
Specialized Multiplier Circuits

Approved by

Dr. Mitchell A. Thornton

Dr. Ping Gui

Dr. David Matula

Dr. Sukumaran Nair

Dr. Steve Szygenda

Specialized Multiplier Circuits

A Dissertation Presented to the Graduate Faculty of

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Engineering

by

Jason Moore

(M.S., Computer Science, Southern Methodist University)
(B.S., Computer Systems Engineering, University of Arkansas)

December 20 2014

Copyright 2014
Jason Moore

All Rights Reserved

iv

Acknowledgment

My dissertation would not have been possible without the support,

encouragement, and help of many people. To each of you, I owe a deep gratitude.

 Dr. Mitch Thornton and Dr. David Matula served as my mentors and advisors

during the course of my work. Their guidance was essential.

 I thank my grandmother, Iris Butler, who was always there with financial support

when money ran short. And I express thanks to my brothers, Rodney, Lynn, and Roger

who offered suggestions, counsel, and sounding boards –whether I asked or not.

To my dearest, June, you have been a constant and tireless uplifting force in my

life. Your encouragement and belief in me bolsters my confidence. Thank you.

 I do not have words to articulate how much my parents, Jerry and Jennifer, have

supported and influenced me throughout my life. I thank them for their timeless wisdom

–though it was not always followed, it was always appreciated. And without their

unconditional love, I could have never made it this far. Thank you, both.

v

Moore, Jason B.S., University of Arkansas, 2001
M.S., Southern Methodist University, 2004

Specialized Multiplier Circuits

 Advisor: Dr. Mitchell A. Thornton and Dr. David W. Matula

Doctor of Philosophy conferred December, 20, 2014

Dissertation completed December, 4, 2014

This document presents an n-bit dual recoded squarer and a 2n-bit dual recoded

radix-4 squarer as well as an n-bit and 2n-bit integer radix-4 multiplier circuits using dual

recoded radix-4 squarers. The radix-4 dual recoding squarer reduces the number of bit

product terms employed in the previously known squaring methods obtained by either

Booth radix-4 recoded multiplication or by radix 2 squaring. Employing the dual recoded

radix-4 procedure for design of a squaring circuit introduces a significant reduction in

power and area. Architecturally, radix-4 dual recoded squaring uses only the 1’s

complement representation which allows for a simpler PPG structure as compared to the

2’s complement representation required for Booth radix-4 multiplication. Based on the

above squarer, an n-bit radix-4 multiplier is designed to reduce power and size compared

to using a traditional multiplier circuit while a similarly designed radix-4 2n-bit multiplier

can be used for a gain in area. Finally, an architecture for a combinational floating point

multiplier and squarer is described for the purpose of producing a low power floating

point square with small area requirements. In order to take advantage of the squarer

power improvements with a minimal increase in area, the multiplier and squarer are

combined into one circuit. Shared circuitry among the units provides justification for

inclusion of a dedicated squarer since a small amount of additional circuitry is required

vi

and the power savings for squaring computations is significant as compared to the use of

a general-purpose multiplier to generate a squared value.

vii

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………………….viii
LIST OF TABLES……………………………………………………………………......x
Chapter 1 INTRODUCTION .. 1	

1.1	
 Current Methods ... 2	

1.2	
 Testing .. 7	

1.2.1	
 Test Bench Generation .. 8	

1.2.2	
 Carry-Save Array Multiplier ... 8	

Chapter 2 SQUARING .. 10	

2.1.	
 Booth Recoding .. 10	

2.2.	
 Consolidating Partial Squares: The 2n-bit Dual Recoded Radix 4 Square 12	

2.2.1.	
 Implementation .. 16	

2.2.2.	
 Results ... 20	

2.3.	
 Dual Recoded Radix-4 Truncated Square .. 22	

2.3.1.	
 Algorithm .. 24	

2.3.2.	
 Implementation .. 27	

2.3.3.	
 Results ... 29	

2.4.	
 Floating-Point Square ... 31	

2.4.1.	
 Summary of the IEEE 754 Floating-Point Standard [14] 31	

2.4.2.	
 Algorithm .. 32	

2.4.3.	
 Implementation .. 34	

2.4.3.1.	
 Floating point multiplication ... 34	

2.4.4.	
 Results ... 52	

Chapter 3 MULTIPLICATION ... 54	

3.1.	
 Parallel Multipliers ... 54	

3.1.1.	
 Pezaris Array Multiplier .. 54	

3.1.2.	
 Booth Multiplier .. 55	

3.2.	
 Tree Multipliers .. 58	

3.2.1.	
 Dadda Multiplier ... 58	

3.2.2.	
 Wallace Multiplier ... 61	

3.3.	
 Integer Multiplication Using Squaring Units .. 63	

3.3.1.	
 Algorithm .. 63	

3.3.2.	
 Unsigned Multiplication .. 64	

3.3.3.	
 Signed Multiplication .. 71	

Chapter 4 CONCLUSION ... 74	

Appendix A ... 76	

AUTOMATIC TESTBENCH GENERATION .. 76	

Appendix B .. 83	

VERILOG FILES .. 83	

REFERENCES .. 92

viii

LIST OF FIGURES

Figure 1.1: Data Path of a Traditional Multiplier Circuit .. 2	

Figure 1.2: Bit Product Array for a 5x5-bit Multiplication Implementation of the
 Squaring Operation ... 3	

