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General process detection through side channel 
characterization
Michael A. Taylor, Aviraj Sinha , Eric C. Larson and Mitchell A. Thornton

Lyle School of Engineering, Southern Methodist University, Dallas, TX, USA

ABSTRACT
In this study, we demonstrate the feasibility of using physical 
sensors in System-on-a-Chip (SoC) for real-time security mon-
itoring by detecting and characterizing different process 
types, such as file I/O, CPU/ALU-intensive tasks, network I/O 
and virtualization. We present models that use sensor data 
for binary classification to determine whether a specific pro-
cess category is active or inactive. Analyzing the detection 
results, we determine the importance of each sensor in iden-
tifying process types and providing insights into process 
behaviors and sensor impacts. We developed adaptive 
ensemble classifiers to accommodate varying load condi-
tions, enhancing detection accuracy across diverse opera-
tional scenarios, including regular background activities 
that simulate real-world conditions. Our results show effec-
tive detection of file I/O and CPU/ALU-intensive processes 
under various loads. Virtualization processes are accurately 
detected under light loads but show a moderate accuracy 
decline under heavier conditions. Network I/O detection 
faces challenges due to fewer relevant sensors. Our ability 
to predict process categories consistently and with high 
performance allows us to discover behaviors of various mal-
icious activities. This research underlines the efficacy of sen-
sor-based analysis for reliable and adaptable real-time 
process monitoring, demonstrating the feasibility of using 
sensor data for security purposes in various environmental 
conditions.
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1. Introduction

Computer systems have become extremely complex in order to keep up with 
the demands of modern businesses and consumers. This complexity can be 
seen in the number of functions and operations a system must perform at 
a given time while also having to account for such things as large-scale timing 
and concurrent data usage. Given some knowledge of how one of these com-
plex systems works, it has been shown that it is possible to determine the 
actions being performed by a system and the sensitive information being 
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used [1–3]. Often, this type of information is overlooked as innocuous because it 
is a product of the regular operation of the system rather than a specific flaw 
that exists in the algorithms being performed by the system. However, as 
systems become more complex and data becomes transmitted at higher 
rates, a specific fingerprint begins to form in the physical system, which is 
even easier to detect when the processes being performed operate in 
a predictable and repeating manner.

The concept of measuring the performance of system hardware to exploit 
physically unique operating characteristics is well established. Physically 
Unclonable Functions (PUFs) act as digital fingerprints by leveraging the differ-
ence in performance due to the semiconductor manufacturing processes [4]. 
Characteristics such as timing can be used to reliably differentiate between and 
uniquely identify semiconductor devices manufactured from the same die [5]. 
PUFs are very effective at the task of authentication despite only measuring 
simple operations in a single component. Even the most complex computer 
systems are essentially large collections of physical components carrying out 
their own simple tasks in a very organized and cooperative effort to perform 
a given task. If we were to measure the physical state of one of the individual 
components during the execution of a specific process, it is unlikely that we 
would be able to use that knowledge and say with any real degree of certainty 
when the process is present on a system in the future. However, if we also 
measure a large number of other system components simultaneously and 
combine that knowledge, the unique physical state of the system as a side 
effect of performing a specific process comes into focus. The extremely sensitive 
operational nature of computational components, such as the semiconductor 
devices that allow for PUFs, can also be leveraged to create a multimodal 
approach to process detection on a system by exploiting the unique physical 
state of the system required for operation.

Characterizing process information through multimodal physical sensor 
behavior, rather than relying solely on either hardware counters or performance 
logs, offers invaluable advantages in enhancing security. One key benefit lies in 
the necessity for redundant information, which is essential for countering 
potential spoofing attempts. Side channel information provides defenders 
with real-time, authentic data that is far less prone to attackers’ attempts at 
manipulation. When restricted to and managed by a defender rather than the 
user, sensor data remain resistant to spoofing. Additionally, employing side 
channel information offers users the freedom to withhold sensitive privacy 
details, which might be disclosed in performance logs and hardware counters. 
Furthermore, if both side channel information and log data are available, the 
synergy between the two proves advantageous. When these sources are 
obtained together, matching sensor data with logs and hardware information 
enhances security [6]. In particular, using side-channel sensor detectors 
together with traditional signature-based detectors is advantageous as a two- 
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tiered detection implementation since the attacker would then have to perform 
the complex task of spoofing both data sources simultaneously.

In previous works, specific sensors within modern System-on-Chip (SoC) with 
multiple CPU cores were employed to collect real-time data. This data was then 
input into a machine learning classifier to identify the presence of ransomware 
instances [7,8]. The previous approaches involved training the classifier with 
processes that exhibited ransomware behavior. The ransomware behavior is 
simulated by operations that identify victim files for encryption followed by 
CPU-intensive encryption operations [9–11]. This previous work shows potential 
for the side-channel data to be used for the detection of ransomware. In 
contrast, this study focuses on utilizing physical sensor side channels to detect 
arbitrary target processes. A binary output indicates whether the target process 
of a specific category is running or not. Thus, rather than training models to 
detect a specific anomaly such as ransomware, this work focuses on general 
process detection for different categories, which can then be utilized for the 
characterization of anomalous activity. It is worth noting that we believe this 
general characterization of activity can then be used for ransomware detection 
since, from a broader perspective, ransomware activities can be categorized as 
initial file I/O activity followed by CPU-intensive operations during encryption. 
Other previous work involves foundational general process detection in Taylor 
et al. [3]. However, the research on general process detection focuses on the 
accuracy testing of a single model without the domain-specific detection rate 
and sensor analysis.

This research includes a comprehensive evaluation of the effectiveness of 
utilizing Physical Sensor Side Channels (PSSC) for detecting various general 
processes. The success of PSSC-based detection and characterization hinges 
greatly on the presence or absence of appropriate sensors within the host 
architecture. For instance, if a specific host architecture lacks sensors inside or 
in proximity to the network interface circuitry (NIC), detecting a process that 
involves extensive communication with the network becomes considerably 
more challenging using PSSC. This study involves feature analysis of the differ-
ent sensors and the effectiveness of their usage to detect different processes. In 
addition, real-time monitoring of specific statistical detection metrics is 
obtained and compared for a wide range of efficient machine learning models. 
By integrating these elements, the research advances the field of malware 
detection and other critical anomalous activities by utilizing sensor-driven 
insights for real-time monitoring. In our work, we extend previous general 
process detection by first providing a more robust methodology for testing 
the detection four process categories under various realistic loads, then incor-
porating testing of multiple models, including eight different ML models and 
their ensemble variants with five different metrics. After obtaining test results, 
we improve feature analysis that attributes process detection to specific sensors 
using a feature importance score. We then examine the implications of such 
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general process detection performance by visualizing real-time process classifi-
cations. To perform this experiment, we collect physical sensor data from multi-
ple integrated system sensors at regular intervals in order to create a vector that 
represents the physical state of the system for each sampling period. Recording 
these data and labeling periods in which a system is executing a specific process 
and also periods where it is not executing the specific process allows for the 
creation of a binary prediction model using machine learning. This study con-
ducts detailed process detection at a granular level for each set of sensor 
samples, leveraging sensor data to distinguish between processes heavily 
skewed towards file I/O activity, network I/O, or CPU/ALU-intensive tasks. By 
identifying specific sequences of process activities through sensors, this study 
establishes fundamental building blocks for detecting malicious applications 
through physical side channels. Specifically, these building blocks consist of the 
binary detection outputs of the multiple process categories, which can then be 
used in the second stage of detecting specific anomalies.

This approach of process detection is useful to detect both malware and 
other hardware anomalies since it allows a defender to characterize desired 
normal behavior and anomalous behavior based on dominant sensor activities. 
For instance, detecting a sequence starting with file I/O intensive operations 
followed by CPU/ALU-intensive tasks could signify processes searching for 
target files and processing them through intensive computations, such as 
encryption phases seen in many ransomware instances [8]. There are many 
other types of attacks that can be linked to different process category behaviors. 
Distributed Denial of Service (DDOS) attacks can be identified by processes 
using network IO and CPU utilization spikes, which can be identified through 
our detection models. Especially if the high CPU usage correlates with network 
IO, then there may be an attempt to deny access to the server [12]. Other attacks 
include data exfiltration. In this case, file/IO intensive processes would be used 
to download a target file, and then possibly network IO processes would be 
heavily utilized to export the data elsewhere. Privilege escalation attacks often 
involve VM processes to work around typical security methods to get higher 
privileges. Many other attacks, such as trojans, botnets and general misuse of 
resources of any kind, can be found through a certain pattern of file, network 
and CPU utilization. To avoid learning every possible process pattern for every 
attack, we can use an unsupervised approach that uses the process category 
prediction vectors from our process detector models to learn normal behavior. 
A higher-level model trained on normal behavior should be able to detect 
whether the next set of sensor data is likely to be an anomaly [13]. This approach 
eliminates the need for training and customizing process classifiers for specific 
anomalies. Instead, system administrators can define specific process sequences 
of interest. Upon detecting deviations from such sequences, the system can 
issue alerts indicating the identification of particular process sequences, com-
plete with associated probability values that indicate confidence levels. The 
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process category data are robust to spoofing and avoid relying on knowledge of 
all processes running on user devices and access to user permissions. This extra 
information allows the system administrator to monitor the system not only for 
malware but also for possible slowness of processing power and issues with 
connectivity related to the corresponding CPU and I/O sensors.

