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This document presents an n-bit dual recoded squarer and a 2n-bit dual recoded 

radix-4 squarer as well as an n-bit and 2n-bit integer radix-4 multiplier circuits using dual 

recoded radix-4 squarers. The radix-4 dual recoding squarer reduces the number of bit 

product terms employed in the previously known squaring methods obtained by either 

Booth radix-4 recoded multiplication or by radix 2 squaring. Employing the dual recoded 

radix-4 procedure for design of a squaring circuit introduces a significant reduction in 

power and area. Architecturally, radix-4 dual recoded squaring uses only the 1’s 

complement representation which allows for a simpler PPG structure as compared to the 

2’s complement representation required for Booth radix-4 multiplication. Based on the 

above squarer, an n-bit radix-4 multiplier is designed to reduce power and size compared 

to using a traditional multiplier circuit while a similarly designed radix-4 2n-bit multiplier 

can be used for a gain in area. Finally, an architecture for a combinational floating point 

multiplier and squarer is described for the purpose of producing a low power floating 

point square with small area requirements. In order to take advantage of the squarer 

power improvements with a minimal increase in area, the multiplier and squarer are 

combined into one circuit. Shared circuitry among the units provides justification for 

inclusion of a dedicated squarer since a small amount of additional circuitry is required 
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and the power savings for squaring computations is significant as compared to the use of 

a general-purpose multiplier to generate a squared value. 
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Chapter 1 

INTRODUCTION 

 
Squaring is the symmetric case of multiplication where both multiplicand and 

multiplier are the same operand reducing squaring to a unary operation. This symmetry 

allows partial product arrays for squaring to be reduced to about half the size and half the 

depth of comparable multiplication partial product arrays for both radix 2 and recoded 

radix 4 arrays. There are many applications such as fast exponentiation, Euclidean 

distance computation, digital signal processing applications such as adaptive filtering, 

vector quantization, image compression, and pattern recognition, sum of squares 

statistical computations, and rounding of floating point square root, where incorporating a 

supplemental squaring circuit may be attractive to avoid the time and power requirements 

of performing all squaring operations in a large multiplier. 

Multiplying is the sum of adding one number which is referred to as the 

multiplicand, to itself a specific number of times which is the multiplier. The traditional 

algorithm for doing this called for sequential additions of the multiplicand based on the 

multiplier as illustrated in Figure 1.1.   
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Figure 1.1: Data Path of a Traditional Multiplier Circuit 

 
As well as building general purpose multipliers, left shifters were used to multiply by 

powers of 2. [It89] These shifters can be thought of as the first special purpose 

multipliers. 

1.1 Current Methods 
 

For binary squaring of the n-bit operand 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞!, the n2 bit product terms 

of the multiplication array may be reduced to !!! !
!

 terms employing  and 

 for i > j. This reduction in multiplication size for binary squaring has 

been noted in the literature [EL04, Pa00]. For example, the 5  𝑥  5  bit multiplication partial 

2:1 
MUX 

2:1 
MUX 

Adder 

Multiplicand 

ith bit of the  
Multiplier 
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product array for 𝑄  𝑥  𝑄 illustrated in Figure 1.1.1 reduces for such a binary squaring 

operation to the skewed triangular array of Figure 1.1.2. 

 

 

 

 

 
Figure 1.2: Bit Product Array for a 5x5-bit Multiplication Implementation of the 

Squaring Operation 

 

 

 

 

 

Figure 2.2.1.3: Skewed Triangular Bit Product Array for 5-bit Squaring 

Note that each row of the triangular array for n-bit squaring may be realized as an "ith 

multiplicand prefix" that is conditionally selected by the squaring operation’s 

“multiplier” bit qi. The rows in Figure 1.1.2 thus form “partial squares” analogous to the 

partial products of multiplication that may be formalized as follows. 

 

Observation 1: Let  𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! with 𝑄! =
!
!!

 for 𝑖 = 1,2,⋯ ,𝑛. Then  

𝑄! = 4𝑄! + 𝑞! 𝑞!4!    (2.1) 
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Proof: With 𝑄! = 2𝑄! + 𝑞!, then 𝑄! = 4𝑄!! + 4𝑄! + 𝑞! 𝑞!. Since 𝑄 = 2𝑄!!! + 𝑞!, 

𝑄!! = 4𝑄!!!! + 4𝑄!!! + 𝑞! 𝑞! and iterative substitution yields equation (2.1).  

 □  

Definition 2: Let 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! with 𝑄! =
!
!!
= 𝑞!!!𝑞!!!⋯ 𝑞! for 0 ≤ 𝑖 ≤ 𝑛 − 1. 

Then the ith partial square 4𝑄!!! + 𝑞! 𝑞! is the product of the ith multiplicand factor 

4𝑄!!! + 𝑞!  and the ith select bit qi. 

 

There are three distinct results that may be desired for the square of an n-bit integer. 

 

• 2n-bit integer square: this is the double precision exact 2n-bit square Q2 in a 2n-

bit word. This is the result provided by summing the bit product terms illustrated 

in Figure 2.2. This full result is useful in implementations of multiple precision 

arithmetic. 

 

• n-bit integer square: The result is the square module the word size that is Q2 mod 

2n for an n-bit word. This is the typical result desired for implementing an n-bit 

integer arithmetic expression. 

• n-bit floating point square: For a floating point number with a normalized 

significand of n-bits, this is the normalized and rounded n-bit result. The n-bit 

floating point square is determined from the 2n-bit integer square by appropriate 

rounding to obtain the normalized n-bit result. 
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The integer result is effectively the n-bit low order part of the 2n-bit square and the 

floating point result is effectively the high order part, possibly overlapping the low order 

part since the square of a normalized n-bit significand may have length 2n – 1 bits. Let us 

first consider the integer word size example of the 16-bit integer square, contrasting the 

binary multiplication array with the binary squaring array. 

Example 1: Consider evaluation of the square of the 16-bit argument Q = 50,571 = 

1100 0101 1000 10112. The full 32-bit square is (50,571)2 = 2,557,426,041, which in 

binary is Q2 = 1001 1000 0110 1111 0011 1001 0111 10012. Table 1.1.1 illustrates the 

16×16 bit multiplication array for determining the 16-bit integer result  

Q2 = 0011 1001 0111 10012 mod 216. This example array corresponds to the low order 

triangular portion of Figure 1.1.1. 

 

Table 1.1.1: 136 Entries 

 

1100 
1000 
0000 
0010 
0000 
0000 
0000 
1100 
1000 
0000 
0010 
0000 
0000 
0000 
000 
11 
1 

0101 
1011 
0000 
1100 
0000 
0000 
0000 
0101 
1011 
000 
11 
0 

1000 
0001 
0000 
0101 
0000 
000 
00 
1 

1011 
011 
00 
1 

0011 1001 0111 1001 
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Determination of the n-bit integer word square for n even by binary squaring 

requires summation of just !
!
 partial squares. Table 1.1.2 illustrates this summation for 

our 16-bit example, where there are just 72 entries in the 16x8-bit triangular array 

compared to 136 entries in the 16x16-bit triangular array of Table 1.1.1. Table 1.1.2 

follows the pattern illustrated in the low order triangular portion of Figure 1.1.2, where 

the small zeroes here denote forced zeroes. 

Table 1.1.2: 72 Entries 

Binary Squaring – 16-bit Square (Integer word result) 
 

(1100 0101 1000 1011)2 
                  [1000 1011]    

 
(selector bits) 

 1000 1011 0001 01o1 
 0001 0110 0010 o1 
 0000 0000 00o0 
 0101 1000 o1 
 0000 00o0 
 0000 o0 
 00o0 
 o1 

1 
1 
0 
1 
0 
0 
0 
1 

 0011 1001 0111 1001 Square 
 

For computing the full 2n-bit integer square 𝑄! = 𝑞!!!𝑞!!!⋯ 𝑞! !, the skewed 

triangular array of partial squares 4𝑄!!! + 𝑞! 𝑞! illustrated in Figure 4.1.2 may be 

consolidated to form fewer rows by moving up the diagonals of the left half of the 2𝑛×𝑛 

bit array. Incorporating the half-adder relation 𝑞!!!𝑞! + 𝑞!!! = 2𝑞!!!𝑞! + 𝑞!!!𝑞! 

for  0 ≤ 𝑛 − 2, we can obtain a 2𝑛× !
!

  nearly symmetric triangular array of !!!
!  bit 

product terms [EL04, Pa00]. Figure 1.1.1 illustrates the consolidated triangular arrays for 

the calculations 5- and 6-bit squares. For partial square design of this consolidated !
!

  

row array note that the n-bit right halves of the 2n-bit rows may be formed by using bits 
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qi for 𝑖 = 0,1,⋯ , !
!
− 1 as select bits for n-bit partial squares and the n-bit left halves of 

the rows may be similarly formed by using 𝑞 !
!

 through 𝑞!!! as select bits for 

appropriately modified n-bit partial squares. 

 
 

 

 

 

 

 

 

Figure 2.2.1.1.1: Partial Product Consolidation for 5- and 6-bit Squaring 

 
The binary squaring operation thus reduces the area measured in bit product terms 

by a factor of two compared to multiplication for generation of either the n-bit or 2n-bit 

square, and computation of the n-bit floating point square is similarly simplified. The 

reduced size and depth of the array of terms to be accumulated for binary squaring is 

slightly better than the reduced size obtained by Booth radix-4 recoding, and the bit 

product terms are specified without the conditional shifting and/or complementation 

required to calculate the partial products of Booth radix-4 recoding. 

1.2 Testing 

All of the circuits presented are compared to a carry-save multiplier. When testing 

the squaring circuits, both the multiplier and square circuits tested with values 0 to 216 
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and 216 random values for bit widths greater than 16. When testing the multiplication 

circuits, the circuits were tested with 216 random combinations of inputs. 

1.2.1 Test Bench Generation 

In order to produce the Verilog files with test inputs, I wrote a Java application that 

generates test files. The call to the application is as follows: 

VerilogTest fileName bitWidth <option> 

The required inputs are file name and bit width. The bit width can be 16, 32, or 64 

depending on the selected option. The option input is optional however if no option is 

provided, the program defaults to an unsigned square. The other options are multiply, 

signed, and floating. If the selected option is the default and the bit width is 16, all 

possible values are used. For all other options except for floating, 216 random values 

between 0 and 2bitWidth are used. The floating point options are slightly different in order 

to test all possible exponents. The significands are random numbers between 0 and 223 for 

single precision and 0 and 252 for double while the exponents are cycled through. The 

complete implementation for automatic test set generation can be found in Appendix A. 

1.2.2 Carry-Save Array Multiplier 

 
 An array multiplier is a full-tree multiplier with a one-sided reduction tree in 

which the final addition performed by a carry-save adder.  A carry save multiplier is a 

good choice as a comparison circuit because much like the dual recoded radix-4 square 

circuit, it produces partial products and then adds them together. The multiplier is 

comprised of 2-input AND gates, an array of carry-save adders, and a ripple-carry array. 