Figure 1.3: Skewed Triangular Bit Product Array for 5-bit Squaring 3	

Figure 1.1.1: Partial Product Consolidation for 5- and 6-bit Squaring 7	

Figure 2.2.1: PSG Data Path for 2n-bit Recoded Radix-4 Squaring Circuit 13	

Figure 2.2.2: Partial Product Array for 12-bit Recoded Radix-4 Squaring 14	

Figure 2.2.3: Consolidated Partial Product Array for 12-bit Recoded Radix-4 Squaring . 15	

Figure 2.2.4: Consolidated Radix 4 Recoded 32-bit Squarer for the Example Case
 ... 15	

Figure 2.2.5: Consolidated Radix 4 Recoded 32-bit Square ... 16	

Figure 2.2.1.1: Sign Extension Circuit .. 18	

Figure 2.2.1.2: Full Square Circuit .. 20	

Figure 2.2.2.1: Power (mW) vs Word Size Chart ... 21	

Figure 2.2.2.2: Leakage Power (nW) vs Word Size Chart .. 21	

Figure 2.2.2.3: Area vs Word Size Chart .. 22	

Figure 2.3.2.1: A Synopsys Screen Shot of an 8-bit PSG ... 27	

Figure 2.3.2.2: Data Path of 16-bit Input/16-bit Output Radix-4 Dual Recoded Squaring
 Circuit ... 28	

Figure 2.3.2.3: Recursive Data Path for an n-bit Recoded Radix-4 Squaring Circuit 29	

Figure 2.3.3.1: Power (mW) vs Word Size Chart ... 30	

Figure 2.3.3.2: Leakage Power (nW) vs Word Size Chart .. 30	

Figure 2.3.3.3: Area vs Word Size Chart .. 31	

Figure 2.4.1.1: Floating-point Number Representation ... 32	

Figure 2.4.3.1: Diagram of Floating point Multiplication Circuit [15] 35	

Figure 2.4.3.2:Pre-processor [15] .. 37	

Figure 2.4.3.3: Flowchart for selected ... 38	

Figure 2.4.3.4: Special Case Detector [15] .. 39	

Figure 2.4.3.5: Pre-norm Shifter [15] .. 40	

Figure 2.4.3.6: Pre-normalizer [15] ... 41	

Figure 2.4.3.7: Multiplier [15] ... 42	

Figure 2.4.3.8: Exponent Adder [15] ... 43	

Figure 2.4.3.9: Normalizer [15] ... 43	

Figure 2.4.3.10: Normalizer [15] ... 44	

Figure 2.4.3.11: Rounder [15] ... 46	

Figure 2.4.3.12: Flagger [15] ... 47	

Figure 2.4.3.13: Assembler [15] .. 48	

Figure 2.4.3.2.1: Simplified Pre-processor .. 49	

Figure 2.4.3.2.2: Flowchart for selected [23] .. 50	

()22 1011100001011100=Q

ix

Figure 2.4.3.2.3: Simplified Special Case Detector [23] ... 51	

Figure 2.4.3.2.4: Simplified Pre-normalizer [23] .. 51	

Figure 2.4.4.1: Power (mW) vs Word Size chart .. 52	

Figure 2.4.4.2: Leakage Power(nW) vs Word Size Chart ... 53	

Figure 2.4.4.3: Area vs Bit-Width Chart ... 53	

Figure 3.1.1.1: Data path of a Pezaris Multiplier [18] ... 55	

Figure 3.1.2.1: Data path of a Booth Multiplier [21] .. 58	

Figure 3.2.1.1: Initial Partial Product for a Dadda Multiplier ... 59	

Figure 3.2.1.2: Dot Diagram of a Dadda Tree multiplier .. 60	

Figure 3.2.1.3: Data Path for a Dadda Tree Multiplier ... 61
Figure 3.2.2.1: Data Path for a Wallace Tree Multiplier………………………………...62
Figure 3.3.1.1: Data Path for Integer Multiplication Using Squaring Units 64	