The experimental results generated from our model tests demonstrate the 
practicality of identifying diverse target processes by analyzing the physical 
state of a system through existing sensors. Unlike prior methods that necessi-
tate intricate behavioral analysis, our approach provides a swift initial indication 
of a target process required to avoid compromising performance or incurring 
significant delays [7,14]. This rapid process detection capability allows for the 
prompt activation of safety measures, acting as a preliminary defense until more 
exhaustive behavioral analyses can be conducted. In the realm of malware 
detection, our novel detection model serves as a crucial tool. It offers prelimin-
ary information about a target process, enabling the implementation of 
immediate safety protocols. This method is designed to complement existing 
detection techniques, enhancing their performance and acting as an additional 
layer of defense. Moreover, our approach has the unique ability to model threats 
based on sequences of fundamental and common process tasks derived from 
sensor data patterns rather than relying on predefined malware databases. This 
adaptability makes it particularly effective in detecting zero-day attacks and 
other instances of malware that may only be identifiable through sensors.

2. Experimental setup and data collection

Our methodology introduces significant contributions in data collection meth-
ods in order to generate high-resolution data for training and testing general 
process detection models. Utilizing specific benchmarking tools, we create and 
evaluate four distinct process types: file I/O, CPU/ALU intensive, network I/O and 
virtualization. The training of our models incorporates advanced ensemble 
methods, which enhances robustness and performance. Additionally, we 
employ a thorough testing approach using a realistic evaluation dataset, ensur-
ing our models’ effectiveness and generalizability in diverse and dynamic 
environments.

2.1. Hardware and software environment setup

Throughout our experiments, we use sensor data that is available on our 
specified hardware. The hardware experiments were done on an Apple Mac 
Mini MGEM2LL/A. The hardware specifications include a 1.4 GHz Intel Core i5 
processor, 4 GB of LPDDR3 RAM and a 500 GB HDD. On this hardware are 50 
systems sensors. These included sensors for temperature (16 units), voltage (6 
units), current (12 units), power (15 units) and one sensor dedicated to 
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monitoring the rotations per minute (RPM) of the exhaust fan. To gather sensor 
data in real-time, we use the software tool called ‘Hardware Monitor’ [15].

The ‘Hardware Monitor’ application enables us to sample data from all 
sensors every 100 milliseconds (0.1 seconds), providing a high sampling rate 
capable of capturing rapid changes in hardware sensors. Each sensor reading 
obtained at this rate is combined into one vector as a singular input for the 
machine learning model. This input is then processed by the model, resulting in 
a binary output representing the process being detected. As mentioned in the 
next sections, our classifier is trained using a total of 2 hours’ worth of data, 
equating to 72,000 classifications made within this time frame considering the 
given sampling rate. The output forms a binary vector of the same length, which 
is then compared to the actual behavior of the process during the correspond-
ing sensor reading. We subsequently assess and compare the outcomes of our 
classifications against the real-time process behavior.

Our data gathering and model development is primarily implemented in 
Python 3 with packages managed in the Continuum Anaconda package 
Manager [16,17]. The Scikit-learn library is used for data transformation, pre-
processing, model training and testing [18,19]. Our experiments focus on 
detecting file I/O, CPU, network I/O and Virtual machine (VM) intensive pro-
cesses. The I/O intensive case is designed using the Iozone filesystem bench-
marking tool [20]. The CPU-intensive case is created using the FFmpeg 
multimedia framework since it is characterized by many ALU-intensive applica-
tions [21]. The network I/O intensive process is created using the Nmap network 
for network discovery and security auditing [22]. The VM process is created by 
launching and operating a virtual machine (VM), specifically VMware Fusion 10 
Pro desktop hypervisor on the host system [23]. Each of these individual tools 
has multiple commands that we use to create generalizable behaviors for each 
process category.

We want to emphasize that the four process types originate from distinct 
applications but can be generalized to common categories: file I/O, CPU/ALU 
intensive, network I/O and virtualization. Their generalization to similar process 
categories is rooted in their shared use of specific computer hardware compo-
nents, such as the disk, CPU or NIC. In real-world scenarios, multiple processes of 
these types run simultaneously. Our experiments demonstrate that our process 
detection can accurately identify specific process types even when other pro-
cesses run concurrently under varying loads. Our model’s process detection 
output can be integrated into more intricate models, representing heteroge-
neous workloads with multiple processes operating concurrently. While this 
study emphasizes coarse-grained process detection, these general probabilities 
and confidence factors can also be combined for models requiring finer control 
over false positives.

While running each of the four target processes, we add realistic CPU loads 
during both the training and testing of our models. For generating data 
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specifically for training our models, the Go programming language is used to 
generate CPU loads using the script ‘go-cpu-load’ script described in Vikyd [24]. 
It adjusts CPU loads in a loop over time and allows us to modify the delay 
periods between loads. This more basic system load generator is used to create 
the training data. For more advanced methods and patterns of CPU loads for the 
testing of the model, we applied the Stress-ng package, which is used to create 
more diverse system stressors that include over 70 distinct techniques for 
creating CPU loads alongside the target process [25]. The difference between 
the training and testing CPU load generation is used to test the generalization of 
our process detection to unseen conditions.

2.2. Data collection

In practice, a single Python script is used to collect data for DM training and 
testing in one cycle for a specified process category. A train and test cycle are 
performed for the specified process type along with the previously described 
script ‘go-cpu-load’ for training and Stress-ng for testing. The process is switched 
to another process category for a new train and test data collection cycle. After 
switching, the system is powercycled to free all resources and avoid any con-
taminating effects of the previous process. The training and testing data for 
each process type are stored in a comma-separated data file in the system.

After all data processing, we train the corresponding DM models for each 
process type and experiment with multiple machine learning algorithms for 
each DM, including ensemble models that are discussed in Section 3.1. The train 
and test datasets are kept constant for the various DM models we experiment 
with. After training, testing involves finding the binary prediction for each time 
interval, resulting in the binary prediction vector. The binary prediction vector is 
used to compute performance metrics and analyze which processes can be 
detected adequately and which DM should be used for each method.

It is important to note that the target processes collected from the training 
data originate from the same applications used in the test set. However, as 
discussed in Section 2.1, the sensor behavior of the four process categories for 
detection is broad enough to represent similar processes of the same type from 
various applications. The available sensors provide information about the pro-
cess type, which can still be generalized to similar processes within the pre-
viously defined categories. This reliance on process categories rather than 
specific applications means that our test set can be broadly applicable for 
detecting processes of the same category type, enhancing model 
generalization.

2.2.1. Collecting training data
For training data collection, we decided that a 2-hour time frame is sufficient to 
train a classification model since, as found in Taylor et al. [8], training for 24  
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hours was near the same level of effectiveness as the 2-hour training. 
Consequently, since any additional training hours have limited performance 
gain, we stay consistent with using 2 hours of sensor data for training. Three 
threads need to be established for every 120-minute training session. The 
threads include one thread to oversee the start and stop of the process cate-
gory, one thread for controlling the CPU load, and another for data recording. 
The controller thread first starts the process and times the execution time. 
A pause of 120 seconds follows, giving system sensors the essential recalibration 
time. Once recalibrated, the controller thread activates a Boolean marker, which 
serves as a cue for data recording to commence. What follows is a repeating 
sequence in order to obtain both binary classes of process being on and off 
through the 2-hour period: the thread first observes an idle wait time equivalent 
to the previously logged process completion, activates the process and then 
waits once again for an equivalent duration. After another recalibration pause of 
120 seconds, during which the process starts or stops, this sequence concludes 
only when the accumulated duration satisfies or surpasses the predetermined 
training duration. A design aspect of this data collection approach is that it 
yields a dataset over 2 hours that features a 2:1 inactivity to activity ratio of the 
test process. While this ratio does not accurately mirror real-world scenarios, it 
serves a specific purpose in the context of training the detection models. The 
intentional skew towards a higher duration without the test process running 
helps the models learn patterns and behaviors associated with the system in an 
idle state, providing a more robust training foundation for the detection 
algorithms.

For the ensemble models we will discuss in Section 3.1, we will make 
improvements upon previous work by attempting to account for the impact 
of different system loads on the detected process by training the classifier at 
different system loads. In theory, this method should allow the model to per-
form better on the complex evaluation data, which consists of a variety of 
process loads. The training data is used to train ensemble DMs consisting of 
11 ML models, each model training under different system loads ranging from 
0% to 100%, with one model trained at each 10% interval. Each additional load 
was achieved by initiating processes on all hyperthreads and running an empty 
loop at a dynamic rate to sustain the desired CPU load. Ensuring the balance of 
this additional load across the system’s total CPU resources requires running the 
empty loop at a dynamic rate and is needed to avoid overloading any specific 
resource. For ensemble detector models utilizing 11 ML models trained on the 
full range of system loads, each of the four process category models demanded 
22 hours of training.

2.2.2. Collecting evaluation data
We employ new advanced methods for collecting evaluation data, which mirrors 
the approach used for training data but with a few key distinctions that make it 
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more realistic to the real-world behavior of processes. The primary aim here is to 
accentuate the effectiveness of our models through adequate testing, which has 
not been seen in previous works. Instead of initiating a timed target process and 
implementing a continuous loop until reaching a set duration, the evaluation 
procedure introduces unpredictability. Specifically, the control thread for the 
target process undergoes random intervals ranging from 10 to 40 minutes. In 
addition to a random interval, a randomly chosen extra CPU load is added to the 
system, adding to the load generated by regular background processes. Prior to 
each evaluation run, a specific CPU load level is randomly selected from 
a predefined range and applied to the system, utilizing the same method 
employed during training. Four values are chosen from each range of ten values 
before progressing to the next range, starting from 1 to 10 and concluding at 91 
through 100. Consequently, the dataset comprises 40 evaluations, ensuring an 
even distribution of random additional load levels within intervals where training 
data were collected with known additional CPU loads. This dataset accommo-
dates the possibility of random intervals and randomly selected additional load 
levels that do not include the known load levels employed during training, thus 
preventing load memorization for classification during the training process. The 
sporadic nature of this testing helps minimize any biases that could arise from 
fixed testing intervals. In our experimental evaluation, this testing method is 
labeled ‘Simple Random’ load test since the CPU load is balanced.