The 2-input AND gates are used to produce the partial products while the carry-save 
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adders are used to add the partial products together and the ripple-carry adder is used for 

the final addition. 
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Chapter 2 

SQUARING 

 
 

2.1.  Booth Recoding 
 

The radix 4 recoding procedure utilizes Booth recoding. Let 𝑃 = 𝑑 !
!
𝑑 !

! !!
⋯𝑑! 

with 𝑑 ∈ −2,−1,0,1,2  be the Booth recoded radix 4 representation of 

 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! [1, 4]. It is important to recall how Booth radix-4 digit di of P is 

determined by the three bits 𝑞!!!!𝑞!!𝑞!!!! of Q as can be seen from Table 2.1.1. Bit q-1 is 

considered a 0. 

 

Table 2.1.1: Radix-4 Booth Recoding [1, 4] 

Binary Booth Digit 
100 2 

110, 101 1 
000, 111 0 
001, 010 1 

011 2 
 

The use of Booth radix-4 recoding for 16-bit integer multiplication for Q x P requires 88 

entries and 9 rows as illustrated in Table 2.1.3 for the n-bit product. This is a considerable 

reduction of the 136 entries and 16 rows for the radix-2 integer partial product array but 

provides no additional benefit for the squaring operation. A radix-2 squaring circuit was 

described in [3] resulting in 72 entries as illustrated in Table 2.1.4. 
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Table 2.1.2: Shows how 𝑄 = 1100  0101  1000  1011!  is recoded to be represented by 
𝑃 = 110122111 ! 

𝑄 = 1100  0101  1000  1011!   
11 1 
101 1 
001 1 
100 2 
011 2 
010 1 
000 0 
110 1 
001 1 

𝑃 = 110122111 ! 
 

Table 2.1.3: Booth Recoded Radix 4 Multiplication 

 
 

(selector digits) 

   0011 1010 0111 0100 
   1110 1001 1101 00 
   0101 1000 1011 
   0011 1010 00 
   0001 0110 
   0010 11 
   0000 
   00 

1 
1 
1 
2 
2 
1 
0 
1 

   0100 0000 1000 0101 2’s comp bits 
   0011 1001 0111 1001 Square 
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Table 2.1.4: Booth Recoded Radix-2 Squaring 

(1100 0101 1000 1011)2 
                  [1000 1011]    

 
(selector bits) 

 1000 1011 0001 01o1 
 0001 0110 0010 o1 
 0000 0000 00o0 
 0101 1000 o1 
 0000 00o0 
 0000 o0 
 00o0 
 o1 

1 
1 
0 
1 
0 
0 
0 
1 

 0011 1001 0111 1001 Square 
 

2.2.  Consolidating Partial Squares: The 2n-bit Dual Recoded Radix 4 
Square  

 

Three changes to the squaring circuit need to be made in order to support finding 

the 2n-bit square instead of the n-bit square.   

1. The input must be padded with one zero. (sign bit) 

2. The sign extension must be calculated. 

3. The circuit requires  PSG’s instead of  PSG’s. 

Figure 2.2.1 shows change 1 being made in the data path of the PSG circuit. In addition 

to padding the input with a leading zero, we must now account for the sign of each Booth 

recoded digit.  We have chosen to cumulate all of these and add them to the total 

together. The sign extension for the 2’s complement of this (n - 3) bit array is 

𝑞!!!0𝑞!!!⋯ 0𝑞!.  
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Figure 2.2.1: PSG Data Path for 2n-bit Recoded Radix-4 Squaring Circuit 

 
Table 2.2.1: Radix-4 Squaring (Recoded) 2n-bit square 

1100 0101 1000 1011 

       ( ) ( )4401234567 11121201=dddddddd  

Selection Digits 

                                     10 0111 0100 1110 10o1      
                                 1001 1101 0011 10o1 
                            01 1000 1011 00o1 
                        0011 1010 01o0 
                   11 0001 01o0 
               0110 00o1 
          00 00o0 
      10o1 

1 
1 
1 
2  
2 
1 
0 
1 

    -(o0o0 o0o1 o0o1 o1) 
 

2’s comp bits 
(negative) 

      1001 1000 0110 1111 0011 1001 0111 1001 
    (    9       8      6      15      3       9       7       9)16 

Square 
2,557,411,328 

 

As can be observed from Table 2.2.1, the output from the first PSG and sign 

extension bit array can be consolidated into one 2n-bit array shown in Figure 2.2.2. 

Further investigation of Figure 2.2.2 shows that other rows can be consolidated as shown 

in Figure 2.2.3 for 12-bits. 

 

S1

S2

D

C ENB

Multiplexer

>> 1.
.
.

S1

S2

D

C ENB

Multiplexer

0X2i

Xn-1:2i+2

X2i-1

X2i+1

Yn:2i + 2

Y2i+1

0 Y2i

Y2i-1

0
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Figure 2.2.1: Partial Product Array for 12-bit Recoded Radix-4 Squaring 

 

The ⎥⎥
⎤

⎢⎢
⎡
2
n

 radix 4 partial squares yielding the 2n-bit square Q2 according to 

Theorem 6 may be consolidated as illustrated in Figure 2.2.2. Let us consider the case n 

= 4k. The 2k partial squares selected by digits di and dk+i may be consolidated into a 

single 2n bit row for ki ,,2,1 != , yielding k + 1 rows to be accumulated. This 

consolidation allows each partial square to be independently shifted and/or complimented 

before being loaded into the appropriate portion of a row of the consolidated array. The 

negative leading portion of row zero can be handled by a 2's complement, yielding an 

extra unit to be added in column n + 2, as shown in Figure 2.2.4. Note if 1≤kd , the unit 

bit may be inserted in column n + 2 of the row for dk. If 2=kd , then 42 =kd , and the 

extra unit may be absorbed by inserting 1000 as the four low order bits of the row for dk. 
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Figure 2.2.2: Consolidated Partial Product Array for 12-bit Recoded Radix-4 Squaring 

 
Observation 7: For n = 4k with 1≤k , the 2n-bit square of 021 qqqQ nn !−−=  may be 

obtained as the sum of a ⎟
⎠
⎞⎜

⎝
⎛ +× 1
4

2 nn  bit array of partial squares obtained by radix 4 

recoded selection. 

High Order Part  
Selection Digits  

 Low Order Part 
Selection Digits 

2’s comp 
1 
0 
1 

1111 1110 1110 1010 0111 0100 1110 10o1 
         0110 00o1|1001 1101 0011 10o1 
    00 00o0|oo01 1000 1011 00o1 
10o1|oooo 0011 1010 01o0 
             11 0001 10o0 

1 
1 
1 
2 

                2 (+ carry) 
 1001 1000 0110 1111 0011 1001 0111 1001 

(  9       8       6      15      3       9       7       9)16 

Square 

 

Figure 2.2.3: Consolidated Radix 4 Recoded 32-bit Squarer for the Example Case 

 

 
 However, we would like to for the additional unit for the 2’s complement to be in 

a position where there exists a forced zero in one of the rows. By changing the sign 

extension from ( )153 1...11 qqq nn −−  to ( )1153 1...11 qqqq nn βα−−  where 13 NORqq=β  and 

31 qq ⊕=α  pushes a forced 1 into position n + 6 as shown in Figure 2.2.5. 

( )22 1011100001011100=Q
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High Order Part  
Selection Digits  

 Low Order Part 
Selection Digits 

2’s comp 

5d  

6d  

7d  

 11357911 11111 qqqqqqq βα ** **** **** **** **o* 
                    ****   **1*|   ** ** **** **** **o* 
                **  **o*|  oo**   ** ** **** **o* 
             **o* |oooo   ** **  ** ** **o* 
                          **  ** **   ** o* 

0d  

1d  

2d  

3d  

4d  

 

Figure 2.2.4: Consolidated Radix 4 Recoded 32-bit Square 

 

2.2.1. Implementation 
 

Using the algorithm described above the complete data path for the circuit is 

shown in Figure 2.2.1.2. The first step is to send the bits into the sign extension, 

shown in Figure 2.2.1.2, and all of the PSG’s in parallel. Next the outputs from these 

modules are positioned and added in parallel in order to reduce the number of 

additions. The additions continue until we are left with on 2-n output.  

From the description of the sign extension earlier in the chapter, it seems like a 

simple circuit to implement. However, it does have one complexity, which takes a 

while to trouble shoot if not found during the design stage. The cause of the issue is 

that within Booth recoded numbering system negative zero which is represented as 

111 is a valid number. Within the squaring algorithm, we assume that 0 is positive. 

Therefore, we cannot simply negate the sign bit of each Booth recoded digit. The sign 

extension now characterized as 1𝑍!!!1𝑍!!!⋯ 1𝑍!𝛽𝛼𝑞!𝑞! where𝑍! =   𝑞! +
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𝑞!𝑞!!!𝑞!!!, 13 NORqq=β  and 32131 )( qqqqq +⊕=α . Using the distributive law the 

equation for 𝑍! can be simplified has follows: 

𝑍! =   𝑞! + 𝑞!𝑞!!!𝑞!!! 

𝑍! = 𝑞!𝑞! +   𝑞!𝑞!!! +   𝑞!𝑞!!! 

𝑍! = 𝑞!𝑞!!! +   𝑞!𝑞!!! 

𝑍! = 𝑞! + 𝑞!!!𝑞!!!. 
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i[0] O[0]

i[1]

O[1]

i[2]
O[2]

O[3]

i[4]

i[3]
O[4]

i[5]

i[6]
O[6]

O[8]
i[7]

i[8]

O[10]
i[9]

i[10]

O[12]
i[11]

i[12]

O[5]1

O[7]1

O[9]1

O[11]1

O[13]1  

Figure 2.2.1.1: Sign Extension Circuit 

 

 Figure 2.2.1.2 illustrates how to create a 16-bit input, 32-bit output full 

dual recoded radix-4 squaring circuit. The complete circuit consists of !
!
 partial square 
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generators (PSGs) from Figure 2.2.1, a sign extension circuit from Figure 2.2.1.1, and 

!
!
 adders. The PSGs and sign extension circuits are aligned such that outputs from two 

of these circuits can be concatenated into one input of an adder. For example, the 

PSG with inputs of n bits is aligned with the sign extension circuit such that the 4 

least significant bits of the PSG output is the 4 least significant bits of the square, and 

bits n to 4 are bits are the first n-4 bits of input 1 of the adder. While the n-2 bit output 

of sign extension circuit, occupies the final n-2 bits of input 1. When the output bits 

of two PSGs do not line up so nicely, zeroes are placed between the two outputs to fill 

in the gaps. This method allows us to avoid combining the outputs by shifting and 

adding. The adders are arranged such that each level of adders provides the next 

4!bits in the total circuits output where l represents the level of adders. 
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PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

[15:1]

[15:9]

[15:3]

[15:11]

[15:5]

[15:13]

[15:0]

Adder u1

x2

x1

Adder u1

x2

x1

Adder u1

x2

x1
Adder u1

x2

x1

[27:4]

[21:4]

[23:8]

SignExtu1x1

[3:0]

[7:0]

[17:4]

[13:1]
[31:18]

[3:0]

[15:0]

[23:16]

o[3:0]

o[7:4]

o[15:8]

o[31:16]

[15:7]

[13:4]

[23:16]

[11:0]

[19:16]

[3:0]

0
[15:14]

0
[15:12]

i[15:0]

 

Figure 2.2.1.2: Full Square Circuit 

 

2.2.2. Results 
 

The radix-4 dual recoded squaring circuit and a general purpose multiplier were both 

implemented in Verilog and mapped to OSU standard cell library [5]. Both circuits were 

constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and 64 

bit-widths. The charts in Figures 2.2.2.1-2.2.2.3 show a gain in power, leakage power, 

and area for our customized squaring circuit compared to a multiplier circuit. 
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Figure 2.2.2.1: Power (mW) vs Word Size Chart 

 
 

 
 

Figure 2.2.2.2: Leakage Power (nW) vs Word Size Chart 
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Figure 2.2.2.3: Area vs Word Size Chart 

 

2.3. Dual Recoded Radix-4 Truncated Square 

The radix 4 recoding procedure utilizes Booth recoding. Let 𝑃 = 𝑑 !
!
𝑑 !