Figure 3.3.2.1: Example Truncation Correction Data Path ... 65	

Figure 3.3.2.2: Radix-4 Dual Booth Recoded Multiplier by Squaring 66	

Figure 3.3.2.3: Power (mW) vs Word Size Chart ... 67	

Figure 3.3.2.4: Leakage Power(nW) vs Word Size Chart ... 68	

Figure 3.3.2.5: Area vs Word Size Chart .. 68	

Figure 3.3.2.6: Power (mW) vs Word Size Chart ... 69	

Figure 3.3.2.7: Leakage Power(nW) vs Word Size Chart ... 70	

Figure 3.3.2.8: Area vs Word Size Chart .. 70	

Figure 3.3.3.1: Signed Multiplication Data Path ... 71	

Figure 3.3.3.2: Power (mW) vs Word Size Chart ... 72	

Figure 3.3.3.3: Leakage Power(nW) vs Word Size Chart ... 73	

Figure 3.3.3.4: Area vs Word Size Chart .. 73	

Figure 4.1: Multiplier/Squarer Combination Circuit [23] ... 75	

x

LIST OF TABLES

Table 1.1.1: 136 Entries ... 5	

Table 1.1.2: 72 Entries ... 6	

Table 2.1.1: Radix-4 Booth Recoding [1, 4] ... 10	

Table 2.1.2: Shows how 𝑄 = 1100 0101 1000 1011! is recoded to be represented by
 𝑃 = 110122111 ! ... 11	

Table 2.1.3: Booth Recoded Radix 4 Multiplication ... 11	

Table 2.1.4: Booth Recoded Radix-2 Squaring ... 12	

Table 2.2.1: Radix-4 Squaring (Recoded) 2n-bit square ... 13	

Table 2.3.1: Radix-4 Booth Recoding [1, 4] ... 22	

Table 2.3.2; Shows how 𝑄 = 1100 0101 1000 1011! is recoded to be represented by
 𝑃 = 110122111 ! ... 23	

Table 2.3.3: Booth Recoded Radix 4 Multiplication ... 23	

Table 2.3.4: Booth Recoded Radix-2 Squaring ... 24	

Table 2.3.5: Radix-4 Dual Recoded Squaring ... 26	

Table 2.4.1: Simple Case Floating-Point Multiplier ... 33	

Table 2.4.2: Normalized/Unnormalized Floating-point (Incorrect) 33	

Table 2.4.3: Normalized/Unnormalized Floating-point Multiplication 34	

Table 2.4.4: Rounding Modes [15] .. 45	

Table 3.1.1: Booth multiplication of -5 and 3 ... 56	

Table 3.3.1: Truncation Example .. 66	

Table 3.3.2: Truncation Correction Example .. 66	

xi

Dedication

 This dissertation is dedicated in loving memory of Dr. Ronald Wayne Skeith. Dr.

Skeith was my undergraduate advisor, mentor and friend. His influence shaped my life

and career.

1

Chapter 1

INTRODUCTION

Squaring is the symmetric case of multiplication where both multiplicand and

multiplier are the same operand reducing squaring to a unary operation. This symmetry

allows partial product arrays for squaring to be reduced to about half the size and half the

depth of comparable multiplication partial product arrays for both radix 2 and recoded

radix 4 arrays. There are many applications such as fast exponentiation, Euclidean

distance computation, digital signal processing applications such as adaptive filtering,

vector quantization, image compression, and pattern recognition, sum of squares

statistical computations, and rounding of floating point square root, where incorporating a

supplemental squaring circuit may be attractive to avoid the time and power requirements

of performing all squaring operations in a large multiplier.

Multiplying is the sum of adding one number which is referred to as the

multiplicand, to itself a specific number of times which is the multiplier. The traditional

algorithm for doing this called for sequential additions of the multiplicand based on the

multiplier as illustrated in Figure 1.1.

2

Figure 1.1: Data Path of a Traditional Multiplier Circuit

As well as building general purpose multipliers, left shifters were used to multiply by

powers of 2. [It89] These shifters can be thought of as the first special purpose

multipliers.

1.1 Current Methods

For binary squaring of the n-bit operand 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞!, the n2 bit product terms

of the multiplication array may be reduced to !!! !
!

 terms employing and

 for i > j. This reduction in multiplication size for binary squaring has

been noted in the literature [EL04, Pa00]. For example, the 5 𝑥 5 bit multiplication partial

2:1
MUX

2:1
MUX

Adder

Multiplicand

ith bit of the
Multiplier

3

product array for 𝑄 𝑥 𝑄 illustrated in Figure 1.1.1 reduces for such a binary squaring

operation to the skewed triangular array of Figure 1.1.2.