We can make our evaluation data even more realistic by including diverse 
random CPU load sources different from the training set, mimicking a production 
system handling multiple heterogeneous workloads. This increased data com-
plexity enhances our ability to generalize test results for broader process detec-
tion and is an improvement upon other testing methods in previous works. 
Evaluation data is collected with an additional CPU load deliberately introduced 
onto the system, supplementing the load generated by regular background 
processes. Each specific process under scrutiny is executed once within a span 
of 1 hour, the timing chosen at random. Before each evaluation run, a distinct 
CPU load level is randomly chosen from a specified range and applied to the 
system using a method distinct from those employed during DM training. This 
chosen load level is then unevenly distributed across hyper-threads in 
a randomized manner, collectively imposing the desired additional system CPU 
load level. The technique employed to distribute the load across each hyper- 
thread is selected randomly from a pool of 70 distinct CPU stress methods, 
excluding the empty loop method used in training. In our experimental results 
in Section 5, we test all of our DMs with this ‘Advanced Random’ load test.

3. Detectors model design and evaluation

Our new general process detection methods include a variety of machine 
learning models and higher-complexity ensemble models to address the 
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variability in process loads and timing described in the previous section. We 
then plan to test the models with a diverse and comprehensive set of perfor-
mance metrics to address the complexity of real-world process detection 
scenarios.

3.1. Detection model implementations

Within our research framework, a ‘Detection Model’ (DM) functions as a high- 
level representation of a machine learning model. This is an important abstrac-
tion since one of the key contributions of our work is experimenting with 
a variety of models, including Decision Trees, K-Nearest Neighbors (KNN), 
Logistic Regression, Support Vector Classifier (SVC), Random Forest, Extra 
Trees, Multi-Layer Perceptron (MLP) and Naive Bayes. The DM also encapsulates 
the ensemble versions of these models to detect processes of the specific type 
under multiple load conditions.

The DMs are all trained to classify five distinct process categories: File I/O 
Process, CPU Intensive Process, Network I/O Process, Virtual Machine Running 
and Simulated User process on virtual machines. When given a set of current 
physical sensor readings, the DM produces a binary output indicating whether 
the target process is present or absent. This binary value, as outlined in the 
research in Picek et al. [26], determines the current status of a specific target 
process within the system. Along with the binary prediction value, the prob-
ability value generated by the machine learning algorithm before the binary 
prediction can be used as a confidence level. This additional factor offers 
valuable insights, assisting in establishing acceptable levels of false positives 
for process detection and guiding appropriate actions accordingly. Once a DM 
has been trained and implemented, the resources required for predictions are 
minimal.

This efficiency is attributed to the absence of complex behavioral or compu-
tational analyses. Additionally, the data utilized for process detection are 
sourced from side-channel data, ensuring minimal risk to user privacy and 
data leakage. Our approach represents a holistic and adaptable methodology 
underpinned by DM abstraction, facilitating robust decision-making in the 
realm of process detection systems.

Section 2.2.1 details how ML models are trained, and this section details how 
a collection of ML models is used to build an ensemble detector whose purpose 
is to select ML models that are optimal for the system’s current physical state. 
Five different

DMs are trained – Single, Ens 6 Single, Ens 11 Single, Ens 6 Dual and 
Ens 11 Dual. Each of the five methods was tested using simple and 
advanced unknown additional load tests for each target process as 
described in Section 2.2.2. We then evaluate the prediction vectors of 
five DMs under a variety of performance metrics to accurately assess 
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whether the increased complexity of models results in greater improve-
ments in performance.

The simplest detection method utilizes a single ML model, trained with all the 
training data collected at the various known additional load levels. The simpli-
city of this method is illustrated in Figure 1. This detection method is labeled as 
‘Single’ in the experimental results.

CPU load serves as a confounding factor in our side channel method. This is 
because CPU load competes for resources, leading to delays in executing 
processes and subsequent behavioral changes. At the sensor level, CPU load 
directly influences sensor readings; for instance, high CPU load translates to 
increased power consumption and higher heat levels. This variability in CPU 
load significantly influences the features of different process categories, thereby 
influencing the modeling of process detection. To address this challenge, we 
created an ensemble of classifiers trained at various CPU loads, enabling a more 
robust and accurate approach to our analysis.

As discussed in Section 2.2.2, CPU loads are randomly introduced with ran-
dom CPU load levels in our test data to mimic real process detection situations. 
Considering the impact of CPU load on our model, we develop an advanced 
ensemble-based DM. This ensemble method selects a classifier trained on 
specific loads, enhancing our detection approach. In theory, training multiple 
models that account for the CPU load should improve classification by account-
ing for sensor fluctuations due to factors not related to the process we are 
running for detection. During the ensemble model’s testing, a load-based 
selection of the trained ML models is made. The selected model that was trained 
under similar conditions of CPU utilization should perform better than any 
single model at detecting whether the process is on or off. As we discussed in 
the previous Section 2.2.1, the ensemble detectors are created from multiple 
versions of the highest-performing ML model for the specified process category. 
One ensemble uses 11 versions of the model that are each trained at different 
CPU load levels varying at intervals of 10% from 0% to 100%. Another ensemble 
uses six versions of the model trained on CPU load intervals increasing in 
intervals of 15% from 0% to 100%. The model receives the current system 
CPU load utilization and uses this information to select the model trained on 

Figure 1. Single detection model (single).
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the load level closest to that found in the current test data. These detectors are 
shown in Figures 2 and 3 and will be labeled as ‘Ens 6S’ and ‘Ens 11 S’, 
respectively, in the experimental results.

CPU load can also be influenced by the operation of the process we are 
detecting. For example, when the process is not running, the CPU load is lower; 
thus, the ensemble detector chosen will be trained on the lower CPU load. To 
address this complexity, we divide the task into two distinct components, both 
reliant on CPU usage, by creating dual models. Initially, one ensemble model 
assesses whether a process category is active based on the current CPU load. 
However, sensor data without an active task should yield a lower CPU load. As 
a result, another ML model calculates CPU usage, subtracting the average load of 
that specific process category. This lower CPU usage is employed to run the 
model that is trained at a reduced level, generating a confidence score indicating 
that the process is inactive. Consequently, the confidence outputs from the dual 
models, one trained on higher CPU and one trained on lower CPU loads, result in 
a more robust classification of the process type. Utilizing the confidence scores of 
these binary predictors, we generate the final binary prediction vector based on 
averaged confidence factors, ensuring a nuanced process detection outcome that 
accounts for the CPU load of the process itself. In the following experiment, dual- 

Figure 2. Ensemble detector – single model selection − 6 models (ens 6 S).

Figure 3. Ensemble detector – single model selection − 11 models (ens 11 S).
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selection ensemble detectors with 6 ML models and 11 ML models are evaluated. 
These detection models (DMs) are shown in Figures 4 and 5 and will be labeled as 
‘Ens 6 D’ and ‘Ens 11 D’, respectively, in the experimental results.

3.2. Performance evaluation methodology

3.2.1. Binary classification evaluation
The evaluation step of our experiment requires running our DMs to obtain 
observed binary prediction vectors. We then compare our prediction vector to 
the expected or actual system state vector in order to generate four possible 
classification states at every time period. These states, denoting correctly iden-
tified active periods (true positives), incorrectly identified inactive periods (false 
negatives), accurately identified inactive periods (true negatives) and erroneously 
identified active periods (false positives), form the basis for computing five 
crucial metrics: sensitivity, precision, specificity, fallout and accuracy [27]. It is 
important to emphasize that evaluating these metrics collectively is essential, 
as no single criterion provides a comprehensive performance measure in isola-
tion. We examine the performance of our classifiers with these five statistical 
metrics, which utilize the four previous classification states: DPS, MCC, RPD, 
Fallout and TPD.

Figure 4. Ensemble detector – dual model selection − 6 models (ens 6 D).

Figure 5. Ensemble detector – dual model selection − 11 models (ens 11 D).
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3.2.2. Matthews correlation coefficient (MCC)
The Matthews correlation coefficient (MCC) as shown in Equation 1 evaluates 
the relationship between actual and expected outcomes [28]. Since it equally 
takes into account true and false positives as well as true and false negatives, 
this metric is robust to class imbalances. MCC scores span from −1 to +1. A score 
of +1 denotes perfect prediction, while 0 is equivalent to arbitrary guessing, and 
−1 signifies perfect discord. Importantly, the MCC is balanced, meaning that if 
one interchanges the positive and negative binary evaluations, the MCC 
remains unchanged. This characteristic becomes especially pertinent in scenar-
ios with a pronounced disparity between positive and negative outcomes 
during assessment, much like the data analyzed in this study, which has a 2:1 
ratio. The MCC figures presented in the research findings act as benchmarks to 
gauge the efficiency of the Detection Models (DMs) strictly in their capacity as 
binary categorizers without considering the specific context or rationale of their 
application. 

3.2.3. Rate of process detection (RPD)
During the evaluation of process detection, we need a metric to represent when 
we have an interval of time in which the process is on, and there is at least one 
positive prediction that marks that interval as having a process detected at that 
interval. This can also be thought of as the time-independent process recall rate. 
The area of the time period in which the process is detected is denoted by the 
locations of the label vector where the system transitions from a labeled state of 
‘normal operation’ to ‘process running’, concluding when the state shifts from 
‘process running’ back to ‘normal operation’. Only one positive prediction is 
needed for each of these intervals to obtain a 100% rate of process detection.