! !!
⋯𝑑! 

with 𝑑 ∈ −2,−1,0,1,2  be the Booth recoded radix 4 representation of 

 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! [1, 4]. It is important to recall how Booth radix-4 digit di of P is 

determined by the three bits 𝑞!!!!𝑞!!𝑞!!!!  of Q as can be seen from Table 2.3.1. Bit q-1 

is considered a 0. 

Table 2.3.1: Radix-4 Booth Recoding [1, 4] 

Binary Booth Digit 
100 1 

110, 101 1 
000, 111 0 
001, 010 1 

011 2 
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Table 2.3.2; Shows how 𝑄 = 1100  0101  1000  1011!  is recoded to be represented by 
𝑃 = 110122111 ! 

𝑸 = 𝟏𝟏𝟎𝟎  𝟎𝟏𝟎𝟏  𝟏𝟎𝟎𝟎  𝟏𝟎𝟏𝟏𝟐 
11 1 
101 1 
001 1 
100 2 
011 2 
010 1 
000 0 
110 1 
001 1 

𝑷 = 𝟏𝟏𝟎𝟏𝟐𝟐𝟏𝟏𝟏 𝟒 
 

The use of Booth radix-4 recoding for 16-bit integer multiplication for 𝑄×𝑃 requires 88 

entries and 9 rows as illustrated in Table 2.3.3 for the n-bit product. This is a considerable 

reduction of the 136 entries and 16 rows for the radix-2 integer partial product array but 

provides no additional benefit for the squaring operation. A radix-2 squaring circuit was 

described in [3] resulting in 72 entries as illustrated in Table 2.3.4. 

 

Table 2.3.3: Booth Recoded Radix 4 Multiplication 

 
 

(selector digits) 

   0011 1010 0111 0100 
   1110 1001 1101 00 
   0101 1000 1011 
   0011 1010 00 
   0001 0110 
   0010 11 
   0000 
   00 

1 
1 
1 
2 
2 
1 
0 
1 

   0100 0000 1000 0101 2’s comp bits 
   0011 1001 0111 1001 Square 
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Table 2.3.4: Booth Recoded Radix-2 Squaring 

(1100 0101 1000 1011)2 
                  [1000 1011]    

 
(selector bits) 

 1000 1011 0001 01o1 
 0001 0110 0010 o1 
 0000 0000 00o0 
 0101 1000 o1 
 0000 00o0 
 0000 o0 
 00o0 
 o1 

1 
1 
0 
1 
0 
0 
0 
1 

 0011 1001 0111 1001 Square 
 

2.3.1. Algorithm 
 

The radix-4 dual recoded squaring algorithm determines the Booth digits in a right-to-

left manner i.e. starting from the least significant bit and moving toward the most 

significant bit. Let Pi be the integer formed by shifting the radix 4 digit string right i 

places deleting the low order i digits obtaining 

 

for 𝑖 = 0,1,⋯ , !
!

, with  and . Since then  and 

 for 𝑖 = 0,1,⋯ , !
!

, we obtain the following. 

 

 

Observation 1: 
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⎣ ⎦
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=
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Definition 1: Let  with  for  and let 

 be the ith digit of the Booth recoded radix 4 representation

. Then the ith radix-4 partial square is  where 

 is the ith multiplicand factor for radix-4 dual recoded squaring and di is the 

ith recoded radix 4 select digit.  

 Recall that  is effectively the sign bit of the recoded digit 𝑑!, so we obtain the 

partial square identity  

. 

It is important to observe that the 2’s complement of  reduces to the sign 

extended 1’s complement of 22 +iQ , as formally summarized in the following. 

 

Theorem 1: Let  be the radix-4 dual recoded representation of

. Let  be the conditionally 1's complemented sign extended leading 

bits of 𝑄!!!! =
!
!!

  given for 𝑖 = 0,1,⋯ , !
!

 by 

 

Then 

. 
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From Theorem 1 we observe that the PPG's for recoded radix 4 squaring are simpler than 

for a Booth recoded radix-4 multiplier since the complements are simply 1's 

complements. This means that for the n-bit integer radix-4 square: (1) we need to employ 

only the !
!

 low order half of the Booth-4 select digits in forming the radix-4 dual 

recoded square array, (2) No complement bit row is needed as in Booth-radix 4 

multiplication, and (3) no sign extension of the partial squares are needed for the n-bit 

square. 

 Table 2.3.5 illustrates the radix-4 dual recoded array for computing

. There are only 40 entries in Table 2.3.1.1 compared 

to the 72 entries for radix 2 illustrated in Table 1.1.4 and compared to the 88 entries for 

Booth recoded radix 4 multiplication illustrated in Table 1.1.3. 

 

Table 2.3.5: Radix-4 Dual Recoded Squaring 

1100 0101 |10|00| 10|11 

                  [1   1   1    1] 

 

Booth-4 select digits 

0111 0100  1110  10o1 

1101 0011  10o1 

1011 00o1 

01o0  

1 

1 

1 

2 

0011 1001  01 11  10 01 Square 
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2.3.2. Implementation 
 

 Based on the properties of Theorem 1, an efficient Partial Square Generator 

(PSG) was designed. Figure 2.3.2.1 is a Synopsys screen shot of an 8-bit PSG. The 

dataflow through the circuit is as follows: 

1. All the bits of the input, X, except for the 3 least significant bits are 

conditionally negated if x2 is 1, 

2. The output from step 1 is left shifted by 1 if x2  is equal to x0, 

3. If the three least significant bits of X are 0, else all but the 3 least 

significant bits of Y are the output from step 2 and 

 

 

Figure 2.3.2.1: A Synopsys Screen Shot of an 8-bit PSG 
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Using the PSG design above, the architecture of the squaring unit can be viewed in at 

least the two following methods depicted in figures 2.3.2.2 and 2.3.2.3. Figure 2.3.2.2 

shows the architecture view of building the circuit independent of smaller versions of the 

circuit. The architecture in Figure 2.3.2.2 is constructed from the following components: 

 PSG’s of bit sizes n, n-2, …, 2, and an adder tree of height of  where x is the 

bit size of the adders used in the adder tree. 

 

PS 4

PS 3

PS 2

PS 1

Adder u1

x2

x1

Adder
u1

x2

x1

Adder
u1

x2

x1

O[3:0]

O[7:4]

O[15:8]

i[15:0]

[14:2}

[1:0]

[12:4]

[3:1]

[10:6]

[5:3]

[8]

[7:5]

 

Figure 2.3.2.2: Data Path of 16-bit Input/16-bit Output Radix-4 Dual Recoded Squaring 
Circuit 
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Figure 2.3.2.3: Recursive Data Path for an n-bit Recoded Radix-4 Squaring Circuit 

 

2.3.3. Results 
 
 The radix-4 dual recoded squaring circuit and a general purpose multiplier were 

both implemented in Verilog and mapped to OSU standard cell library [5]. Both circuits 

were constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and 

64 bit-widths. The charts in Figures 2.3.3.1-2.3.3.3 show a substantial gain in power, 

leakage power, and area for our customized squaring circuit compared to a multiplier 

circuit. 

 

 

N-2 bit Squaring Unit N bit PSG

N-4 bit Adder

In-1:2 In-1:0

Xn-5:0 Yn-1:4

On-1:4 O3:0
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Figure 2.3.3.1: Power (mW) vs Word Size Chart 

 

 

 

Figure 2.3.3.2: Leakage Power (nW) vs Word Size Chart 
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Figure 2.3.3.3: Area vs Word Size Chart 

 

2.4. Floating-Point Square 
 
 
 Although the integer square and general purpose integer multiplier are very useful 

circuits, must real world calculations, such as finance, business, and science,  require 

floating-point numbers. With this in mind, I used the integer square described in Chapter 

3 to design an IEEE 754 standard floating-point squaring unit. 

2.4.1. Summary of the IEEE 754 Floating-Point Standard [14] 
 

When discussing the IEEE 754 Floating Point Standard [14], we first need to look at 

the number are represented. Figure 2.4.1.1 shows the number representation for a single 

precision floating-point number which is interpreted as follows: 
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0.𝐹 ∗ 2!!"#                        𝐸 = 0
𝑁𝑎𝑁                          𝐹 ≠ 0
±𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦  𝐹 = 0     𝐸 = 255

−1! ∗ 1.𝐹 ∗ 2!!!"#                    0 < 𝐸 < 255

. 

 

Figure 2.4.1.1: Floating-point Number Representation 

 
Conceptually, floating point multiplication is simple. The exponents are added and 

multiplying the significands. However, a lot of pre- and post-processing must be 

performed such as lining up the significands and adjusting the exponents accordingly as 

well as setting flags in case an exact result can’t be calculated. The next several sections 

will describe how floating-point multiplier used as a comparison accomplishes these 

tasks.    

 

2.4.2. Algorithm 
 

The question now becomes how to multiply two numbers represented in IEEE 

floating-point format. The simplest case is when both of the inputs are normalized. In this 

case the significands are multiplied together with the most significant half of the product 

is used as the significant answer and the exponents are added together. Table 2.4.1 

illustrates this simple case. 

 

 

S 
(1) 

E 
(8) 

F 
(23) 
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Table 2.4.1: Simple Case Floating-Point Multiplier 

Operations Exponent Significant 

 1000 0011 000 0001 0100 0001 1000 1010 

 1000 1000 000 1000 0010 1000 0001 0010 

Exponent Add/Significant Multiply 1000 1100 000 1011 1111 0000 1100 1010 

 

The first complication that covered in the above example is if the product of the 

significands is equal to or greater than 2. The value is 2 or greater if and only if the most 

significant bit of the product is one. If this occurs, the product must be right shifted by 

one and the sum of exponents must be incremented by one. A more complicated issue is 

if one or both of the inputs are not normalized. Since the inputs to the multiplier are not 

guaranteed to be normalized, the inputs must be checked to see if they are normalized and 

if not, it must be normalized.  Table 2.4.2 illustrates what happens if the above algorithm 

is used to multiply a normalized number with an unnormalized number.  