Figure 1.2: Bit Product Array for a 5x5-bit Multiplication Implementation of the

Squaring Operation

Figure 2.2.1.3: Skewed Triangular Bit Product Array for 5-bit Squaring

Note that each row of the triangular array for n-bit squaring may be realized as an "ith

multiplicand prefix" that is conditionally selected by the squaring operation’s

“multiplier” bit qi. The rows in Figure 1.1.2 thus form “partial squares” analogous to the

partial products of multiplication that may be formalized as follows.

Observation 1: Let 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! with 𝑄! =
!
!!

 for 𝑖 = 1,2,⋯ ,𝑛. Then

𝑄! = 4𝑄! + 𝑞! 𝑞!4! (2.1)

q4	
 	
 	
 	
 	
 	
 q3	
 	
 	
 	
 	
 	
 	
 	
 q2	
 	
 	
 	
 q1	
 	
 	
 	
 q0	
 	

q4q0	
 	
 q3q0	
 	
 q2q0	
 	
 q1q0	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 q0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q1	
 	
 q3q1	
 	
 q2q1	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q1	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q2	
 	
 	
 q3q2	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 q2	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q3	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q3	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4	

q0	

q1	

q2	

q3	

q4	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s8	
 	
 	
 	
 	
 s7	
 	
 	
 	
 	
 	
 s6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s5	
 	
 	
 	
 	
 	
 	
 	
 s4	
 	
 	
 	
 	
 	
 	
 	
 	
 s3	
 	
 	
 	
 	
 	
 	
 	
 	
 s2	
 	
 	
 	
 	
 	
 	
 	
 	
 s1	
 	
 	
 	
 	
 	
 	
 	
 	
 s0	
 	

	

q4	
 q3	
 q2	
 q1	
 q0	
 	

q4q0	
 	
 q3q0	
 	
 q2q0	
 	
 q1q0	
 	
 q0q0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q1	
 	
 q3q1	
 	
 q2q1	
 	
 q1q1	
 	
 q0q1	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q2	
 q3q2	
 	
 q2q2	
 	
 q1q2	
 	
 q0q2	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q3	
 	
 q3q3	
 	
 q2q3	
 	
 q1q3	
 	
 q0q3	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q4	
 	
 q3q4	
 	
 q2q4	
 	
 q1q4	
 	
 q0q4	

q0	

q1	

q2	

q3	

q4	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s8	
 	
 	
 	
 	
 s7	
 	
 	
 	
 	
 	
 s6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s5	
 	
 	
 	
 	
 	
 	
 	
 s4	
 	
 	
 	
 	
 	
 	
 	
 	
 s3	
 	
 	
 	
 	
 	
 	
 	
 	
 s2	
 	
 	
 	
 	
 	
 	
 	
 	
 s1	
 	
 	
 	
 	
 	
 	
 	
 	
 s0	
 	

	

4

Proof: With 𝑄! = 2𝑄! + 𝑞!, then 𝑄! = 4𝑄!! + 4𝑄! + 𝑞! 𝑞!. Since 𝑄 = 2𝑄!!! + 𝑞!,

𝑄!! = 4𝑄!!!! + 4𝑄!!! + 𝑞! 𝑞! and iterative substitution yields equation (2.1).

 □

Definition 2: Let 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! with 𝑄! =
!
!!
= 𝑞!!!𝑞!!!⋯ 𝑞! for 0 ≤ 𝑖 ≤ 𝑛 − 1.

Then the ith partial square 4𝑄!!! + 𝑞! 𝑞! is the product of the ith multiplicand factor

4𝑄!!! + 𝑞! and the ith select bit qi.

There are three distinct results that may be desired for the square of an n-bit integer.

• 2n-bit integer square: this is the double precision exact 2n-bit square Q2 in a 2n-

bit word. This is the result provided by summing the bit product terms illustrated

in Figure 2.2. This full result is useful in implementations of multiple precision

arithmetic.

• n-bit integer square: The result is the square module the word size that is Q2 mod

2n for an n-bit word. This is the typical result desired for implementing an n-bit

integer arithmetic expression.

• n-bit floating point square: For a floating point number with a normalized

significand of n-bits, this is the normalized and rounded n-bit result. The n-bit

floating point square is determined from the 2n-bit integer square by appropriate

rounding to obtain the normalized n-bit result.

5

The integer result is effectively the n-bit low order part of the 2n-bit square and the

floating point result is effectively the high order part, possibly overlapping the low order

part since the square of a normalized n-bit significand may have length 2n – 1 bits. Let us

first consider the integer word size example of the 16-bit integer square, contrasting the

binary multiplication array with the binary squaring array.

Example 1: Consider evaluation of the square of the 16-bit argument Q = 50,571 =

1100 0101 1000 10112. The full 32-bit square is (50,571)2 = 2,557,426,041, which in

binary is Q2 = 1001 1000 0110 1111 0011 1001 0111 10012. Table 1.1.1 illustrates the

16×16 bit multiplication array for determining the 16-bit integer result

Q2 = 0011 1001 0111 10012 mod 216. This example array corresponds to the low order

triangular portion of Figure 1.1.1.