In the testing phase, a time series defines the periods of an actual process 
occurrence. The analysis involves checking each time interval within an attack 
period for positive predictions in the prediction time series. If positive predic-
tions coincide, the process running instance is considered detected. The goal is 
to have at least one positive prediction during each process run instance, 
achieving a perfect recognition rate of 1.0. Unlike traditional binary classification 
metrics like sensitivity, the rate of detection focuses not on the volume of 
correct positive predictions but on the application of the binary classifier. One 
positive prediction is as effective as numerous positive predictions since the 
process run only needs to be flagged once. It is essential to consider the rate of 
process recognition in tandem with the binary classifier’s ability to make accu-
rate positive predictions, such as precision. Note that the rate of attack recogni-
tion attains a perfect score even if all predictions are positive, highlighting the 
importance of a balanced assessment with other metrics.
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3.2.4. Time to process detection (TPD)
Not only do we need to measure our ability to recognize individual intervals in 
which the process is running using the RPD, but we also need to measure how 
much time is taken between the start of the ‘on’ interval and the point where 
the model detects the first true positive. A delay is expected since the rising 
edge signifies the start of the process, but the physical sensors will be slower to 
change, and the model will be slower to recognize the first positive prediction. 
To determine the time to process detection (TPD), we find the difference 
between the rising edge of the interval, which is the initial state of ‘process 
running’, from the time of the first positive prediction within the interval of 
process labels being positive. The first positive prediction will be after the first 
label of ‘process running’ due to sensor delays.

To quantify this delay, the number of time intervals, until the first positive 
prediction is recorded, is counted for every recognized target process run and 
process instance. This metric is then averaged to determine the time to process 
detection or recognition. It is essential to note that instances not successfully 
recognized do not adversely affect this metric. Consequently, the mean time to 
process recognition should be evaluated alongside the rate of process recogni-
tion to assess the efficiency of detecting processes swiftly and consistently.

Moreover, it is crucial to consider the precision of binary classifiers when 
making correct positive predictions. If all predictions are positive, the mean time 
to process recognition becomes zero. Therefore, a balanced evaluation involves 
weighing the mean time to process recognition against the classifier’s precision, 
providing a comprehensive understanding of the system’s ability to promptly 
and accurately detect various process instances.

3.2.5. Detector performance score (DPS)
In order for our detection model to be useful, it must account for the previous 
factors of RPD, TPD and fallout. The fallout is the overall false-positive rate, 
which is obtained from all the labeled time periods that are marked with no 
process running (0), and the model falsely detects a process (1). The fallout rate 
is critical since a high fallout rate would result in many false-positive detection 
alerts, making the model unusable due to operational effects. Based on the 2020 
report by Neustar Security Solutions, it is found that, on average, 26% of security 
alerts experienced by organizations were false positives [29]. As a result, one 
goal of our detection model is to have a fallout rate well below the average of 
0.26. Based on previous work, we also should note that for our model to be 
effective, it must have a TPD of no more than 60 seconds [14]. In addition, we 
know that if the model misses any interval in which the process is running, it 
should be heavily penalized since it missed many opportunities to detect the 
process. So, we choose to combine these three metrics of fallout, TPD and RPD 
into a single ‘Detection Performance Score’ (DPS) using Equation 2. 
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4. Experimental results

We analyze the detection results for the four process categories using the 
methodology described in Section 3.2. The detection results are obtained for 
both the simple and advanced random additional load tests for each process 
category. Additionally, we discuss the system commands used to run each 
process type. For initial analysis, the primary focus is on the single model 
detector, offering valuable insight into the basic performance of the process 
detection. Through this analysis, we identify the top performing machine learn-
ing algorithm for each detection method. It is essential to note that we do not 
showcase the zero additional load results, as their main purpose is to assess 
whether further testing is necessary for a specific target process. We show 
simple additional load and advanced additional load to understand perfor-
mance under realistic testing conditions.

With the best single model obtained, we start a time-based testing 
phase to closely monitor its detection capabilities. This involves illustrating 
metrics such as the DPS, MCC and Fallout as they evolve over time. We also 
provide a visual representation of the binary detection results in the form 
of a time series juxtaposed against the actual process state values. This 
visual also contains the progressively increasing process load over the 
indicated period.

Our research also encompasses an in-depth analysis of the importance of 
features. We utilize pie plots to display the feature importance percentage 
scores specific to random forest models. These scores rely on Scikit-Learn’s 
‘feature importance’ attribute. The determination of these importance values 
hinges on methodologies like gini importance or the mean decrease in impurity 
(MDI). To elaborate, MDI evaluates each feature’s relevance by tallying the 
number of splits it influences across trees, weighting them proportionally to 
the samples it segments [18,30].

For each process type, we then use the identified best single model to 
formulate multiple ensemble models, with details discussed in Section 3.1. We 
then begin a comprehensive evaluation of all our DMs using the metrics in 3.

4.1. General process detection

4.1.1. File I/O process
To create a representative pattern for the file I/O process category type, we 
applied a significant amount of file I/O to the host system alongside the random 
amount of CPU load. The file I/O was generated using our IOzone, a filesystem 
benchmarking tool. IOzone includes a variety of write tests: Write, Re-write, 
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Random Write, Record Re-Write, Fwrite and Frewrite. In addition, there are 
a variety of read tests: Read, Reread, Random Read, Backward Read, Stride 
Read, Fread and Freread. The command run to start the process is in 
Appendix A. When a variety of these commands are combined, these tests are 
representative of processes that, in general, have high file I/O.

The results of the unknown additional load tests for single detection models 
for file I/O process detection can be seen in Table 1. For the simple random load 
tests, the best-performing prediction algorithm is the support vector machine 
(SVC) according to the DPS score. However, for the more thorough advanced 
load testing, the single detector with the best prediction results according to 
the DPS score is shown to be the logistic regression. Since the advanced load 
testing is more realistic to real-world varying process load, we will use the 
logistic regression model for further analysis.

Various performance metrics shown over time specifically for the logistic 
regression model are visualized as plots in Figure 6. The selected model has 
high DPS and MCC scores throughout the testing period, even with varying 
additional random loads. The rightmost subfigure, in particular, highlights that 
there are very low false positives. This result indicates that the additional CPU 
load does not impact the sensors that are used to detect I/O processes. In 
particular, the MCC being high signifies that the true positive and true negative 
are both high and the false positive and false negatives are both low.

Figure 7 shows the three time-series plots, CPU load, the actual state of the 
target process and the predicted state of the target process, all over a 40-hour 
testing block. In the topmost figure, we show the variable additional random 
CPU load being added to realistically simulate the actual state of the target 
process. The actual state of the target process is shown in the middle figure, 
which reveals that the areas under the curve, between the rising edge and 

Table 1. File I/O process unknown additional load test results.
Algorithm DPS MCC RPD Fallout TPD

Simple Random
SVC 0.996 0.9955 1 0.0013 0.175
Ran For 0.9951 0.9943 1 0.0017 0.2
E Tree 0.9944 0.9919 1 0.0019 0.25
Log Reg 0.9926 0.9899 1 0.0032 0.15
N Bayes 0.9897 0.9848 1 0.0042 0.275
KNN 0.9865 0.9809 1 0.0064 0.15
MLP 0.9857 0.9777 1 0.0069 0.125
Dec Tree 0.9001 0.8785 1 0.051 0.225

Advanced Random
Log Reg 0.9968 0.9982 1 0.0005 0.275
Ran For 0.9964 0.9984 1 0.0004 0.35
KNN 0.9956 0.9972 1 0.0008 0.35
E Tree 0.9952 0.995 1 0.001 0.35
SVC 0.9949 0.9948 1 0.0014 0.275
N Bayes 0.9948 0.9946 1 0.0011 0.375
Dec Tree 0.9921 0.9963 1 0.0007 0.775
MLP 0.538 0.1692 1 0.8151 0.0667
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falling edge, are the time interval in which the target process is active. The 
bottom plot shows the resulting binary prediction vector in a similar form to the 
output of single logic regression over the time periods. When the detection rate 
is perfect, we will see an exact match between the actual state and the 
predicted binary state. We show a slight disparity caused by false positives, 
meaning that these results confirm that our detection method for file I/O tasks is 
effective.

In order to look deeper at what sensor features are more likely to be used 
during the classification, we create the pie plot in Figure 8. The pie plot reveals 
the importance values by system components for the I/O process detection. 
Using the figure, we can see that CPU component sensors are the most useful at 
48.7%. This is surprising considering the fact that the random additional CPU 
loads are expected to interfere with the usage of CPU-related features. The 
remaining system components of the power supply, hard drive, memory and 
platform controller hub (PCH) are equally split in feature importance.

Figure 9 shows the percentage of the total feature importance values based 
on what types of measurements are being taken. The majority of the feature 

Figure 6. File I/O process binary classification metrics – single detector trained with logistic 
regression.

Figure 7. File I/O process prediction time series – single detector trained with logistic 
regression.
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importance, around 41%, comes from the current sensors, and a large amount 
of feature importance also comes from power sensors, around 36.3%. From 
these statistics and knowledge of the behavior of file I/O, we know that, most 
likely, a complex pattern arising from all feature sensors is used by the detector 
to detect the process. This is because even during an I/O specific file process, the 
PCU is used to read and write from the hard drive, and the PCH is used to move 
and store data in memory. As a result, we expect to see an equally spread 
distribution. Though the detection process is completely automated by the 
detector, having these metrics simplified for our understanding can help us in 
the future in sensor placement and sensor-specific modeling.