 

Table 2.4.2: Normalized/Unnormalized Floating-point (Incorrect) 

Operations Exponent Significant 

 0000 0000 010 0000 0000 0000 0000 0000 

 1100 1111 001 0100 1000 0110 0000 0000 

Exponent Add/Significant Multiply 0101 0000 011 1001 1010 0111 1000 0000 

 

The input must be left shifted to one place past the most significant 1. The exponent then 

becomes 1 – the number of shifts. The exponent needs an extra bit to be stored in 2’s 
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compliment form. The example shown in Table 2.4.3 shows the multiplication of a 

normalized and unnormalized floating point numbers. 

 

Table 2.4.3: Normalized/Unnormalized Floating-point Multiplication 

Operation Exponent Significant 

 0000 0000 010 0000 0000 0000 0000 0000 

 1100 1111 001 0100 1000 0110 0000 0000 

Shift Significant/Adjust Exponent 1 1111 1111 000 0000 0000 0000 0000 0000 

 0 1100 1111 001 0100 1000 0110 0000 0000 

Product 0100 1111 001 0100 1000 0110 0000 0000 

 

The other special cases of NAN, positive infinity, and negative infinity can be accounted 

for by detection and assigning the output to the appropriate answer.  

2.4.3. Implementation 

 Floating point multiplication 2.4.3.1.
 

The floating-point multiplication implemented in [15] breaks the multiplication into 

the following components: preprocessor, special case detector, pre-normalizer, multiplier, 

exponent adder, normalizer, shifter, rounder, flagger, and assembler. The components are 

connected as shown in Figure 2.4.3.1. Each of the components will be discussed in detail 

in the following sections. 



35 
 

 
Figure 2.4.3.1: Diagram of Floating point Multiplication Circuit [15] 
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2.4.3.1.1. Preprocessor 
 
 

Before the two values can be multiplied, some preprocessing must be done. The 

inputs are represented by A and B for the floating point numbers and control for the 

rounding mode. The rounding mode is defined by the two least significant bits of the 

control input. First, the potential sign of output can be calculated by taking the XOR of 

the most significant bit of A and B. The preprocessor circuit must also determine if either 

A or B is one of the special cases discussed in Section 2.4.1. To determine wither either A 

or B is zero, all of the bits excluding most significant of each input is NORed and then 

outputs from the NOR of each input are ORed together producing the zero output. This 

gives the equation: 𝑧𝑒𝑟𝑜 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 &~|𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] |
~|𝐵 𝑤𝑠𝑖𝑔 − 1 &~|𝐵[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1]  

where wsig and wexp stand for the bit width of the significant and bit width of the 

exponent. A and B both checked to determine whether or not it is infinity or NAN. First 

all of the bits of the exponent are checked to see if everyone is 1. This is done by 

ANDing all the exponent bits together. Then NOT of the output NOR gate used earlier to 

determine if the significant is zero is ANDed with output of the AND gate to detect NAN 

and the output of the earlier NAND gate ANDed with the AND gate used to determine if 

all bits of the exponent are 1 to detect infinity. These equations further explain this: 

 𝑎𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐴 𝑤𝑠𝑖𝑔 − 1 )  &    (&𝐴 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1 ) 

             𝑏𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐵 𝑤𝑠𝑖𝑔 − 1 )  &    (&𝐵 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1 ) 

                            𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 =    ~|𝐴 𝑤𝑠𝑖𝑔 − 1    & &𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1]   |     

                                                                           ~|𝐵 𝑤𝑠𝑖𝑔 − 1    & &𝐵[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] . 
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The preprocessor must also determine if either of the inputs is not normalized. An input is 

not normalized if the exponent is equal but the significant is not. In order to calculate this, 

the NOR gates used find the zero output. For both A and B, this equates to the NOT of the 

NOR of bits [wsig-1:0] ANDed with the NOR of bits [width-1: width-wexp-1]. The 

entire circuit for the processor is shown in Figure 2.4.3.2.   

 

  
Figure 2.4.3.2:Pre-processor [15] 

 

2.4.3.1.2. Special Case Detector 
 

The outputs aisnan, bisnan, zero, and infinity from the preprocessor are inputs to the 
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as𝑎𝑖𝑠𝑛𝑎𝑛     𝑏𝑖𝑠𝑛𝑎𝑛     𝑖𝑛𝑓𝑖𝑛𝑡𝑦  |  𝑧𝑒𝑟𝑜. Invalid equates to𝑧𝑒𝑟𝑜  &  𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. If invalid is 1 
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the specialsign is most significant bit A if the following expression, which is referred to 

as aishighernan in [15], aisnan is true plus the significant of A is greater than or equal to 

the significant B or bisnan is false and is the most significant bit of B if it is false. The 

value to which the output special is assigned can best be described using the flowchart in 

Figure 2.4.3.3. The entire circuit for the special case detector is shown in Figure 2.4.3.4. 

 

 

Figure 2.4.3.3: Flowchart for selected 
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Figure 2.4.3.4: Special Case Detector [15] 
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input is unnormalized, the significant is left shifted by the width minus the bit position of 

the most significant 1. This pre-normalization shift function is shown in Figure 2.4.3.5. If 
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Figure 2.4.3.5: Pre-norm Shifter [15] 

 

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

23

22 21 20 19 18

17 16 15 14 13

12 11 10 9 8

7

2

56 4 3

1

i[23:0]

o[4:0]



41 
 

 
 

Figure 2.4.3.6: Pre-normalizer [15] 

 

2.4.3.1.4. Multiplier 
 

The multiplier circuit used is the carry save multiplier described in Chapter 1. The 

multiplier takes the normalized significands as inputs. In addition to outputting the 

product, the most significant bit of the product is used to determine if the product is equal 

to or greater than two. 
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Figure 2.4.3.7: Multiplier [15] 

 

2.4.3.1.5. Exponent Adder 
 

In addition to multiplying the significands, the exponents need to be added. However, 

the exponents need to be adjusted by the bias and whether or not the product from the 

multiplier is more than two. The circuit in Figure 2.4.3.8 implements the following 

equation derived from equation 

2.4.1.1:𝑒𝑥𝑝𝑠𝑢𝑚 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 − 𝑡𝑤𝑜𝑜𝑟𝑚𝑜𝑟𝑒 . The bias must be subtracted 

from the sum of expa and expb because both have bias added to them. Therefore, the 

equation becomes 𝑒𝑥𝑝𝑎 − 𝑏𝑖𝑎𝑠 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 + 𝑏𝑖𝑎𝑠 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠. If 

twoormore from the multiplier in Section 2.4.2.1.4 is 1, the exponent needs to 

incremented thus producing the 

equation:𝑒𝑥𝑝𝑠𝑢𝑚 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 − 𝑡𝑤𝑜𝑜𝑟𝑚𝑜𝑟𝑒 . The output tiny is used to 

determine if the expsum is less than one. Since expsum is in 2’s complement form, tiny is 

one if the most significant bit of expsum is 1 or if all of the other bits of expsum are 0. 
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Figure 2.4.3.8: Exponent Adder [15] 

2.4.3.1.6. Normalizer 
 

If the needed the product from the multiplier is normalized. If both tiny and 

twoormore are both true than the product is already normalized, normalized is set equal 

to prod. Since twoormore represents an overflow of the product and tiny represents an 

overflow of the sum of the exponents, the product is left shifted by 1 if one of them is 

true or left shifted by 2 if neither one is true. This is done to place the most significant bit 

of the possible output in the most significant bit of the product. 

 

 

Figure 2.4.3.9: Normalizer [15] 
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is set equal to expsum otherwise shiftexp is set to 0.  It is also necessary to determine 

whether or not there was any loss of accuracy. Shiftloss is used to store this information. 

In order for shiftloss to be true, a shift must be necessary and either the shift causes 

prodshift to be zero or if any of the bits lost due to a shift is 1. The implementation from 

[15] is shown in Figure 2.4.3.10.  

 

 

Figure 2.4.3.10: Normalizer [15] 
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The multiplier described in Section 2.4.2.1.8 produces an output that is bit-width 

twice as wide as the bit widths of the inputs. However, the IEEE standard only allows for 

the output to be stored in the same bit width as the inputs. Since it sometimes not possible 

to store the exact result, the output must be rounded.   The rounding in the floating-point 

multiplier implementation in [15] is based on the rounding methods presented in [16]. 

The multiplier allows four different types of rounding modes: round to nearest even, 
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round to zero, round to positive infinity, and round to negative infinity. The rounding 

mode is determined by the two least significant bits of control. Table 2.4.4 shows the 

relation between control and the rounding mode. 

 

Table 2.4.4: Rounding Modes [15] 

Control Rounding Mode 

00 Round to Nearest Even 

01 Round to Zero 

10 Round to Positive Infinity 

11 Round to Negative Infinity 

 

The upper half of the shifted product is used as the basis for the answer which will be 

referred to as unrounded. The purpose of the Rounder is to determine whether or not to 

add 1 to unrounded. The simplest rounding method is round to zero because 1 is never 

added unrounded as the least significant bits are always truncated which will be referred 

to as lowerBits. The only time that 1 is added to unrounded is if at least one of the 

lowerBits is 1 and the rounding mode is round to nearest even and the least significant bit 

of unrounded is 1, the rounding mode is round to positive infinity and the sign bit is 0, or 

the rounding mode is round to negative and the sign bit is 1. This leads to following 

Boolean expression: 

𝑟𝑜𝑢𝑛𝑑𝑈𝑝 = |𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠  &  
~𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 ~𝑢𝑛𝑟𝑜𝑢𝑛𝑑𝑒𝑑 0   |  

𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 𝑠𝑖𝑔𝑛  |
𝑟𝑜𝑢𝑛𝑑 1 𝑟𝑜𝑢𝑛𝑑 0 ~𝑠𝑖𝑔𝑛

   which can 

be simplified to:  



46 
 

𝑟𝑜𝑢𝑛𝑑𝑈𝑝 = |𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠  &   ~𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 ~𝑢𝑛𝑟𝑜𝑢𝑛𝑑𝑒𝑑 0 |  𝑟𝑜𝑢𝑛𝑑[1] 𝑟𝑜𝑢𝑛𝑑⊕ 𝑠𝑖𝑔𝑛 . The 

exponent will need to be adjusted if the significant needs to roundup and adding one to 

the significant could cause the significant to be greater than or equal to 2. If this is the 

case, the exponent will need to be incremented and the significant left shifted by one. 

Since the exponent might be changed, it must be rechecked to see if the number is still 

tiny and must also be checked for overflow. According to the IEEE standard [14], once 

the value has been rounded, it is now longer exact. If the value is inexact, it must be 

detected which can be done by 𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠   𝑟𝑜𝑢𝑛𝑑𝑈𝑝|𝑟𝑜𝑢𝑛𝑑[0]. As the initial inputs 

were checked in to see if they were denormal as described in Section 2.4.2.1.1, the 

rounded product must also be checked. Figure 2.4.3.11 shows how all the above Boolean 

expressions were implemented in what [14] called a rounder.   