Table 1.1.1: 136 Entries

1100
1000
0000
0010
0000
0000
0000
1100
1000
0000
0010
0000
0000
0000
000
11
1

0101
1011
0000
1100
0000
0000
0000
0101
1011
000
11
0

1000
0001
0000
0101
0000
000
00
1

1011
011
00
1

0011 1001 0111 1001

6

Determination of the n-bit integer word square for n even by binary squaring

requires summation of just !
!
 partial squares. Table 1.1.2 illustrates this summation for

our 16-bit example, where there are just 72 entries in the 16x8-bit triangular array

compared to 136 entries in the 16x16-bit triangular array of Table 1.1.1. Table 1.1.2

follows the pattern illustrated in the low order triangular portion of Figure 1.1.2, where

the small zeroes here denote forced zeroes.

Table 1.1.2: 72 Entries

Binary Squaring – 16-bit Square (Integer word result)

(1100 0101 1000 1011)2
 [1000 1011]

(selector bits)

 1000 1011 0001 01o1
 0001 0110 0010 o1
 0000 0000 00o0
 0101 1000 o1
 0000 00o0
 0000 o0
 00o0
 o1

1
1
0
1
0
0
0
1

 0011 1001 0111 1001 Square

For computing the full 2n-bit integer square 𝑄! = 𝑞!!!𝑞!!!⋯ 𝑞! !, the skewed

triangular array of partial squares 4𝑄!!! + 𝑞! 𝑞! illustrated in Figure 4.1.2 may be

consolidated to form fewer rows by moving up the diagonals of the left half of the 2𝑛×𝑛

bit array. Incorporating the half-adder relation 𝑞!!!𝑞! + 𝑞!!! = 2𝑞!!!𝑞! + 𝑞!!!𝑞!

for 0 ≤ 𝑛 − 2, we can obtain a 2𝑛× !
!

 nearly symmetric triangular array of !!!
! bit

product terms [EL04, Pa00]. Figure 1.1.1 illustrates the consolidated triangular arrays for

the calculations 5- and 6-bit squares. For partial square design of this consolidated !
!

row array note that the n-bit right halves of the 2n-bit rows may be formed by using bits

7

qi for 𝑖 = 0,1,⋯ , !
!
− 1 as select bits for n-bit partial squares and the n-bit left halves of

the rows may be similarly formed by using 𝑞 !
!

 through 𝑞!!! as select bits for

appropriately modified n-bit partial squares.

Figure 2.2.1.1.1: Partial Product Consolidation for 5- and 6-bit Squaring

The binary squaring operation thus reduces the area measured in bit product terms

by a factor of two compared to multiplication for generation of either the n-bit or 2n-bit

square, and computation of the n-bit floating point square is similarly simplified. The

reduced size and depth of the array of terms to be accumulated for binary squaring is

slightly better than the reduced size obtained by Booth radix-4 recoding, and the bit

product terms are specified without the conditional shifting and/or complementation

required to calculate the partial products of Booth radix-4 recoding.

1.2 Testing

All of the circuits presented are compared to a carry-save multiplier. When testing

the squaring circuits, both the multiplier and square circuits tested with values 0 to 216

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4	
 	
 	
 	
 	
 	
 	
 	
 q3	
 	
 	
 	
 	
 	
 	
 	
 	
 q2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q1	
 	
 	
 	
 	
 	
 	
 	
 q0	

q4	

q3	

q2	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q3	
 	
 	
 	
 	
 	
 𝑞4𝑞3$$$	
 	
 	
 	
 	
 	
 q4q2	
 	
 	
 	
 	
 	
 q4q1	
 	
 	
 	
 	
 	
 q4q0	
 	
 	
 	
 	
 	
 	
 q3q0	
 	
 	
 	
 	
 q2q0	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑞1𝑞0$$$	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 q0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q3q2	
 	
 	
 	
 	
 	
 	
 𝑞3𝑞2$$$	
 	
 	
 	
 	
 	
 q3q1	
 	
 	
 	
 	
 	
 𝑞2𝑞1$$$	
 	
 	
 	
 q1q0	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q2q1	

q0	

q1	

q2	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4	
 	
 	
 	
 	
 	
 	
 	
 q3	
 	
 	
 	
 	
 	
 	
 	
 q2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q1	
 	
 	
 	
 	
 	
 	
 q0	

q5	

q4	

q3	
 	

	
 	
 q5q4	
 	
 	
 	
 𝑞5𝑞4$$$	
 	
 	
 	
 q5q3	
 	
 	
 	