Figure 8. File I/O process feature importance by system component.

Figure 9. File I/O process feature importance by sensor type.
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In Table 2, we see that the highest-performing detector is the single detector. 
Note that we create the ensemble detectors from the multiple of the best- 
performing ML model for the process category, in this case, the logistic regres-
sion. Though we have tested and designed our ensemble models to account for 
process load and also deal they all seem to perform slightly worse that the 
single detector based on the DPS score. Given the fact that all detectors are 
performing very well, the extra model complexity most likely is not necessary. 
Looking at the other metrics, we can see that false positives are low, with 
a fallout of less than 0.0005, and the time to detect the true positives is low, 
taking only 0.275 seconds. The overall detection rate is high.

4.1.2. CPU intensive process
The CPU-intensive process for detection testing is run alongside the additional 
random CPU usage. The generation of the CPU-intensive process itself is done 
using the multimedia FFmpeg tool. The specific task assigned that we believe 
generalizes to most processes in the CPU-intensive category is converting 
a video in.mov to an.mp4 format. This process is done on an HD video of 
100MB, which is 3 minutes in length. The command to start the process is in 
Appendix B.

Table 3 contains the machine learning single model comparison for CPU- 
intensive process detection. Overall, the random forest performed best on the 

Table 2. File I/O process detector type comparison.
Detector DPS MCC RPD Fallout TPD

Single 0.9968 0.9982 1.0 0.0005 0.275
Ens 6 Single 0.9967 0.998 1.0 0.0005 0.275
Ens 11 Single 0.9944 0.9937 1.0 0.0014 0.35
Ens 6 Dual 0.9967 0.998 1.0 0.0005 0.275
Ens 11 Dual 0.9944 0.9937 1.0 0.0014 0.35

Table 3. CPU intensive process unknown additional load test results.
Algorithm DPS MCC RPD Fallout TPD

Simple Random
Dec Tree 0.9988 0.9987 1.0 0.0002 0.1
KNN 0.9987 0.999 1.0 0.0001 0.125
Log Reg 0.9986 0.9991 1.0 0.0002 0.125
SVC 0.9983 0.9989 1.0 0.0002 0.15
Ran For 0.9983 0.9983 1.0 0.0004 0.1
E Tree 0.9974 0.9951 1.0 0.0007 0.15
MLP 0.9972 0.9944 1.0 0.001 0.1
N Bayes 0.9267 0.8958 1.0 0.0844 0.25
Advanced Random
Ran For 0.989 0.7878 1.0 0.0002 1.275
Dec Tree 0.9875 0.7613 1.0 0.0004 1.4
E Tree 0.9861 0.5901 1.0 0.0005 1.55
KNN 0.9776 0.6876 1.0 0.0008 2.5
N Bayes 0.7896 0.6577 1.0 0.3329 0.6
MLP 0.5484 0.4717 0.55 0.0003 0.2273
Log Reg 0.4988 0.4756 0.5 0.0001 0.25
SVC 0.4738 0.4738 0.475 0.0001 0.2632
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advanced random load with a DPS of 0.989. It seems to be slower to detect the 
process at almost 1.25 seconds compared to the File I/O process category 
detectors, which would take around 0.27 seconds. Similar to the previous pro-
cess, the category results in a low fallout and low TPD. Resulting in a high DPS 
score and, thus, an overall high detection score.

However, we do notice a lower-performing MCC, which we discuss in depth.
The resulting metrics over 40 hours of testing are shown for the decision tree 

in Figure 10. The results for DPS and MCC are high for the first half of testing, but 
as the additional load increases past 75%, we see a degradation of the MCC to 
0.5 and a slight reduction of the DPS to 0.8 at the end when the CPU load 
reaches 90%. We show the fallout is still close to zero, which is a good sign that 
though the true positive detection is reduced, we still have low false positives, 
and the intervals in which our process is running are still being detected, as 
shown by the DPS. The fact that the MCC is low signifies that over the interval 
the process is on, we may not detect all of the true positives, but as shown by 
the DPS, we detect the overall locations in which the process is on in general. 
This degradation of detection caused by the higher additional CPU loads is 
expected since we are specifically trying to identify the CPU-intensive process 
category.

The behavior of having low false positives but an increase in false negatives 
over time is shown in the time-series plots in Figure 11. Since the DPS remained 
high and the fallout very low, the overall detection rate is very good.

The one issue in the zoomed-in version of the previous time-series plot in 
Figure 12 is the fluctuating detection of false negatives within the areas where 
the process is running. The fluctuation represents the rapid changes in our 
model’s ability to consistently determine true positives and false negatives. 
Though this seems like a problem initially, in a realistic system monitoring 
scenario, the detection can simply be averaged over larger windows of time. 

Figure 10. CPU intensive process binary classification metrics – single detector trained with 
random forest.
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Running a moving average could aggregate multiple positive detections and 
avoid the effects of any false negatives. For this reason, DPS can be considered 
a better metric for our goal of general process detection, with the goal of 
triggering behavioral analysis or anomaly detection since we want to detect 
the process at the interval at least once and quickly. In addition, the low fallout is 
also a strong indicator that this model can be deployed without extraneous false 
positives.

The MCC, on the other hand, is more useful at indicating true positive and 
true negative rates but without knowing the categorization of the intervals 
themselves. Overall, though the results are not near perfect as a binary classifier, 
it is high-performing as a process detector using process detection-specific 
metrics.

The feature importance of different system components for CPU-intensive 
process detection is shown in Figure 13. The most important sensor features are 
related to system memory system components since 48.6% of the feature 
importance is assigned to this segment. The second most important feature 
for process detection is power supply-related features, with a feature impor-
tance of 26.6%. Surprisingly, only 24.5% of the feature importance is assigned to 
CPU-related sensors despite the fact that we are training a model to detect CPU- 
intensive processes. This does align with the idea, however, that the additional 
random CPU load requires the model to learn how to estimate CPU-related 
processes without directly relying on the obfuscated CPU load.

Figure 11. CPU intensive process prediction time series – single detector trained with random 
forest.

Figure 12. CPU intensive process prediction time series zoomed.
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We also look at the feature importances categorized by sensor types rather 
than system components in Figure 14. Unlike the previous File I/O intensive 
process, which has great importance attributed to the voltage sensors at 22%, 
the detection of the CPU-intensive process requires more focus on the power 
and current-related sensors and less on the voltage sensors at 12.8%. These 
results are related to the active power being supplied to the system memory 
since the process running is a video processor and would require heavy utiliza-
tion of the CPU memory with very small and rapid fluctuations in power in 
multiple components.

We use a table of results comparing the five detector types, this time for CPU 
intensive processes in Table 4. Similarly, we find that the single detector has 
better overall performance across most metrics with a DPS of 0.989.

Figure 13. CPU intensive process feature importance by system component.

Figure 14. CPU intensive process feature importance by sensor type.
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4.1.3. Network I/O process
In order to simulate the Network I/O process category for process detection, we 
focus on the generation of network traffic alongside the additional random 
amount of CPU usage. The network traffic is generated by using the NMAP 
(network mapper) tool, which was utilized to conduct comprehensive scans on 
each port across all IP addresses within the subdomain of the environments. 
Though this is not the typical network behavior, the overall usage of similar 
sensors on a NIC would be generalizable. The actual process that is run four 
consecutive times each test cycle is shown in Appendix C.

Table 5 contains network I/O intensive process detection results for the single 
classifiers. The result is that even the best-performing model for the advanced 
random load has a DPS of only 0.5484. Though according to the RPD, all 
intervals of process running are detected, the fallout rate is very high at 0.472 
and the MCC is extremely low at 0.017. As a binary classifier, the result is barely 
above chance since it is close to zero. As a process detector, in general, there are 
too many false positives to be useful. Since advanced random load results seem 
to show the model is not training, we can then analyze the more simple load 
testing. Simple load testing adds much less variety to different loads, resulting in 
a much higher DPS. The support vector classifier performs at a DPS of 0.836, with 

Table 4. CPU intensive process detector type comparison.
Detector DPS MCC RPD Fallout TPD

Single 0.989 0.7878 1.0 0.0002 1.275
Ens 6 Single 0.9781 0.7271 1.0 0.002 2.15
Ens 11 Single 0.9836 0.7835 1.0 0.004 1.05
Ens 6 Dual 0.988 0.7524 1.0 0.0002 1.4
Ens 11 Dual 0.9854 0.5758 1.0 0.0004 1.65

Table 5. Network I/O process unknown additional load test results.
Algorithm DPS MCC RPD Fallout TPD

Simple Random
SVC 0.8363 0.3751 0.95 0.046 3.6842
MLP 0.7829 0.2976 1.0 0.1874 0.975
KNN 0.7641 0.1906 1.0 0.1234 0.875
Log Reg 0.7568 0.2759 0.875 0.0492 4.0571
E Tree 0.7296 0.1318 0.975 0.1662 3.3333
Dec Tree 0.6966 0.1754 1.0 0.1725 1.8
N Bayes 0.4965 0.0479 0.775 0.4243 2.8065
Ran For 0.4318 0.1693 0.5 0.0327 2.9
Advanced Random
KNN 0.5484 0.017 1.0 0.472 1.95
Dec Tree 0.5114 0.0114 1.0 0.4957 3.7
Log Reg 0.5103 0.0094 1.0 0.8753 0.2
MLP 0.4888 0.0636 1.0 0.8323 1.65
SVC 0.4811 0.015 0.975 0.906 1.1795
E Tree 0.3904 0.0756 0.775 0.5175 5.129
N Bayes 0.3625 0.0337 0.725 0.7077 0.0
Ran For 0.3354 0.0135 0.575 0.3946 2.7826
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a lower fallout rate of 0.046. However, these results indicate that the advanced 
random CPU loads have an effect on the sensors that make the model unusable 
for more realistic scenarios.