 

 

Figure 2.4.3.11: Rounder [15] 
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2.4.3.1.9. Flagger 
 

As stated in 2.4.1, flags must be set in the event that an exact answer cannot be 

calculated. The first of such situations is a divide by zero but since this a multiplier a 

division by zero cannot happen therefore the divide by zero flag is set to zero. Another 

such case is infinity times zero which is labeled invalid. This is actually determined in the 

Special Case Detector in Section 2.4.2.1.2 and only needs to be assigned to the 

appropriate flag here. Only if it is not a special case as defined in Section 2.4.2.1.2 can 

the flags underflow, overflow, and inexact be true. The underflow flag is set if tiny from 

Section 2.4.2.1.5, underflow which is the OR of shiftloss from Section 2.4.2.1.8 and 

inexact from Section 2.4.2.1.8, and not overflow from Section 2.4.2.1.8. The overflow 

output is then just the overflow input into the Flagger from Section 2.4.2.1.8. The inexact 

input is the OR of shiftloss from Section 2.4.2.1.8 and inexact from Section 2.4.2.1.8. The 

inexact flag is the OR of the inexact input, underflow input, and the overflow input. The 

Flagger is shown in Figure 2.4.3.12. 

 

 

Figure 2.4.3.12: Flagger [15] 
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2.4.3.1.10. Assembler 
 

Once all of the possible answers have been calculated, the right answer must be 

chosen which is accomplished by the Assembler. The Assembler is composed mainly of 

multiplexers. See Figure 2.4.3.13. The inputs specialsigncase, sign, roundmode, and 

overflow are to select the correct output. If specialsigncase is 1, the most significant bit or 

sign bit is specailsign otherwise it is set to sign.  The logic for determining which values  

 
 

 
 

Figure 2.4.3.13: Assembler [15] 

 

 Floating-Point Squarer 2.4.3.2.
 

Some optimizations can be implemented when focusing on the square as opposed to a 

general multiplication. First since there is only one input, checking for special values 

become simpler. The results for special value inputs are shown in Table 2.4.3.1. 
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Table 2.4.3.1: Special Values 

Input Output 

NAN NAN 

+INFINITY +INFINITY 

-INFINITY +INFINITY 

UNNORMALIZED UNNORMALIZED 

 

One major change and a few minor changes were made to the floating-point multiplier 

discussed earlier. The first change was in the preprocessor. The preprocessor is simplified 

to the following Boolean expressions: 

𝑧𝑒𝑟𝑜 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 &~|𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ −   𝑤𝑒𝑥𝑝 − 1] 

𝑎𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐴 𝑤𝑠𝑖𝑔 − 1 )  &    (&𝐴 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1 ) 

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 =    ~|𝐴 𝑤𝑠𝑖𝑔 − 1    & &𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1]   . [23] 
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Figure 2.4.3.2.1: Simplified Pre-processor 
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The simplified special case detector is described as follows. The specialsigncase is 

defined as 𝑎𝑖𝑠𝑛𝑎𝑛  |  (𝑧𝑒𝑟𝑜  &  𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦) and specialcase is defined 

as𝑎𝑖𝑠𝑛𝑎𝑛  |  𝑖𝑛𝑓𝑖𝑛𝑡𝑦  |  𝑧𝑒𝑟𝑜. Invalid equates to𝑧𝑒𝑟𝑜  &  𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. If invalid is 1, the 

specialsign is most significant bit of A.[23] 
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Figure 2.4.3.2.2: Flowchart for selected [23] 
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Figure 2.4.3.2.3: Simplified Special Case Detector [23] 

 
 The pre-normalized for the square is half the size of the pre-normalized for the 

multiplier. The circuit has only one pre-normalized shifter, subtractor, and shifter as well 

as 2 multiplexers. The pre-normalized now produces two outputs modexpa and norma. 

The new circuit is shown in figure 2.4.3.2.4.  
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Figure 2.4.3.2.4: Simplified Pre-normalizer [23] 
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The adder in the exponent adder is replaced with a left shift by 1. The multiplier is 

replaced by a full dual recoded radix-4 square. The squaring circuit has bit width 24 and 

54 for single precision and double precision respectively.   

 
2.4.4. Results 

The floating-point radix-4 dual recoded squaring circuit and a general purpose 

floating-point multiplier were both implemented in Verilog and mapped to OSU standard 

cell library [5]. Both circuits were constrained to run with-in a 50ns clock-edge and were 

implemented for single and double precisions. The charts in Figures 2.4.4.1-2.4.4.3 show 

a substantial gain in power, leakage power, and area for our customized squaring circuit 

compared to a multiplier circuit. 

 

 

 

Figure 2.4.4.1: Power (mW) vs Word Size chart 
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Figure 2.4.4.2: Leakage Power(nW) vs Word Size Chart 

 

 

 

Figure 2.4.4.3: Area vs Word Size Chart 
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Chapter 3 

MULTIPLICATION 

3.1. Parallel Multipliers 

A parallel multiplier is a multiplier in which partial products of the multiplicand 

are produced and then added together. The partial products can be added together serially 

or in tree structure. Two common types of parallel multipliers are the Pezaris and the 

Booth multipliers. 

3.1.1. Pezaris Array Multiplier 
The Pezaris array multiplier is generally used for two’s complement 

multiplication. The partial products are generated by AND gates while the summation 

section of the adder consist of four different types of full adders. Two of the full adders 

are positively weighted while the other two full adders are negatively weighted. Below 

are the Boolean expressions for the carry and sum of all four adder types where type 0 

and 1 are positively weighted while type 2 and 3 are negatively weighted.[18] The sum 

output is the same for all full types: 𝑠 = 𝑎⨁𝑏⨁𝑐!". The carry out for each type is   

𝑐!"# = 𝑎𝑏 + 𝑎𝑐!" + 𝑏𝑐!"# for types 1 and 3 and  𝑐!"# = 𝑎𝑏 + 𝑎𝑐!" + 𝑏𝑐!" for types 1 and 

2. [18] The output from the array multiplier can also be read serially has the least 

significant bits are calculated before the most significant bits. 
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Figure 3.1.1.1: Data path of a Pezaris Multiplier [18] 

 

3.1.2. Booth Multiplier 
 

In 1951 Andrew Booth presented a new algorithm for multiplication in [19]. The 

true strength of his algorithm was that it was able to multiply two numbers efficiently no 
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matter the sign of either number. A radix-2 recoding was used in which 00 represented 0, 

01 represented 1, 10 represented -1, and 11 represented 0. The initial product is created 

by adding leading zeroes to the multiplier. When the Booth digit is 1, the multiplicand is 

added to the left half of the current product and then an arithmetic shift right is performed 

on the current product. When the Booth digit is -1, the multiplicand is subtracted from the 

left half of the current product and then an arithmetic shift right is performed on the 

current product. When the Booth digit is 0, on an arithmetic shift right is performed. 

Table 3.1.1 shows an example of the Booth algorithm by multiplying -5 and 3 to produce 

-15. [19] 

 

Table 3.1.1: Booth multiplication of -5 and 3 

                      0000 1011  Booth-4 select digits 

                      1101 1011 

                      1110 1101 

                      1111 0110 

                      0010 0110 

                      0001 0011 

                      1110 0011 

                      1111 0001 

-1 – Subtract 

Arithmetic Shift right (ASR) 

0 – ASR 

1 – Add 

ASR 

-1 - Subtract 

ASR 

                      1111 0001 Product (-15) 
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 The Booth multiplier can be used in mobile devices for reduction in area and 

power consumption.[20] In [20], the authors are able to make gains in area and power 

consumption through the use of counterflow organization and a merged arithmetic/shifter 

unit. The counterflow organization is when data and commands flow in opposite 

directions across the pipeline.[20]  

While the initial Booth algorithm is not a parallel multiplier, it is the basis of the 

Booth recoded multiplier which is a parallel multiplier. The Booth recoded multiplier is 

used in digital signal processing as well as image compression. [21, 22] The basic design 

for a Booth recoded multiplier is to produce the product in two stages. The first stage all 

of the partial products are calculated and the second stage the partial product are added 

together. For the following design description, a radix-4 Booth recoded multiplier is 

assumed. 

The partial products stage consists of two circuit types: a Booth encoder and a partial 

product generator (PPG). The Booth encoder takes as inputs 3 bits from the multiplier 

and outputs 3 control signals: negate, shift, and zero. The inputs to the PPG are the 

multiplicand and the 3 control outputs of the Booth encoder. The output of the PPG, 

which is called the partial product, can be any of the following zero, multiplicand, 

negated multiplicand, shifted multiplicand, or shifted and negated multiplicand. 
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Figure 3.1.2.1: Data path of a Booth Multiplier [21] 

 

3.2. Tree Multipliers 

3.2.1. Dadda Multiplier 
 

In 1965, Luigi Dadda presented a new tree multiplier which has been used in high 

speed floating point multipliers and regular connectivity. [25, 26] The Dadda tree has 

worst case O(n) where n is the bit width of the inputs. Like many other tree multipliers, 

the first step is to form partial products by ANDing together of the two inputs as shown 

in Figure 3.2.1.1. However, unlike other multipliers the Dadda tree multiplier 

consolidates partial products as late as possible. [24] Dadda used a dot notation to 

illustrate his algorithm which is shown in Figure 3.2.1.2. Each dot represents a bit of a 
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partial product. Each rectangle box around a column of dots represents a full adder if 3 

are enclosed and a half-adder if the box encloses 2 dots. The last rectangle represents a 

carry propagate adder. The diagonal lines represent carries. As shown in Figure 3.2.1.3, a 

Dadda tree multiplier takes 4 full adders, 2 half adders, and 6-bit carry propagate adder.  

 

 

Figure 3.2.1.1: Initial Partial Product for a Dadda Multiplier 
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Figure 3.2.1.2: Dot Diagram of a Dadda Tree multiplier 
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Figure 3.2.1.3: Data Path for a Dadda Tree Multiplier 

 

3.2.2. Wallace Multiplier 
 
Like the Dadda tree multiplier, the Wallace tree multiplier starts by ANDing all the 

input bits to create partial product, but unlike the Dadda multiplier the Wallace multiplier 

reduces the number of partial products as early as possible. This is done by grouping the 

initial partial products into groups of three to feed into full adders and this continues until 
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there only two partial products left which are added together in carry propagate adder. 

This data path is show in Figure 3.2.2.1. [27] 
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Figure 3.2.2.1: Data Path for a Wallace Tree Multiplier 

 
Over the years since the Wallace multiplier was introduced, improvements have been 

made. In [28], replacing the carry propagation adder with parallel prefix adder was able 

to improve time delay. Other proposed improvements include the use of 4:2 and 5:2 

compressors instead of 3:2 compressors, i.e. full adders, and a carry select adder instead 

of a carry propagate adder. [29, 30] 
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While the parallel and tree multipliers have been presented separately, principles of 

each can be used together. In [31], a Wallace tree was presented with the initial partial 

products are created through Booth encoding and partial product generators as opposed to 

AND gates. 

