrome-like computations among differences in the various 
pairs of groups.  By comparing pairs of groups of three physical 
qubits a phase-flip error can be detected.  Furthermore, since 
each group of three qubits is of a form similar to that described 
in the previous section, single bit-flip errors can also be 
detected and corrected. 

Each logical qubit is representing with the following set of 
nine physical qubits, 

 |0p ⟹ *
"√"
(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩),

  (36) 

 |1p ⟹ *
"√"
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩),

  (37) 

In this encoding, the logical qubits consist of the outer product 
of each of the three groups of three physical qubits.  When a 
single phase-flip error occurs in one of the groups, an evolution 
occurs due to a transformation based on a phase-flip fault model 
transfer matrix.  The three-qubit fault model transfer matrix for 
the phase-flip error is formed as the outer product of the matrix 
𝐄( in Equation (17) where 𝜙 = 180∘, that is 𝐄(%F ⊗𝐄(%F ⊗ 
𝐄(%F.  This phase-flip fault then results in the following state 
transition to occur in one of the groups of three physical qubits, 

 (|000⟩ + |111⟩) → (|000⟩ − |111⟩), (38) 
 (|000⟩ − |111⟩) → (|000⟩ + |111⟩). (39) 

Thus, the fault causes a sign change in one of the three groups 
of qubits representing the logical qubit.  We cannot directly 
detect the phase-flip fault through application of a projective 
measurement since that would alter the logical qubit 
information.  The idea is to compare the relative phases of pairs 
of groups with one another. 

To perform the comparisons of the relative phases among a 
pair of groups, we form an observable over six physical qubits 
since each pair of groups comprises three physical qubits per 
group.  This observable is formed by flipping the phase of each 
of the six physical qubits in a given pair.  The application of a 
phase flip twice yields the original phase before the error.  Thus 
the observable will result in measurement values of +1 when the 
phases are the same within the two groups and a measurement 
value of -1 when the phases differ.  This is due to the theory of 

projective measurements that indicates the output of a 
measurement is one of the eigenvalues of the observable, and in 
fact, it is the eigenvalue corresponding with the measurement 
basis vector (i.e., the eigenvector since projective observables 
are Hermitian) that the measurement forces the qubits to 
collapse into. 

The method is then to compute this observable for two sets 
of groups. For example, the first set can comprise the first six 
physical qubits and the second set can comprise the first and last 
three physical qubits.  This arrangement of pairs of groups is 
analogous to the bit-flip syndrome computation in the preceding 
section except that instead of computing the modulo-2 sum of 
two physical qubits, we compute and measure the observables 
formed from phase-flipping fault models.  The particular group 
of three qubits with a phase-flip error can be identified through 
comparisons of the outcomes of the measurements where we 
assume the first value is the measurement among the first two 
groups and the second measurement is among the first and third 
group. 

 (+1,+1) ⟹ no	phase	flip	in	the	group	pair (40) 
 (+1,−1) ⟹ phase	flip	in	the	third	group (41) 
 (−1,+1) ⟹ phase	flip	in	the	second	group (42) 
 (−1,−1) ⟹ phase	flip	in	the	first	group (43) 

The outcome of the measurement then conditionally applies 
an intentional 180○ phase-flip, in the form of 𝐙⊗ 𝐙⊗𝐙 =
𝐙⊗𝟑 to the detected group of three qubits that suffered a phase-
flip fault.  This is accomplished with a controlled-𝐙⊗𝟑 operation 
where the control is governed by a group that was found to be 
free of a phase flipping fault.  This restores the phase-flip error 
back to its original state since the direct product 𝐄(%F𝐙 = 𝐈. 

Similar arguments with regard to small errors in phase can 
be made with this approach as those for the small bit-flip error 
in the previous subsection.  Observables can be formulated that 
combine the bit-flip syndrome calculation with the phase-flip 
observable to provide an overall QEDAC that protects against 
any unitary error since both phase and probability amplitude 
errors have been addressed, both in terms of the flipping and the 
small error cases. 