 	
 	
 	
 q5q2	
 	
 	
 	
 	
 q5q1	
 	
 	
 	
 	
 q5q0	
 	
 	
 	
 q4q0	
 	
 	
 	
 	
 	
 	
 q3q0	
 	
 	
 	
 	
 q2q0	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑞1𝑞0$$$	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 q0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q4q3	
 	
 	
 	
 	
 	
 𝑞4𝑞3$$$	
 	
 	
 	
 	
 q4q2	
 	
 	
 	
 	
 q4q1	
 	
 	
 	
 q3q1	
 	
 𝑞2𝑞1$$$	
 	
 	
 q1q0	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 q3q2	
 	
 	
 q3q2	
 	
 	
 q2q1	

q0	

q1	

q2	

	

8

and 216 random values for bit widths greater than 16. When testing the multiplication

circuits, the circuits were tested with 216 random combinations of inputs.

1.2.1 Test Bench Generation

In order to produce the Verilog files with test inputs, I wrote a Java application that

generates test files. The call to the application is as follows:

VerilogTest fileName bitWidth <option>

The required inputs are file name and bit width. The bit width can be 16, 32, or 64

depending on the selected option. The option input is optional however if no option is

provided, the program defaults to an unsigned square. The other options are multiply,

signed, and floating. If the selected option is the default and the bit width is 16, all

possible values are used. For all other options except for floating, 216 random values

between 0 and 2bitWidth are used. The floating point options are slightly different in order

to test all possible exponents. The significands are random numbers between 0 and 223 for

single precision and 0 and 252 for double while the exponents are cycled through. The

complete implementation for automatic test set generation can be found in Appendix A.

1.2.2 Carry-Save Array Multiplier

 An array multiplier is a full-tree multiplier with a one-sided reduction tree in

which the final addition performed by a carry-save adder. A carry save multiplier is a

good choice as a comparison circuit because much like the dual recoded radix-4 square

circuit, it produces partial products and then adds them together. The multiplier is

comprised of 2-input AND gates, an array of carry-save adders, and a ripple-carry array.

The 2-input AND gates are used to produce the partial products while the carry-save

9

adders are used to add the partial products together and the ripple-carry adder is used for

the final addition.

10

Chapter 2

SQUARING

2.1. Booth Recoding

The radix 4 recoding procedure utilizes Booth recoding. Let 𝑃 = 𝑑 !
!
𝑑 !

! !!
⋯𝑑!

with 𝑑 ∈ −2,−1,0,1,2 be the Booth recoded radix 4 representation of

 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! [1, 4]. It is important to recall how Booth radix-4 digit di of P is

determined by the three bits 𝑞!!!!𝑞!!𝑞!!!! of Q as can be seen from Table 2.1.1. Bit q-1 is

considered a 0.

Table 2.1.1: Radix-4 Booth Recoding [1, 4]

Binary Booth Digit
100 2

110, 101 1
000, 111 0
001, 010 1

011 2

The use of Booth radix-4 recoding for 16-bit integer multiplication for Q x P requires 88

entries and 9 rows as illustrated in Table 2.1.3 for the n-bit product. This is a considerable

reduction of the 136 entries and 16 rows for the radix-2 integer partial product array but

provides no additional benefit for the squaring operation. A radix-2 squaring circuit was

described in [3] resulting in 72 entries as illustrated in Table 2.1.4.

11

Table 2.1.2: Shows how 𝑄 = 1100 0101 1000 1011! is recoded to be represented by
𝑃 = 110122111 !

𝑄 = 1100 0101 1000 1011!
11 1
101 1
001 1
100 2
011 2
010 1
000 0
110 1
001 1

𝑃 = 110122111 !

Table 2.1.3: Booth Recoded Radix 4 Multiplication

(selector digits)

 0011 1010 0111 0100
 1110 1001 1101 00
 0101 1000 1011
 0011 1010 00
 0001 0110
 0010 11
 0000
 00

1
1
1
2
2
1
0
1

 0100 0000 1000 0101 2’s comp bits
 0011 1001 0111 1001 Square

12

Table 2.1.4: Booth Recoded Radix-2 Squaring

(1100 0101 1000 1011)2
 [1000 1011]

(selector bits)

 1000 1011 0001 01o1
 0001 0110 0010 o1
 0000 0000 00o0
 0101 1000 o1
 0000 00o0
 0000 o0
 00o0
 o1

1
1
0
1
0
0
0
1

 0011 1001 0111 1001 Square

2.2. Consolidating Partial Squares: The 2n-bit Dual Recoded Radix 4
Square

Three changes to the squaring circuit need to be made in order to support finding

the 2n-bit square instead of the n-bit square.