3.3. Integer Multiplication Using Squaring Units 
 

As mobile devices become a larger and larger part of our lives and more mobile 

devices are announced seemingly daily such as the Kindle and iPad, power consumption 

of electronic devices becomes more and more important. Capitalizing on the power 

savings of the Radix-4 Recoded squaring unit, a multiplier was designed using the 

squaring unit. The purpose of this design is to produce a low power multiplier with 

minimal speed lose. With a lower power multiplier, battery life of mobile devices should 

increase. 

3.3.1. Algorithm 
 
 

The design is based on the following mathematical identity. 
 
 
 

 
 
 
 
 
From this identity, the following data path shown in Figure 3.3.1.1 was created. 
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Figure 3.3.1.1: Data Path for Integer Multiplication Using Squaring Units 

 

3.3.2. Unsigned Multiplication 
 

 Implementation 3.3.2.1.
 

Slight changes needed to be made to the implementation of the Radix-4 squaring unit. 

The issue during implementation that caused this was that the inputs for the squaring unit 

no longer have bit widths that are multiples of 4. This occurs due to the need of an 

overflow bit for the results of the adder and subtractor. One possible solution to this is to 

divide the output of the adder and the output of the subtractor by 2 before the values are 

squared. However, this adds a new issue. Since we are dealing with integer numbers and 

not real numbers, truncating becomes an issue when dividing the inputs to the squaring 

circuits by 2. This issue is shown the following example of multiplying 3 times 2 in Table 

3.3.1.2.1. In this example, 3 times 2 equals 4 which we all know is incorrect. This error 

occurs because when we 5 divided by 2 should be 2.5 instead of 2 and 1 divided by 2 

should be .5 instead of 0. The squares of 2.5 and .5 are 6.25 and .25 respectively. By 

subtracting .25 from 6.25, the correct answer for 3 times 2 is calculated. In order to fix 

this issue, the n most significant bits of the inputs to the squaring circuits are added to the 

outputs of the squaring circuits. This adds if and only if the input has been truncated. This 

method gives you the output as if the value was truncated after it was squared. Since we 
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only add the x when𝑥 0 = 1, then the square is equal to the truncated squared value,𝑥! 

plus .25. The following mathematical proof shows that our method works  

𝑥! + .25 = 𝑥 − .5 ! + 𝑥 

𝑥! + .25 = 𝑥! − 𝑥 + .25+ 𝑥 

𝑥! + .25 = 𝑥! + .25 

In order to prove this identity in more general terms, the following proof, where s 

represents the number right shifts and is an positive integer greater than 0, is needed. 

𝑥! +
1
2!! = 𝑥 −

1
2!

!

+
𝑥

2!!! 

𝑥! +
1
2!! = 𝑥! −

2𝑥
2! +

1
2!! +

𝑥
2!!! 

𝑥! +
1
2!! = 𝑥! +

1
2!! 

From the above equation, if a number was right shifted by 2 before being squared, the 

squared value would have to have to add x and !
!
 if both bits shifted to the left are 1. 

Figure 3.3.2.1 illustrates what the data path of this circuit would look like. Note that the 

circuit equates to this equation: 𝑖! = 𝑖[16: 1]! + 𝑖 0 𝑖 16: 1 . 

 

 

Figure 3.3.2.1: Example Truncation Correction Data Path 
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Table 3.3.2.1.2 revisits our example 3 times 2.  Adding these corrections to the 

data path shown in Figure 3.3.2.1, the circuit shown in Figure 3.3.2.2 was created. 

 

Table 3.3.1: Truncation Example 

Operation Binary Value Binary Value 
Inputs 0000000000000011 0000000000000010 

Add/Subtract 0000000000000101 0000000000000001 
Right Shift by 1 0000000000000010 0000000000000000 

Square 0000000000000100 0000000000000000 
Subtract 0000000000000100  

 

Table 3.3.2: Truncation Correction Example 

Operation Binary Value Binary Value 
Inputs 0000000000000011 0000000000000010 

Add/Subtract 0000000000000101 0000000000000001 
Right Shift by 1 0000000000000010 0000000000000000 

Square 0000000000000100 0000000000000000 
Conditional Add 0000000000000110 0000000000000000 

Subtract 0000000000000110  
 

 

Figure 3.3.2.2: Radix-4 Dual Booth Recoded Multiplier by Squaring 
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gates to conditionally zero out the output as well as replacing the 2-1 MUXs in the 

truncation correction with AND gates. This optimization was able to improve the area but 

not the power consumption.  

 
 Results 3.3.2.2.

 
The general purpose integer multiplier created from radix-4 dual recoded squaring 

circuits and a general purpose multiplier were both implemented in Verilog and mapped 

to OSU standard cell library [5] for the for the lower n-bits of the result. Both circuits 

were constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and 

64 bit-widths. The charts in Figures 3.3.2.3-3.3.2.5 show a gain in power, leakage power, 

and area for our customized radix-4 based multiplier compared to a multiplier circuit. 

 

 
 

Figure 3.3.2.3: Power (mW) vs Word Size Chart 
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Figure 3.3.2.4: Leakage Power(nW) vs Word Size Chart 

 

 

 

Figure 3.3.2.5: Area vs Word Size Chart 
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 The general purpose integer multiplier created from radix-4 dual recoded squaring 

circuits and a general purpose multiplier were both implemented in Verilog and mapped 

to OSU standard cell library [5] for a n-bits of the result. Both circuits were constrained 

to run with-in a 100ns clock-edge and were implemented for 16, 32, and 64 bit-widths. 

The charts in Figures 3.3.2.6-3.3.2.8 show a loss in power but gains in leakage power and 

area for our customized radix-4 based multiplier compared to a multiplier circuit. 

 

 

 

Figure 3.3.2.6: Power (mW) vs Word Size Chart 
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Figure 3.3.2.7: Leakage Power(nW) vs Word Size Chart 

 
 

 

 

Figure 3.3.2.8: Area vs Word Size Chart 
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3.3.3. Signed Multiplication 

 Implementation 3.3.3.1.
 

While the unsigned general purpose multiplier is useful, a signed multiplier would be 

even more useful. The initial thought of building a signed multiplier might be to just 

adding 2’s complement circuits to the inputs and the outputs. While that configuration 

will work, it is not the optimal configuration.  

Under further investigation, the truncation correction circuit described in 3.3.2.1 

is no longer needed. Now that the most significant bit represents the sign of the number, 

the sum of the two (n-1)-bit numbers will at most take n-bits to store. Since now the sum 

and the difference can both be store in n-bits, the left shifting can be move to the last 

operation performed on the data. The new configuration can be shown in Figure 3.3.3.1. 

 

 
 

Figure 3.3.3.1: Signed Multiplication Data Path 
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circuits were constrained to run with-in a 100ns clock-edge and were implemented for 16, 

32, and 64 bit-widths. The charts in Figures 3.3.3.2 - 3.3.3.4 show a loss in power but 

gains in leakage power and area for our customized radix-4 based signed multiplier 

compared to a signed multiplier circuit. 

 

 

 

Figure 3.3.3.2: Power (mW) vs Word Size Chart 

 

0	
  

100	
  

200	
  

300	
  

400	
  

500	
  

600	
  

700	
  

16	
   32	
   64	
   128	
  

multiplier	
  

radix-­‐4	
  

Word Size 

mW 



73 
 

 
 
 

Figure 3.3.3.3: Leakage Power(nW) vs Word Size Chart 

 
 

 
 

Figure 3.3.3.4: Area vs Word Size Chart 
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Chapter 4 

CONCLUSION 

 Throughout this paper, we have presented several uses for a dual recoded radix-4 

squaring circuit. Although the squaring circuits can be used to build general purpose 

multipliers, the circuits biggest advantages is as a specialized squaring circuit. When used 

for calculating the square, improvements are made in area, power, and leakage power. 

This holds true for the n-bit integer square, 2n-bit integer square and floating point 

square. The biggest improvements were seen in the implementations of n-bit integer 

square and floating point square. The improvements in the floating point square are due 

not only to replacing the multiplier circuit with a dual recoded 2n-bit squaring circuit, but 

also reducing the size of the preprocessor, pre-normalized, special case detector, and 

exponent adder. 

 While the multiplier made from the integer square showed a loss in total power 

and only minimal gains in area and leakage power, the circuit does have value. This 

designs value is for a circuit that needs to calculate square often and rarely needs the 

multiplication operation while not having the area for both a dual recoded radix-4 square 

and a traditional multiplier. 

 The floating point Booth dual recoded square and a general purpose floating point 

multiplier could coexist on the same circuit with only a small increase in area. The most 
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obvious way to do this is for the two circuits is to add a MUX to share the normalizer, 

shifter, rounder, flagger, and assembler. This configuration is shown in Figure 4.1. 
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Figure 4.1: Multiplier/Squarer Combination Circuit [23] 
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Appendix A 

AUTOMATIC TESTBENCH GENERATION  

 
/** 
 * @class VerilogTest 
 * @author Jason Moore 
 * @description Produces a testbench Verilog file for testing the squaring and multiplier 
cicuits 
 */ 
 
import java.io.BufferedWriter; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.Random; 
 
public class VerilogTest { 
 private static String[] includes16 = { "fullpps16_1.v", "fullpps16_2.v", 
   "fullpps16_3.v", "fullpps16_4.v", "fullpps16_5.v", 
                                    "fullpps16_6.v", "fullpps16_7.v", "fullpps16_8.v",  
                                    "signExt16.v", "fullRadix4_16.v" }; 
 private static String[] includes32 = { "fullpps32_1.v", "fullpps32_2.v", 
   "fullpps32_3.v", "fullpps32_4.v", "fullpps32_5.v", 
                                    "fullpps32_6.v", "fullpps32_7.v", "fullpps32_8.v", 
    "fullpps32_9.v", "fullpps32_10.v", "fullpps32_11.v", 

"fullpps16_3.v", "fullpps16_4.v", "fullpps16_5.v", 
"fullpps16_7.v", "fullpps16_8.v", "signExt32.v", 
 "fullRadix4_32.v" }; 

 private static String[] includes64 = { "fullpps16_2.v", "fullpps16_3.v", 
   "fullpps16_4.v", "fullpps16_5.v", "fullpps16_7.v", 

"fullpps16_8.v", "fullpps32_3.v", "fullpps32_4.v", 
"fullpps32_5.v", "fullpps32_6.v", "fullpps32_7.v", 
"fullpps32_8.v", "fullpps32_9.v", "fullpps32_11.v", 
"fullpps64_1.v", "fullpps64_2.v", "fullpps64_3.v", 
"fullpps64_4.v", "fullpps64_5.v", "fullpps64_6.v", 