Figure 15 aligns with the previous statement that the overall performance is 
low since the DPS over time is around 0.5, the MCC is near 0, and the fallout 
sporadically increases beyond 0. The erratic nature of the fallout impacts both 
the DPS and MCC, resulting in overall low performance.

The time-series plots in Figure 16 would indicate that the detector is making 
a positive prediction almost every time interval, and despite detecting all 
instances of the test process, it has no real value as either a binary classification 
model or a rapid process detector.

Figure 16 shows how the time periods are being correctly and incorrectly 
classified as periods where the process is running. From what we visualize, 
almost every time period is classified as the process running.

A zoomed-in section Figure 17 further visualizes the lack of accurate detec-
tion since the process detection is still always detecting positive that the process 
is running with random fluctuations in detection throughout.

For the current set of results, the analysis of feature importance is not 
relevant due to the low performance of the model classification. Since feature 

Figure 15. Network I/O process binary classification metrics – single detector trained with KNN.

Figure 16. Network I/O process prediction time series – single detector trained with KNN.
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importance is the relative importance of features for the classification of the 
random forest model, and the random forest model and all classifiers perform 
poorly, we know that the feature importance obtained will not necessarily be 
the features important to the classification.

Though our single model is not accurate from testing on the random addi-
tional loads, we did see previously that our testing on simple additional loads 
was much more effective. One hypothesis could be that if we combined multi-
ple single classifiers trained on different CPU load levels, there could be better 
adaptation to the variation. However, as shown in Table 6, the DPS for all 
detectors is low, and there is no benefit from the more complex models. 
Overall, our modeling ability has certain limitations in determining the existence 
of the network I/O process category.

4.2. Virtualization detection

The fourth process category to detect is virtualized processes or processes 
running on a virtual machine. Launching a virtual machine using a type 2 
hypervisor with a realistic user scenario and the additional random CPU load 
can generate this process category. The specific virtualization software used was 
VMware Fusion 10 Pro running on Mac Minis as described in Section 2.1. The 
command line tool from VMware fusion, ‘vmrun’ is used to run commands on 
the virtual host [23]. The commands we run in a script to simulate user behavior 
are to start the VM, display the desktop, run a Bash script, shut down and close 
the VM. The VM instance runs

Figure 17. Network I/O process prediction time series zoomed – single detector trained with 
KNN.

Table 6. Network I/O process detector type comparison.
Detector DPS MCC RPD Fallout TPD

Single 0.5484 0.017 1.0 0.472 1.95
Ens 6 Single 0.506 0.0119 0.975 0.8284 0.2308
Ens 11 Single 0.5444 0.0076 0.95 0.5489 4.9211
Ens 6 Dual 0.5062 0.0116 0.975 0.8375 0.2051
Ens 11 Dual 0.5401 0.0053 1.0 0.8598 0.3

26 M. A. TAYLOR ET AL.



Xubuntu, a lightweight version of Ubuntu that requires only 2 GB of memory 
and 100 GB of hard disk space. The commands to launch, display the virtual 
machine, run a bash script and shut down the virtual machines are shown in 
Appendix D.

This virtualization process detection is divided into two subsections since we 
can detect two different virtualization process behaviors. First, we can detect 
whether the virtual machine is running on the machine. For the second level of 
detection, we can detect if there is a process running on the virtual machine 
itself. We can create the dataset for training and testing using various flags 
during the running of our virtualization steps. To create the labels for the first 
virtualization detection, the time period in which the virtual machine is turned 
on with a flag. This flag is turned off when the ‘stop’ command terminates the 
virtual machine. To create the label for the second task of whether a process is 
running on the virtual machine, we wait several minutes after the virtual 
machine begins to run the simulated user commands. We turn on this second 
flag to mark the periods of time when the commands are running on the virtual 
machine. This second flag turns off when the commands are complete, not 
when the virtual machine is terminated.

From these two sets of labels, we can train two detection models, one for 
detecting the virtual machine running and one for detecting the user com-
mands running on the virtual machine. Ideally, the first detection model for 
a virtual machine running will not be impacted by the fact that a simulated 
process is running for only part of the time; this is a realistic scenario since 
a virtual machine is not always running a process and may be idle. The second 
detection model will be used to detect the simulated user running virtual 
processes. There may be an error in the model caused by confounding variables, 
where the model learns to detect whether the virtual machine is on instead of 
learning when the virtualized user process is running, resulting in a high false- 
positive rate. Overall, the separation of the classification of virtualization into 
these two subtasks allows us to examine and separate the two behaviors more 
closely.

4.2.1. Virtual machine running on host
Table 7 contains the single detector results for the detection of whether the 
virtual machine is started. The best-performing model is the KNN with a DPS of 
0.9839 with the advanced random CPU load tests. For this detection model, we 
have a high

RPD of 1 while having a low fallout rate of 0.0065 and a low delay of 0.425  
seconds. However, we have a less-than-perfect MCC score of around 0.6658. As 
a result, we find that similar to the CPU-intensive process detector, this classifier 
is not very high performance as a binary classifier but also that the model 
performance for use as a process detection tool is high.

JOURNAL OF CYBER SECURITY TECHNOLOGY 27



Figure 18 mirrors what we expect with the DPS, fallout and MCC statistics 
over time. These metrics are similar to what we have seen for CPU intensive 
process detection, however the main difference is that previous the MCC slowly 
degraded over time, instead the MCC stars off around 0.6 and hovers around it. 
This leads us to believe that the increasing CPU load is not impacting the MCC 
and, thus, that the error in prediction is not caused by CPU-related sensors. 
Overall, the high DPS score leads us to believe that detecting the processes that 
keep the virtual machine running is effective using our model.

In Figure 19, we can see the binary prediction vector and actual label 
vector side by side. We show that there is some degree of correlation 
between where the process detection is detected and where the first true 
positive prediction occurs. However, we can also see places where there are 
false positives, spikes where there should not be anything, and true 

Table 7. Virtual machine running with unknown additional load test results.
Algorithm DPS MCC RPD Fallout TPD

Simple Random
Log Reg 0.9896 0.9402 1 0.004 0.325
KNN 0.9865 0.9375 1 0.006 0.225
SVC 0.9863 0.9365 1 0.0061 0.225
Ran For 0.9753 0.884 1 0.0106 0.525
E Tree 0.9721 0.8756 1 0.0136 0.2
MLP 0.9609 0.8591 1 0.0194 0.225
Dec Tree 0.9481 0.8228 1 0.0259 0.25
N Bayes 0.8566 0.6393 1 0.1339 0.8

Advanced Random
KNN 0.9839 0.6658 1 0.0065 0.425
SVC 0.9836 0.6735 1 0.0071 0.325
Ran For 0.9822 0.6697 1 0.0081 0.275
MLP 0.9753 0.5257 1 0.0073 1.275
E Tree 0.9566 0.5926 1 0.021 0.375
Log Reg 0.9386 0.6506 1 0.037 0.425
N Bayes 0.9029 0.5785 1 0.0772 0.3
Dec Tree 0.7266 0.2298 1 0.2829 0.2

Figure 18. Virtual machine running binary classification metrics – single detector trained with 
KNN.
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negatives, where the binary prediction fluctuates despite needing to be held 
to 1 since the process is still running on the interval. Still, from the previous 
discussions, we know that the random spikes can be accounted for through 
moving averages and that metrics of DPS and fallout rate are still high. The 
visual itself highlights the random spikes due to the resolution of the line 
widths, from needing to represent 40 hours of data. There are not as many 
false positives as there might be seen, and the fallout rate is a better 
indicator of false-positive rates than the visual.

Since model performances of decision trees are high, we can look at the 
feature importance to gain insight into what system component’s features are 
important. From the pie plot in Figure 20, we see that the system component 
with the majority feature importance of 51.7% is the CPU. The second most 
important feature component is memory, capturing 30.0% of feature impor-
tance. Overall, these results make sense since elevated CPU usage and memory 

Figure 19. Virtual machine running prediction time series – single detector trained with KNN.

Figure 20. Virtual machine running feature importance by system component.
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can indicate virtual machine usage. However, as previously mentioned, the 
additional CPU load did not change the MCC over time. This means that the 
model detects more complex patterns of resource fluctuations that specifically 
distinguish VM CPU usage from general process CPU usage.

Figure 21 shows an almost evenly balanced distribution of feature impor-
tance between features representing sensors that measure power, current and 
voltage.

The multiple detector comparison shown in Table 8 again yields the idea that 
the single detector model is the highest-performing. This is because there is 
a simple characterization of physical sensor changes of whether the virtual 
machine is running or not due to the fact that virtual machines require specific 
and repeatable allocation of resources. Since this characterization is simple, 
advanced models are not needed.

4.2.2. Simulated user process on virtual machine
Table 9 shows that the model trained to detect virtual processes that are 
running on a virtual machine has the highest DPS of 0.9682 in the random 
forest classifier. The fallout is low at 0.0113, and the RPD is 1, resulting in this 

Figure 21. Virtual machine running feature importance by sensor type.