C. QEDAC Motivation and Current Efforts 
There are numerous new developments in QEDAC; both in 

terms of newer schema as well as architectural and QC 
paradigm improvements.  We described one of the first 
QEDAC approaches to introduce the main concepts, yet this 
pioneering approach due to Shor is now 25 years old.  Many 
current efforts have resulted in very promising approaches and 
research in quantum error correction is ongoing.  A partial list 
of some of the more current approaches as they were published 
in the intervening time between the writing of this paper and 
Shor’s original approach are included in the bibliography to 
provide the reader with a sample of later QEDAC results should 
they decide to gain a more current understanding of the area.  
These include [12, 13, 14, 15, 16] and are only intended to 
represent a sample of the many important advances that have 
occurred in the field since 1995. 
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Perhaps the biggest challenge in providing highly reliable 
quantum informatic processing devices is that of decoherence.  
Even the noblest and most advanced means of isolating a QC 
from the external environment is likely to never be entirely 
sufficient, thus researchers are more focused on determining 
ways to provide reliable QC assuming that decoherence events 
will always be present to some degree. 

When the quantum state of a QC becomes entangled with 
“noise” qubits due to external environment interactions before 
full decoherence occurs, a QEDAC method such as that of Shor 
also provides some protection since the calculation of the 
syndrome observables and the associated projective 
measurements also restore the quantum state of the system back 
to its original state as a side-effect.  That is, the act of computing 
the syndrome observables and the projective measurements that 
are involved can be viewed as “dis-entangling” QC physical 
qubits from previously entangled external environmental 
quantum states.  This observation is responsible for the large 
amount of activity in the QC community with regard to 
QEDAC.  QEDAC is viewed as one of the most important 
potential enablers in improving the reliability of QC and can 
guide the design and implementation of next-generation devices 
for processing quantum information allowing the availability of 
much higher-reliability QCs as compared to NISQ devices. 

VI. SUMMARY 
This tutorial has endeavored to describe the quantum 

informatic paradigm for processing quantum information with a 
focus on the differences between the mathematical models 
describing QC versus those for processing conventional voltage- 
and current-mode classical models of information.  Descriptions 
of the qubit as an element in the two-dimensional Hilbert vector 
space are provided and contrasted with the switching theory 
models used in digital electronics.  The concept of information 
processing, both in the form of software for a QC and as a 
dedicated quantum informatic hardware circuit are provided in 
a technology-independent manner. A much more complete 
reference that provides detailed descriptions of the topics in this 
paper is [17]. 

Particular emphasis is placed on reliability of QC processing 
including a survey of predominant error sources and the 
development of corresponding fault models in the form of 
transformation matrices.  One of the most challenging error 
sources, that of decoherence, is explained in a qualitative 
manner with the aim of providing an intuitional grasp of this 
important family of error sources.  The motivation behind the 
utilization of the bit-flip and phase-flip fault models as a basis 
for encompassing a larger group of specific QC fault models is 
provided.  The use of these two fault models as such a basis is 
somewhat analogous to the use of the “stuck-at” model in 
conventional electronic processing since the bit-flip and phase-
flip models cover a large number of different error sources in a 
similar fashion as the stuck-at model covers a large variety of 
error sources in electronic data processing circuits. 

The most predominate approach for enhancing reliability, 
that of utilizing logical qubits in coordination with QEDAC, is 
developed here by starting with the concept of one of the easiest 
to understand and simplest forms of conventional error detection 
and correction; the three-bit replication code.  The concept of the 
three-bit replication code is generalized to encompass quantum 
information and descriptions of how projective measurements 
and observables are used to overcome limitations due to the no-
cloning theorem are included.  The three physical qubit 
approach for representing a single logical qubit was then 
generalized to encompass phase errors leading to a description 
of Shor’s nine-qubit QEDAC method [11].   
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