   "fullpps64_7.v", "fullpps64_8.v", "fullpps64_9.v", 
   "fullpps64_10.v", "fullpps64_11.v", "fullpps64_12.v", 
   "fullpps64_13.v", "fullpps64_14.v", "fullpps64_15.v",
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"fullpps64_16.v", "fullpps64_17.v", "fullpps64_18.v", 
   "signExt64.v", "fullRadix4_64.v" }; 
 private static String[] includes16m = { "pps16_1.v", "pps16_2.v", 
   "pps16_3.v", "pps16_4.v", "radix4_16.v", "squareM2_16.v" }; 
 private static String[] includes32m = { "pps16_2.v", "pps16_3.v", 
   "pps16_4.v", "pps32_1.v", "pps32_2.v", "pps32_3.v", 

"pps32_4.v", "pps32_5.v", "radix4_32.v", "squareM2_32.v" }; 
 private static String[] includes64m = { "pps16_2.v", "pps16_3.v", 
   "pps16_4.v", "radix4_16.v", "pps32_2.v", "pps32_3.v", 

"pps32_4.v", "pps32_5.v", "pps64_1.v", "pps64_2.v", 
 "pps64_3.v", "pps64_4.v", "pps64_5.v", "pps64_6.v", 
 "pps64_7.v", "pps64_8.v", "pps64_9.v", "squareM2_32.v" }; 

 private static String[] includes16sm = { "pps16_1.v", "pps16_2.v", 
"pps16_3.v", "pps16_4.v", "radix4_16.v", "signedSquareM2_16.v" 
}; 

 private static String[] includes32sm = { "pps16_2.v", "pps16_3.v", 
   "pps16_4.v", "pps32_1.v", "pps32_2.v", "pps32_3.v", 

"pps32_4.v", "pps32_5.v", "radix4_32.v", "signedSquareM2_32.v" 
}; 

 private static String[] includes64sm = { "pps16_2.v", "pps16_3.v", 
   "pps16_4.v", "radix4_16.v", "pps32_2.v", "pps32_3.v", 

"pps32_4.v", "pps32_5.v", "pps64_1.v", "pps64_2.v", 
 "pps64_3.v", "pps64_4.v", "pps64_5.v", "pps64_6.v", 
 "pps64_7.v", "pps64_8.v", "pps64_9.v", "signedSquareM2_64.v" 
}; 

 private static String[] includes24 = { "fullpps32_6.v", "fullpps32_7.v",  
   "fullpps32_8.v", "fullpps32_9.v", "fullpps32_11.v",  
   "fullpps16_2.v", "fullpps16_3.v", "fullpps16_5.v", 

"fullpps16_7.v", "fullpps16_8.v", "fullpps24_1.v", 
 "fullpps24_2.v", "signExt24.v", "fullRadix4_24.v" }; 

 private static String[] includes48 = {"fullpps16_2.v", "fullpps16_3.v", 
   "fullpps16_4.v", "fullpps16_5.v", "fullpps16_7.v", 

"fullpps16_8.v", "fullpps32_2.v", "fullpps32_3.v", 
"fullpps54_2.v", "fullpps32_5.v", "fullpps32_6.v", 
"fullpps32_7.v", "fullpps32_8.v", "fullpps32_9.v", 
"fullpps32_11.v", "fullpps54_1.v","fullpps64_7.v", 
"fullpps64_8.v", "fullpps64_9.v", "fullpps64_10.v", 
"fullpps64_11.v", "fullpps64_12.v", "fullpps64_13.v", 
"fullpps64_14.v", "fullpps64_15.v", "fullpps64_16.v", 
"fullpps64_17.v", "signExt54.v", "fullRadix4_54.v", "assemble.v", 
"exponent2.v", "flag.v", "normalize.v", "prenorm2.v", 
"preprocess2.v", "round.v","shift.v", "special2.v", "fpmul2.v"}; 

/** 
 * @method addIncludes 
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 * @param outputStream 
 * @param bitWidth 
 * @param multi 
 * @throws IOException 
 * @description: Writes the needed includes 
 */ 
 private static void addIncludes(BufferedWriter outputStream, int bitWidth, 
   int multi) throws IOException { 
  String[] includes; 
  if (multi == 1) { 
   switch (bitWidth) { 
   case 16: 
    includes = includes16m; 
    break; 
   case 32: 
    includes = includes32m; 
    break; 
   case 64: 
    includes = includes64m; 
    break; 
   default: 
    return; 
   } 
  } else if (multi == 2) { 
   switch (bitWidth) { 
   case 16: 
    includes = includes16sm; 
    break; 
   case 32: 
    includes = includes32sm; 
    break; 
   case 64: 
    includes = includes64sm; 
    break; 
   default: 
    return; 
   } 
  } else if (multi == 3) { 
   if (bitWidth == 32) { 
    includes = includes24; 
   } else { 
    includes = includes48; 
   } 
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  } else { 
   switch (bitWidth) { 
   case 16: 
    includes = includes16; 
    break; 
   case 32: 
    includes = includes32; 
    break; 
   case 64: 
    includes = includes64; 
    break; 
   default: 
    return; 
   } 
  } 
  for (int i = 0; i < includes.length; i++) { 
   outputStream.write("`include " + '"' + includes[i] + '"'); 
   outputStream.newLine(); 
  } 
 } 
 
 /** 
  * @method changeValues 
  * @param outputStream 
  * @param bitWidth 
  * @param multi 
  * @throws IOException 
  * @description 2^16 random values are written to the Verilog file  
  */ 
 private static void changeValues(BufferedWriter outputStream, int bitWidth, 
   int multi) throws IOException { 
  Random randomGenerator = new Random(); 
  double numOfValues = 65536.0; 
  int values = (int)Math.pow(2, bitWidth); 
  //Multiplication 
  if (multi == 1) { 
   for (double i = 0.0; i < numOfValues; i++) { 

int randomInt1 = randomGenerator.nextInt(new 
    Double(values).intValue()); 

    int randomInt2 = randomGenerator.nextInt(new 
    Double(values).intValue()); 

    outputStream.write("\t\t\ti=" + randomInt1 + ";"); 
    outputStream.write("\t\t\ti2=" + randomInt2 + ";"); 
    outputStream.newLine(); 
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    outputStream.write("\t\t\t#100"); 
   } 
  } else if (multi == 2) { //Signed Multiplication 
   for (double i = 0.0; i < numOfValues; i++) { 
    int randomInt1 = randomGenerator.nextInt(new 
            Double(values).intValue()) –  

(values >> 1); 
    int randomInt2 = randomGenerator.nextInt(new 

    Double(values).intValue()) –  
     (values >> 1); 

    outputStream.write("\t\t\ti=" + randomInt1 + ";"); 
    outputStream.write("\t\t\ti2=" + randomInt2 + ";"); 
    outputStream.newLine(); 
    outputStream.write("\t\t\t#100"); 
   } 
  } else if (multi == 3) { //Floating Point Square  
   for (int i = 0; i < numOfValues; i++) { 
    int control = 3; 
    int exp; 
    if (bitWidth == 32) { //Single 
     exp = (i%256) << 23; 
     values = (int) Math.pow(2, 23); 
     long randomInt = randomGenerator.nextInt(new 

     Double(values).intValue()) + exp; 
     outputStream.write("\t\t\ti=" + randomInt + ";"); 
    } else { // Double 
     exp = (i%1024) << 52; 
     values = (int) Math.pow(2, 52); 
     long randomInt = randomGenerator.nextInt(new 

     Double(values).intValue()) + exp; 
     outputStream.write("\t\t\ti=64'd" + randomInt +";"); 
    } 
     
    if (i < numOfValues/4) { 
     control = 0; 
    } else if (i < numOfValues/2) { 
     control = 1; 
    } else if (i < (numOfValues * .75)) { 
     control = 2; 
    } 
    outputStream.write(" control=" + control + ";"); 
    outputStream.newLine(); 
    outputStream.write("\t\t\t#100"); 
   } 
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  } 
  //Square 
      else { 
       for (double i = 0.0; i < numOfValues; i++) { 
    int randomInt = randomGenerator.nextInt(new 

   Double(values).intValue()); 
    outputStream.write("\t\t\ti=" + randomInt + ";"); 
    outputStream.newLine(); 
    outputStream.write("\t\t\t#100"); 
   } 
  } 
 } 
 
 public static void main(String[] args) { 
  try { 
   int multi = 0; 
   BufferedWriter outputStream = new BufferedWriter(new 

FileWriter(“simcrct" + args[0] + args[1] + ".v")); 
   int bitWidth = Integer.parseInt(args[1]); 
   if (args[2].toLowerCase().equals("multiply")) { 
    multi = 1; 
   } else if (args[2].toLowerCase().equals("signed")) { 
    multi = 2; 
   } else if (args[2].toLowerCase().equals("floating")) { 
    multi = 3; 
   }  
   addIncludes(outputStream, bitWidth, multi); 
   outputStream.write("module stimcrct" + args[1] + ";"); 
   outputStream.newLine(); 
   outputStream.write("\treg [" + (bitWidth - 1) + ":0] i;"); 
   outputStream.newLine(); 
   //Initial Verilog setup 
   if (multi > 0 && multi < 3) { 
    outputStream.write("\treg [" + (bitWidth - 1) + ":0] i2;"); 
    outputStream.newLine(); 
    outputStream.write("\twire ["+(bitWidth* 2 - 1) + ":0] o;"); 
    outputStream.newLine(); 
    outputStream.write("\t" + args[0] + "_" + args[1] +  

        " crct(i,i2, o);"); 
    outputStream.newLine(); 
    outputStream.write("\tinitial"); 
    outputStream.newLine(); 
    outputStream.write("\t\tbegin"); 
    outputStream.newLine(); 



82 
 

    outputStream.write("$monitor (\"square = %d\", o);"); 
   } else if (multi == 3) { 
    outputStream.write("\treg [4:0] control;"); 
    outputStream.newLine(); 
    outputStream.write("\twire [" + (bitWidth - 1) + ":0] o;"); 
    outputStream.newLine(); 
    outputStream.write("\twire [4:0] flag;"); 
    outputStream.newLine(); 
    outputStream.write("\t fpmul2 crct (i, o, control, flag);"); 
    outputStream.newLine(); 
    outputStream.write("\tinitial"); 
    outputStream.newLine(); 
    outputStream.write("\t\tbegin"); 
    outputStream.newLine(); 
    outputStream.write("$monitor (\"square = %d flag = %d\", 

          o, flag);"); 
   } else { 
    outputStream.write("\twire [" +(bitWidth * 2 - 1)+":0] o;"); 
    outputStream.newLine(); 
    outputStream.write("\t" + args[0] + "_" + args[1] +  

        " crct (i,o);"); 
    outputStream.newLine(); 
    outputStream.write("\tinitial"); 
    outputStream.newLine(); 
    outputStream.write("\t\tbegin"); 
    outputStream.newLine(); 
    outputStream.write("$monitor (\"square = %d\", o);"); 
   } 
   outputStream.newLine(); 
   changeValues(outputStream, bitWidth, multi); 
   outputStream.write("\t\t\t$finish;"); 
   outputStream.newLine(); 
   outputStream.write("\t\tend"); 
   outputStream.newLine(); 
   outputStream.write("endmodule"); 
   outputStream.flush(); 
   outputStream.close(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
 