Table 8. Virtual machine running detector type comparison.
Detector DPS MCC RPD Fallout TPD

Single 0.9839 0.6658 1.0 0.0065 0.425
Ens 6 Single 0.9724 0.5553 1.0 0.0064 1.825
Ens 11 Single 0.9766 0.6174 1.0 0.008 0.95
Ens 6 Dual 0.9544 0.6301 1.0 0.0183 1.25
Ens 11 Dual 0.9461 0.6743 1.0 0.0259 0.5
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high DPS. As seen previously for other models, the MCC is lower at 0.453 though 
still greater than 0, resulting in possible issues related to false negatives, but as 
mentioned earlier, for the detection of the process, this is much less important 
since we simply can average detections over multiple windows of the intervals 
and find the intervals where the process is running and starting. This DPS score 
of 0.9682 to detect the virtualized user behavior is less than the previous DPS of 
0.989 and MCC of 0.6658 for detecting whether the virtual machine is running. 
This is unsurprising since the behavior of simply detecting a virtual machine is 
related to a predetermined and predictable resource allocation that the sensors 
can inform of, whereas detecting whether an actual user is running commands 
requires the model to more closely distinguish static virtual machine resource 
allocation from the resource allocations created by virtual machine interactions.

Another interesting behavior only seen for the detection of this process 
category is the finding that the simple random load performs worse. The top 
model for these test data is the naive Bayes with a DPS of only 0.9145 and an 
MCC of 0.5076. Even though the additional random CPU load is more complex, 
the model seems to use the complex additional load to distinguish between 
when the virtualized processes are running and when they are not running. We 
continue to use the results of the random additional CPU load since it is the 
more realistic testing scenario. Still, the possible reason for this improvement 
can be that when there is a more strenuous utilization of resources, every 
additional virtualized process has an even greater effect on the measurable 
sensor readings than when fewer resources are used.

Figure 22 shows that during the advanced random load testing, the random 
forest detection model maintained a high DPS and a low fallout rate without any 
major performance impact as the additional random load became larger. 

Table 9. Simulated user script running on virtual machine unknown additional load test 
results.

Algorithm DPS MCC RPD Fallout TPD

Simple Random
N Bayes 0.9145 0.5076 0.9667 0.025 0.5517
Ran For 0.8054 0.5422 0.8333 0.0101 1.72
KNN 0.75 0.5818 0.7667 0.0074 0.7826
Dec Tree 0.6844 0.5495 0.7 0.0072 1.0476
MLP 0.617 0.5489 0.6333 0.0056 1.7895
E Tree 0.5846 0.526 0.6 0.0055 1.7778
SVC 0.5825 0.5605 0.6 0.0039 2.7778
Log Reg 0.5759 0.5224 0.6 0.0122 1.8333

Advanced Random
Ran For 0.9682 0.4535 1 0.0113 1.2
Log Reg 0.9383 0.3999 1 0.0089 5.35
N Bayes 0.9343 0.3972 1 0.0325 0.375
KNN 0.908 0.3017 0.95 0.006 3.8684
E Tree 0.8496 0.1873 0.925 0.0024 9.1892
SVC 0.8228 0.2718 0.925 0.0006 13.1081
Dec Tree 0.7711 0.1855 1 0.2429 1.775
MLP 0.6617 0.1056 0.8 0.0002 20.9688
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However, with around 55% additional random load, the MCC score became very 
erratic and appears to indicate that the prediction model is not a very good pure 
binary classification model.

Figure 22 shows the results consistent with the previous metrics of high DPS, 
low fallout and medium-level MCC. We do notice that the MCC starts off low and 
increases as the CPU load increases; then again, after a certain level of additional 
CPU load during testing, the MCC begins to fluctuate after the 55% additional 
random load.

In Figure 23, we visualize the testing of detection results and can visually see 
that there is a very high level of overlap between the predicted state and the 
actual state of the process running. As we mentioned previously, the fluctua-
tions within the intervals themselves are related to the false-negative rates and 
are shown by the fluctuations resulting in dark-filled intervals and are indicated 
by the MCC of 0.4535. The overall detection of active process intervals starting 
and stopping without many false negatives seems to indicate that the detection 
model is a good process detection tool despite not having very strong binary 
prediction rates.

Figure 22. Simulated user script running on virtual machine binary classification metrics – 
single detector trained with random forest.

Figure 23. Simulated user script running on virtual machine prediction time series – single 
detector trained with random forest.
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Figure 24 shows the distribution of feature importance based on the system 
component measured by the features. The most important physical system 
component to the detection of virtualized processes is the CPU, with 
a percentage of 53.8%. This model gives the CPU component more importance 
than all the other process detection model categories. This may be related to 
the fact that CPU utilizations for both virtualization tasks and, in particular, the 
processes running on virtual machines require fine-grained CPU information in 
order to consistently discriminate between whether the CPU usage is related to 
running a virtual process on the virtual machine or an additional process load. 
Since the DPS scores of the virtualization process detection tasks are high, the 
sensors seem to be measuring the stress on the physical system very precisely.

Figure 25 shows the feature importance breakdown by sensor type instead of 
system component. Here, we see that there is an even distribution of feature 
importance but also a slight increase in feature importance toward current 
sensors. This is most likely related to changes in the current sensor type, 
which changes more quickly during the start of the virtual machine and then 
increases further when a process runs on the virtual machine.

Table 10 reveals again that the single model detector has the best DPS. 
However, we notice that the TPD is significantly slower since it is around 
1.2 seconds, whereas the more complex dual-ensemble models have 
a much lower TPD of 0.01 seconds with a reduction of DPS to 0.9148. 
This reveals that for complex process detector categories, such as 

Figure 24. Simulated user script running on virtual machine feature importance by system 
component.
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processes running on a virtual machine, accounting for factors such as 
CPU load can give more information that allows us to obtain better 
performance metrics.

5. Conclusion

Normally, attackers use side-channel information to obtain knowledge of the 
system, circumvent proper authorization and exploit security flaws. However, 
we show that side channel data can also be used by a defender or security 
administrator to find anomalous behaviors. We obtain sensor readings while 
different processes are running on a computer, use these as input into 
a machine learning classifier and use this to obtain a binary indication in 
which that process category is running. Our experiments describe the setup 

Figure 25. Simulated user script running on virtual machine feature importance by sensor type.

Table 10. Simulated user script running on virtual machine detector type comparison.
1Detector DPS MCC RPD Fallout TPD

Single 0.9682 0.4535 1.0 0.0113 1.2
Ens 6 Single 0.9379 0.282 1.0 0.0289 0.775
Ens 11 Single 0.9395 0.3037 1.0 0.0306 0.2
Ens 6 Dual 0.9148 0.3928 1.0 0.0443 0.01
Ens 11 Dual 0.9101 0.4004 1.0 0.0467 0.01

Table 11. Selected detector types and their performance.
Process Type Top Detector DPS MCC RPD Fallout TPD

File I/O Single 0.9968 0.9982 1.0 0.0005 0.275
CPU Intensive Single 0.989 0.7878 1.0 0.0002 1.275
Network I/O Single 0.5484 0.017 1.0 0.472 1.95
Virtual Machine Running Single 0.9839 0.6658 1.0 0.0065 0.425
Simulated User Script Single 0.9682 0.4535 1.0 0.0113 1.2
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needed to train the classifiers, and we test the classifiers thoroughly with 
advanced loads that replicate the behaviors that we may see in real-world 
scenarios. When we run multiple process detection models at once, we can 
obtain side-channel information that gives us a fingerprint of the system 
through its regular behavior. This indicates the viability of using sensor informa-
tion combined with machine learning models to develop Physical Sensor Side 
Channel (PSSC) data streams to detect arbitrary target processes. While prior 
studies have indicated the efficacy of process detection through complex 
behavioral analysis, they often come at the expense of speed [14] and general-
ization. Our novel detection model provides a rapid signal of a target process 
from sensors, facilitating timely safety precautions. A more in-depth behavioral 
analysis of processes can then serve as a subsequent verification step. In 
essence, our method complements traditional process detection techniques, 
aiming to bolster their effectiveness through real-time monitoring of sensors.

We can summarize the results of using PSSCs to detect the five classes, 
including the two VM classes, as follows: file I/O, CPU/ALU intensive, network 
I/O, virtualization instantiation and simulated user script. The results reveal that 
the detection performance differs among these classes. Classes file I/O and CPU/ 
ALU intensive consistently demonstrate high detection rates across all back-
ground load conditions. In contrast, network I/O yields lower detection rates, 
while virtualization instantiation excels under low loads but sees diminishing 
accuracy as the load intensifies. The most challenging detection case arises with 
network I/O, which we believe stems from our NIC lacking an adequate set of 
physical sensors. Performance might improve with NICs that include more 
sensors or are positioned near other sensor-rich subsystems.

Our interpretation is that with this hardware setup, we will be able to detect 
certain behaviors involving file I/O and CPU-related tasks seen in ransomware 
but may not be able to detect certain network-level behaviors that could be 
similar to a network denial-of-service attack through hardware sensors alone 
unless an NIC with more sensors is added.

In our experiments, we visualize the DPS, MCC and fallout over time as 
CPU loads increase and obtain the RPD and TPD metrics across the entire test 
interval. We see that the effect of the load on the MCC being added does not 
impact file I/O, whereas all other process detectors rapidly degrade midway 
through the tests. However, when we visualize the binary vectors over time, 
we realize that DPS is more aligned with actual process detection than other 
classification metrics. This is shown when we see that the false negatives that 
are occurring are not as critical to the system as long as at least one true 
positive is detected in the interval where the process is detected. For this 
reason, DPS is the main metric we use to describe whether a certain process 
class can be used in a larger anomaly detection model. The MCC is signifi-
cantly lower for classes network I/O, virtualization instantiation and simulated 
user script than for file I/O, though the DPS is just as high. The experiment 
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reveals that when using these models to detect an anomaly, the classifiers 
only need to be trained to a certain minimal level of MCC that may not need 
to be near 1. Instead, the classifiers we train on must have a high DPS score. 
This makes our approach of using the general process detectors as an 
intermediate step of detecting anomalies an easier strategy when focusing 
on DPS.