1. The input must be padded with one zero. (sign bit)

2. The sign extension must be calculated.

3. The circuit requires PSG’s instead of PSG’s.

Figure 2.2.1 shows change 1 being made in the data path of the PSG circuit. In addition

to padding the input with a leading zero, we must now account for the sign of each Booth

recoded digit. We have chosen to cumulate all of these and add them to the total

together. The sign extension for the 2’s complement of this (n - 3) bit array is

𝑞!!!0𝑞!!!⋯ 0𝑞!.

13

Figure 2.2.1: PSG Data Path for 2n-bit Recoded Radix-4 Squaring Circuit

Table 2.2.1: Radix-4 Squaring (Recoded) 2n-bit square

1100 0101 1000 1011

 () ()4401234567 11121201=dddddddd

Selection Digits

 10 0111 0100 1110 10o1
 1001 1101 0011 10o1
 01 1000 1011 00o1
 0011 1010 01o0
 11 0001 01o0
 0110 00o1
 00 00o0
 10o1

1
1
1
2
2
1
0
1

 -(o0o0 o0o1 o0o1 o1)

2’s comp bits
(negative)

 1001 1000 0110 1111 0011 1001 0111 1001
 (9 8 6 15 3 9 7 9)16

Square
2,557,411,328

As can be observed from Table 2.2.1, the output from the first PSG and sign

extension bit array can be consolidated into one 2n-bit array shown in Figure 2.2.2.

Further investigation of Figure 2.2.2 shows that other rows can be consolidated as shown

in Figure 2.2.3 for 12-bits.

S1

S2

D

C ENB

Multiplexer

>> 1.
.
.

S1

S2

D

C ENB

Multiplexer

0X2i

Xn-1:2i+2

X2i-1

X2i+1

Yn:2i + 2

Y2i+1

0 Y2i

Y2i-1

0

14

Figure 2.2.1: Partial Product Array for 12-bit Recoded Radix-4 Squaring

The ⎥⎥
⎤

⎢⎢
⎡
2
n

 radix 4 partial squares yielding the 2n-bit square Q2 according to

Theorem 6 may be consolidated as illustrated in Figure 2.2.2. Let us consider the case n

= 4k. The 2k partial squares selected by digits di and dk+i may be consolidated into a

single 2n bit row for ki ,,2,1 != , yielding k + 1 rows to be accumulated. This

consolidation allows each partial square to be independently shifted and/or complimented

before being loaded into the appropriate portion of a row of the consolidated array. The

negative leading portion of row zero can be handled by a 2's complement, yielding an

extra unit to be added in column n + 2, as shown in Figure 2.2.4. Note if 1≤kd , the unit

bit may be inserted in column n + 2 of the row for dk. If 2=kd , then 42 =kd , and the

extra unit may be absorbed by inserting 1000 as the four low order bits of the row for dk.

15

Figure 2.2.2: Consolidated Partial Product Array for 12-bit Recoded Radix-4 Squaring

Observation 7: For n = 4k with 1≤k , the 2n-bit square of 021 qqqQ nn !−−= may be

obtained as the sum of a ⎟
⎠
⎞⎜

⎝
⎛ +× 1
4

2 nn bit array of partial squares obtained by radix 4

recoded selection.

High Order Part
Selection Digits

 Low Order Part
Selection Digits

2’s comp
1
0
1

1111 1110 1110 1010 0111 0100 1110 10o1
 0110 00o1|1001 1101 0011 10o1
 00 00o0|oo01 1000 1011 00o1
10o1|oooo 0011 1010 01o0
 11 0001 10o0

1
1
1
2

 2 (+ carry)
 1001 1000 0110 1111 0011 1001 0111 1001

(9 8 6 15 3 9 7 9)16

Square

Figure 2.2.3: Consolidated Radix 4 Recoded 32-bit Squarer for the Example Case

 However, we would like to for the additional unit for the 2’s complement to be in

a position where there exists a forced zero in one of the rows. By changing the sign

extension from ()153 1...11 qqq nn −− to ()1153 1...11 qqqq nn βα−− where 13 NORqq=β and

31 qq ⊕=α pushes a forced 1 into position n + 6 as shown in Figure 2.2.5.

()22 1011100001011100=Q

16

High Order Part
Selection Digits

 Low Order Part
Selection Digits

2’s comp

5d

6d

7d

 11357911 11111 qqqqqqq βα ** **** **** **** **o*
 **** **1*| ** ** **** **** **o*
 ** **o*| oo** ** ** **** **o*
 **o* |oooo ** ** ** ** **o*
 ** ** ** ** o*

0d

1d

2d

3d

4d

Figure 2.2.4: Consolidated Radix 4 Recoded 32-bit Square

2.2.1. Implementation

Using the algorithm described above the complete data path for the circuit is

shown in Figure 2.2.1.2. The first step is to send the bits into the sign extension,

shown in Figure 2.2.1.2, and all of the PSG’s in parallel. Next the outputs from these

modules are positioned and added in parallel in order to reduce the number of

additions. The additions continue until we are left with on 2-n output.