 } 
 
}
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Appendix B 

VERILOG FILES  

B.1 PARTIAL SQUARE GENERATOR 

/* 
* A 2X1 13-bit MUX that sets z to i2 if c is 1 
* and to i2 otherwise. 
* Inputs: i1 and i2 
* Control: c 
* Output: z 
*/ 
module mux21_13 (i1, i2, c, z); 
 input[12:0] i1, i2; 
 input c; 
 output[12:0] z; 
 reg[12:0] z; 
 
 always @ (c or i1 or i2) 
 begin 
  if (c) 
  begin 
   z = i2; 
  end 
  else 
  begin 
   z = i1; 
  end 
 end 
endmodule 
 
/* 
* Left shifts a 13-bit input i  
* one place to the left for a  
* 13-bit output o. 
* Input: i 
* Output: o 
*/ 
module lshift13_1 (i, o); 
 input[12:0] i;
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output[12:0] o; 
 reg [12:0] o; 
 
 always @ (i) 
 begin 
  o = i << 1; 
 end 
endmodule 
 
/* 
* Negates the 13-bit input i if 
* c is 1. 
* Input: i 
* Output: o 
*/ 
module codNeg13 (i, c, o); 
 input[12:0] i; 
 input c; 
 output[12:0] o; 
 reg[12:0] o; 
 integer j; 
 
 always @ (i or c) 
 begin 
  for (j = 0; j < 13; j = j + 1) 
  begin 
   o[j] = c ^ i[j]; 
  end 
 end 
   
endmodule 
 
/* 
 * pps16_1 
 * Calculates a 16-bit partial square from a 
 * 15-bit input. 
 * Input: x 
 * Output: y 
 */   
module pps16_1 (x, y); 
 input [14:0] x; 
 output [15:0] y; 
 wire [15:0] y; 
 wire c1, c2, c3, c4; 
 wire [12:0] t1, t2, t3, t4; 
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 xnor xn1 (c1, 0, x[0]); 
 xnor xn2 (c2, x[0],x[1]); 
 and a1 (c3, c2, c1); 
 not n1 (c4, c3); 
 and a2 (y[2], c4, c1); 
 assign y[1] = 0; 
 nor no1 (y[0], c1, c3); 
 codNeg13 cn1 (x[14:2], x[1], t1); 
 lshift13_1 ls1 (t1, t2); 
 mux21_13 m1 (t1, t2,  c1, t3); 
 assign t4 = 0; 
 mux21_13 m2 (t3, t4, c3, y[15:3]); 
endmodule 
 
B.2 INTERGER MULTIPLIER 

/* Calculates the 16-bit square 
 * from a 16-bit input 
 * Input: i 
 * Output: o 
 */ 
module radix4_16 (i, o); 
 input[15:0] i; 
 output[15:0] o; 
 reg[15:0] o; 
 wire[15:0] t1; 
 wire[11:0] t2; 
 wire[7:0] t3; 
 wire[3:0] t4; 
 reg[11:0] t5; 
 reg[7:0] t6; 
 
 // Calculate partial squares 
 pps16_1 p1 (i[14:0],t1); 
 pps16_2 p2 (i[12:1], t2); 
 pps16_3 p3 (i[10:3], t3); 
 pps16_4 p4 (i[8:5], t4); 
 // Added partial squares together 
 always @ (t1 or t2 or t3 or t4) 
 begin 
  o[3:0] = t1[3:0]; 
  t5 = t1[15:4] + t2; 
  o[7:4] = t5[3:0]; 
  t6[3:0] = t3[3:0]; 
  t6[7:4] = t3[7:4] + t4; 
  o[15:8] = t6 + t5[11:4]; 
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 end 
 
endmodule 
 
B.3 FULL PARTIAL SQUARE GENERATOR 

/* 
* A 2X1 15-bit MUX that sets z to i2 if c is 1 
* and to i2 otherwise. 
* Inputs: i1 and i2 
* Control: c 
* Output: z 
*/ 
module mux21_15 (i1, i2, c, z); 
 input[14:0] i1, i2; 
 input c; 
 output[14:0] z; 
 reg[14:0] z; 
 
 always @ (c or i1 or i2) 
 begin 
  if (c) 
  begin 
   z = i2; 
  end 
  else 
  begin 
   z = i1; 
  end 
 end 
endmodule 
 
/* 
* Left shifts a 15-bit input i  
* one place to the left for a  
* 15-bit output o. 
* Input: i 
* Output: o 
*/ 
module lshift15_1 (i, o); 
 input[14:0] i; 
 output[14:0] o; 
 reg [14:0] o; 
 
 always @ (i) 
 begin 
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  o = i << 1; 
 end 
endmodule 
 
/* 
* Negates the 14-bit input i if 
* c is 1. 
* Input: i 
* Output: o 
*/ 
module codNeg15 (i, c, o); 
 input[13:0] i; 
 input c; 
 output[14:0] o; 
 reg[14:0] o; 
 integer j; 
 
 always @ (i or c) 
 begin 
  for (j = 0; j < 14; j = j+ 1) 
  begin 
   o[j] = c ^ i[j]; 
  end 
  o[14] = c ^ 0; 
 end 
endmodule 
 
/* 
 * codZero15 
 * Sets the 15-bit output to 0 
 * if c is 0 otherwise the output 
 * is set to the input. 
 * Input: i, c 
 * Output: o 
 */ 
module codZero15 (i, c, o); 
 input[14:0] i; 
 input c; 
 output[14:0] o; 
 reg[14:0] o; 
 integer j; 
 
 always @ (i or c) 
 begin 
  for (j = 0; j < 15; j = j + 1) 
  begin 
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   o[j] = c & i[j]; 
  end 
 end 
endmodule 
 
/* 
 * fullpps16_1 
 * Calculates a 18-bit partial square 
 * from a 16-bit input. 
 * Input: x 
 * Output: y 
 */ 
module fullpps16_1 (x,y); 
 input[15:0] x; 
 output[17:0] y; 
 wire[17:0] y; 
 wire c1, c2, c3, c4; 
 wire[14:0] t1, t2, t3; 
 
 xnor xn1 (c1, 0, x[0]); 
 xnor xn2 (c2, x[0],x[1]); 
 nand n1 (c4, c2, c1); 
 not n2 (c3, c4); 
 and a2 (y[2], c4, c1); 
 assign y[1] = 0; 
 nor no1 (y[0], c1, c3); 
 codNeg15 cn1 (x[15:2], x[1], t1); 
 lshift15_1 ls1 (t1, t2); 
 mux21_15 m1 (t1, t2, c1, t3); 
 codZero15 m2 (t3, c4, y[17:3]); 
endmodule 
 
B.4 FULL DUAL RECODED RADIX-4 SQUARE 

/* Calculates the 32-bit square of 
 * a 16-bit input input 
 * Input: i 
 * Output: o 
 */ 
module fullRadix4_16 (i,o); 
 input[15:0] i; 
 output[31:0] o; 
 reg[31:0] o; 
 wire[31:0]c1; 
 wire[24:0] c2; 
 wire[22:0] c3; 
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 wire[19:0] c4; 
 wire[9:0] c5; 
 wire[7:0] c6; 
 wire[5:0] c7; 
 wire[3:0] c8; 
 wire[13:0] c9; 
 reg [27:0] c14; 
 reg [27:0] c16; 
 reg [24:0] c15; 
 reg [18:0] c10; 
 reg [19:0] c11; 
 reg [23:0] c12, c13; 
 wire x, y, z; 
 
 //Calculate partial squares 
 fullpps16_1 fp1 (i, c1[17:0]); 
 fullpps16_2 fp2 (i[15:1],c2[15:0]); 
 fullpps16_3 fp3 (i[15:3],c3[13:0]); 
 fullpps16_4 fp4 (i[15:5], c4[11:0]); 
 fullpps16_5 fp5 (i[15:7], c5); 
 fullpps16_6 fp6 (i[15:9], c2[23:16]); 
 fullpps16_7 fp7 (i[15:11], c3[21:16]); 
 fullpps16_8 fp8 (i[15:13], c4[19:16]);  
 signExt16 s1 (i[1], i[2], i[3],i[5],i[7],i[9],i[11],i[13], c1[31:18]); 
 and a1 (c3[14], i[5], i[4],i[3]); 
 and a2 (c4[12], i[5], i[6],i[7]); 
 and a3 (c4[14], i[7], i[8],i[9]); 
 and a4 (c2[24], i[9], i[10],i[11]); 
 and a5 (c3[22], i[11],i[12],i[13]); 
  
 // Line up bits 
 assign c3[15] = 0; 
 assign c4[13] = 0; 
 assign c4[15] = 0; 
  
 // Add partial squares 
 always @ (c1 or c2) 
 begin 
  o[3:0] = c1[3:0]; 
  c16 = c1[31:4] + c2; 
  o[7:4] = c16[3:0];   
 end 
 
 always @ (c3 or c4) 
 begin 
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  c12[3:0] = c3[3:0]; 
  c12[23:4] = c3[22:4] + c4;  
 end 
 
  always @ (c16 or c12) 
 begin 
  c13 = c12 + c16[27:4]; 
  o[15:8] = c13[7:0]; 
 end 
 
 always @ (c5 or c13) 
 begin 
  o[31:16] = c13[23:8] + c5; 
 end 
endmodule 
 
B.5 INTEGER MULTIPLCATION USING SQUARING UNITS 

/* Calculates the 64-bit product 
 * of two 64-bit inputs 
 * Inputs: i1, i2 
 * Output: o 
 */ 
module squareM2_16 (i1, i2, o); 
 input[15:0] i1, i2; 
 output[15:0] o; 
 reg[15:0] o; 
 wire[15:0] t1, t2; 
 reg[15:0] t3, t4; 
 reg[16:0] t5, t6; 
 reg[16:0] t7; 
 reg[16:0] t8; 
 // Add the two inputs 
 // Subtract the smaller input 
 // from the larger on 
 always @ (i1 or i2) 
 begin 
  if (i1 > i2) 
  begin 
   t3 = i1; 
   t4 = i2; 
  end 
  else 
  begin 
   t3 = i2; 
   t4 = i1; 



91 
 

  end 
  t5 = t3 - t4; 
  t6 = t3 + t4; 
 end 
 // square the difference 
 radix4_16 s1 (t5[16:1], t1); 

// square the sum 
 radix4_16 s2 (t6[16:1], t2); 
 // Truncation correction 
 always @ (t2) 
 begin 
  if (t6[0] == 1) 
  begin 
    
   t7 = t2 + t6[16:1]; 
  end 
  else 
  begin 
   t7[15:0] = t2; 
   t7[16] = 0; 
  end 
 end 
 
 always @ (t1) 
 begin 
  if (t5[0] == 1) 
  begin 
    
   t8 = t1 + t5[16:1]; 
  end 
  else 
  begin 
   t8[15:0] = t1; 
   t8[16] = 0; 
  end 
 end 
 // Subtract the smaller square 
 // from the larger one 
 always @ (t7 or t8) 
 begin 
  o = (t7 - t8); 
 end 
 
endmodule  
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