Drawing insights from Tables 2, 4 and 6, it is evident that the single prediction 
model detector surpasses the ensemble detectors across all four target pro-
cesses according to the DPS metric. Upon examining the data presented in 
Table 11, we can discern the models with the most favorable performance 
metrics, notably those demonstrating the highest DPS under the advanced 
random loads. The fallout rates are notably low, all under 0.01, except for 
Network I/O (0.5489) and Simulated User Script Virtual Machine (0.0113). 
When considering the Detector Performance Score (DPS), our chosen perfor-
mance metric, it is evident that most categories score impressively, with DPS 
values surpassing 0.96, except for Network I/O, which achieved a DPS of 0.5444. 
The combination of low false-positive rates and high DPS scores makes the 
process classifiers reliable for determining the occurrence of these general 
process types using sensor data. Regarding model selection, it is notable that 
for most process classes, the single models exhibit the highest DPS and lowest 
fallout rates. The process classes that had the best results from the complex 
models, Network I/O and VM processes, still had low detection rates, showing 
that more complex models could not capture more information from sensors to 
make accurate classifications.

The usage of similar ensemble detection models in Taylor et al. [8] proved to 
have better results than single prediction models during the detection of more 
intricate ransomware attacks. However, from our resulting experiments, for the 
creation of simple binary prediction models for more general monitoring, the 
complexity tradeoff of the models does not seem to result in better discernment 
of process categorization. The interpretation of the fact that the simple model 
outperforms others is that the process detection task is not highly complex. In 
the future, using the single prediction models, we could examine the multiple 
binary vectors for multiple process detection classifiers at once and create more 
advanced anomaly detector models based on the binary prediction vectors or 
other intermediary information vectors. The anticipated complexity of the 
physical systems may result in the need for more complex machine learning 
models to deal with multiple process categories and multiple processes running 
at once. However, the next step of integrating the binary vector detection of 
these processes and integrating those into a higher-level customized malware 
and anomaly detector would necessitate a more complex model due to the 
variability in the way different attacks are performed. The next steps must also 
avoid using too much time since, as we see, TPD adds up quickly. Already, 
almost more than 1 second is needed to detect according to the TPD of most 
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models in 11; depending on the method of attack, 1 second may cause sig-
nificant damage in critical systems.

Along with the testing of process detectors, we also contribute importance 
values for sensor types and system components for detecting various target 
processes. In terms of what sensor type is most useful, the current power and 
voltage are all equally important for detecting all process categories. The 
importance values of hardware system components, including the CPU, PCH, 
memory, hard drive and power supply, can help system administrators focus on 
the certain sensor placement that the models will use to detect the specific 
target process. The knowledge can be used to understand whether a system has 
high monitoring capability for the detection of the target process based on the 
sensors available. For example, we show that CPU utilization is important to the 
four detection categories, all except for the CPU process category, which 
primarily uses memory. This indicates that hosts with sensors available for 
CPUs are very useful for process detection in general but also that CPU- 
intensive process category detection will need more sensors on the memory 
component to work effectively. The second most important system component 
varies; the file IO process requires an equal amount of importance from the PCH, 
memory, hard drive and power supply. Overall, across all process categories, the 
CPU is more important than memory and power supply. Hard drive system 
component sensors are only needed for file I/O-intensive processes and the 
processes that simulate processes on virtual machines.

Overall, there are some limitations we must address in hardware sensor 
placement, availability and speed of access. A lack of sensors can cause issues 
detecting certain types of anomalies. In our case, the lack of NIC sensors results 
in low network process detection. This could, in turn, impact our ability to detect 
DDOS attack scenarios that rely on network IO. Each general process detection 
model needs to be trained on an adequate number of sensors, and this varies 
from system to system, so the results of this work may not necessarily extend to 
systems where sensor data is purposely obfuscated. The other limitation is the 
time it takes for sensor data to be classified and the resulting damage done. For 
attacks that less than a few seconds, there may not be enough time for a higher 
level classifier to analyze the binary prediction vectors. This paper still highlights 
the potential of finding general process categories through the various sensors 
available on host machines and using the chosen general process detectors 
with high DPS scores. This would then allow us to use the models as part of 
automated responses or, as a next step, use the binary state vectors in a more 
complex model.
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Appendices

Appendix A. IO Process Run Commands

The iozone command to generate the IO-intensive process in Section 4.1.1 is shown
here.
$ iozone −a 

The flag -a runs all 13 tests back-to-back. This command requires around 8 minutes to 
complete on our Mac Mini system.

Appendix B. CPU-intensive Process Run

Commands

The CPU-intensive process used in Section 4.1.2 is generated using the command shown 
here.

$ ffmpeg −i video.mov −c : v libx264 −crf 10 video.mp4 

The -i flag marks the input video file name as an argument. The flag -c:v marks the 
encoder type as an argument. The -crf marks that constant rate factor used by the 
encoder. In this procedure, we utilized the Constant Rate Factor (CRF) scale to adjust 
video quality and file size, applying a value of 10 to achieve a very high-quality 
output. The CRF scale operates within a range from 0 to 51: a setting of 0 delivers 
lossless quality, indicating no loss of video data; 23 is established as the default value, 
offering a balance between quality and file size; and 51 marks the lowest quality level, 
significantly reducing file size. Opting for lower CRF values, such as 10, not only 
improves the video’s output quality but also results in a larger file size and requires 
a higher computational effort. On our Mac Mini systems, executing this command with 
the specified CRF setting took approximately 6 minutes.

Appendix C. Network IO Run Commands

The network IO-intensive process used in Section 4.1.3 is generated using the nmap com-
mand shown here.

$ sudo nmap −Pn −T4 10.10.10.0/24 

The -Pn flag indicates port scan test. The flag does not allow host discovery and 
searches through all hosts. The -T4 flag marks an argument between 0 and 5 to 
throttle the speed of the scan. In this case, values on the lower end indicate reduced 
performance speeds, whereas values on the higher end signify enhanced performance 
speeds. Specifically, for our experiment, the timing template is positioned just one 
step below the maximum speed, indicating that it will rapidly produce a significant 
volume of network traffic. The execution of this command on our Mac Mini systems 
took about 5 minutes to complete.
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Appendix D. Virtualization Process Run

The vrun commands in this section launch, display the virtual machine, run a bash script and 
shut down the virtual machine in Section 4.2.

The command used to launch and display the virtual machine:
$ vmrun start process.vmx gui
The path for the.vmx file extension is for the configuration file for the target virtual 

machine. The last command line argument -gui launches a visual of the virtual 
machine on a desktop monitor. The virtual machine was configured to log in auto-
matically, bypassing the need for a password. It took approximately 2 minutes for the 
virtual machine to fully boot up. Following startup, we executed a command on the 
virtual machine that specified both the path to the Bash interpreter and the path to 
a script we had developed. This script was designed to simulate user activity on the 
virtual machine.

The command used to run the bash script:
$ vmrun −gu <USERNAME> −gp <PASSWORD> runScriptInGuest process

.vmx −interactive”””/bin
/bash usersim 5” 

The -gu flag marks username input for accessing the virtual machine is the following 
command line argument. Additionally, the -gp flag allows for password input for 
logging in to the virtual machine with the username. The path to the.vmx file is for 
the configuration file for the target virtual machine. The option-interactive is required 
to run a script on the virtual machine without from the operating system. This 
argument is the command to be run on the guest virtual machine command line. 
The usersim Bash script leverages the Stress-ng stress test suite to initiate three 
different stressors on the guest virtual machine for a set duration, as detailed by 
[25]. It sets up a trio of stress tests: a CPU stressor focusing on matrix multiplication 
consuming 30% of CPU capacity, a mixed I/O stressor executing a variety of I/O tasks 
and a hard drive stressor engaged in constant reading and writing to the disk. These 
stressors aim to mimic actual user activity on the system. Each execution of the 
usersim script occurs over a 5-minute period following the virtual machine’s complete 
boot process.

Once the usersim script has completed the 5-minute run, the virtual machine is shut down 
using the command:

$ vmrun stop process.vmx soft 

The path to the.vmx file serves as the configuration file for the designated virtual machine. 
The final command line argument, soft, indicates that the virtual machine is to be powered 
down via the system’s shutdown script. The entire process, encompassing the startup of the 
virtual machine, execution of the usersim script and the subsequent shutdown, takes 
approximately 7 minutes to complete.

JOURNAL OF CYBER SECURITY TECHNOLOGY 41


	Abstract
	1. Introduction
	2. Experimental setup and data collection
	2.1. Hardware and software environment setup
	2.2. Data collection
	2.2.1. Collecting training data
	2.2.2. Collecting evaluation data


	3. Detectors model design and evaluation
	3.1. Detection model implementations
	3.2. Performance evaluation methodology
	3.2.1. Binary classification evaluation
	3.2.2. Matthews correlation coefficient (MCC)
	3.2.3. Rate of process detection (RPD)
	3.2.4. Time to process detection (TPD)
	3.2.5. Detector performance score (DPS)


	4. Experimental results
	4.1. General process detection
	4.1.1. File I/O process
	4.1.2. CPU intensive process
	4.1.3. Network I/O process

	4.2. Virtualization detection
	4.2.1. Virtual machine running on host
	4.2.2. Simulated user process on virtual machine


	5. Conclusion
	Disclosure statement
	ORCID
	References
	Appendices
	Appendix A. IO Process Run Commands
	Appendix B. CPU-intensive Process Run
	Commands
	Appendix C. Network IO Run Commands
	Appendix D. Virtualization Process Run