From the description of the sign extension earlier in the chapter, it seems like a

simple circuit to implement. However, it does have one complexity, which takes a

while to trouble shoot if not found during the design stage. The cause of the issue is

that within Booth recoded numbering system negative zero which is represented as

111 is a valid number. Within the squaring algorithm, we assume that 0 is positive.

Therefore, we cannot simply negate the sign bit of each Booth recoded digit. The sign

extension now characterized as 1𝑍!!!1𝑍!!!⋯ 1𝑍!𝛽𝛼𝑞!𝑞! where𝑍! = 𝑞! +

17

𝑞!𝑞!!!𝑞!!!, 13 NORqq=β and 32131)(qqqqq +⊕=α . Using the distributive law the

equation for 𝑍! can be simplified has follows:

𝑍! = 𝑞! + 𝑞!𝑞!!!𝑞!!!

𝑍! = 𝑞!𝑞! + 𝑞!𝑞!!! + 𝑞!𝑞!!!

𝑍! = 𝑞!𝑞!!! + 𝑞!𝑞!!!

𝑍! = 𝑞! + 𝑞!!!𝑞!!!.

18

i[0] O[0]

i[1]

O[1]

i[2]
O[2]

O[3]

i[4]

i[3]
O[4]

i[5]

i[6]
O[6]

O[8]
i[7]

i[8]

O[10]
i[9]

i[10]

O[12]
i[11]

i[12]

O[5]1

O[7]1

O[9]1

O[11]1

O[13]1

Figure 2.2.1.1: Sign Extension Circuit

 Figure 2.2.1.2 illustrates how to create a 16-bit input, 32-bit output full

dual recoded radix-4 squaring circuit. The complete circuit consists of !
!
 partial square

19

generators (PSGs) from Figure 2.2.1, a sign extension circuit from Figure 2.2.1.1, and

!
!
 adders. The PSGs and sign extension circuits are aligned such that outputs from two

of these circuits can be concatenated into one input of an adder. For example, the

PSG with inputs of n bits is aligned with the sign extension circuit such that the 4

least significant bits of the PSG output is the 4 least significant bits of the square, and

bits n to 4 are bits are the first n-4 bits of input 1 of the adder. While the n-2 bit output

of sign extension circuit, occupies the final n-2 bits of input 1. When the output bits

of two PSGs do not line up so nicely, zeroes are placed between the two outputs to fill

in the gaps. This method allows us to avoid combining the outputs by shifting and

adding. The adders are arranged such that each level of adders provides the next

4!bits in the total circuits output where l represents the level of adders.

20

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

PSG u1x1

[15:1]

[15:9]

[15:3]

[15:11]

[15:5]

[15:13]

[15:0]

Adder u1

x2

x1

Adder u1

x2

x1

Adder u1

x2

x1
Adder u1

x2

x1

[27:4]

[21:4]

[23:8]

SignExtu1x1

[3:0]

[7:0]

[17:4]

[13:1]
[31:18]

[3:0]

[15:0]

[23:16]

o[3:0]

o[7:4]

o[15:8]

o[31:16]

[15:7]

[13:4]

[23:16]

[11:0]

[19:16]

[3:0]

0
[15:14]

0
[15:12]

i[15:0]

Figure 2.2.1.2: Full Square Circuit

2.2.2. Results

The radix-4 dual recoded squaring circuit and a general purpose multiplier were both

implemented in Verilog and mapped to OSU standard cell library [5]. Both circuits were

constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and 64

bit-widths. The charts in Figures 2.2.2.1-2.2.2.3 show a gain in power, leakage power,

and area for our customized squaring circuit compared to a multiplier circuit.

21

Figure 2.2.2.1: Power (mW) vs Word Size Chart

Figure 2.2.2.2: Leakage Power (nW) vs Word Size Chart

0	

50	

100	

150	

200	

250	

16	
 32	
 64	

multiplier	

radix-­‐4	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

Word Size

mW

nW

22

Figure 2.2.2.3: Area vs Word Size Chart

2.3. Dual Recoded Radix-4 Truncated Square

The radix 4 recoding procedure utilizes Booth recoding. Let 𝑃 = 𝑑 !
!
𝑑 !

! !!
⋯𝑑!

with 𝑑 ∈ −2,−1,0,1,2 be the Booth recoded radix 4 representation of

 𝑄 = 𝑞!!!𝑞!!!⋯ 𝑞! [1, 4]. It is important to recall how Booth radix-4 digit di of P is

determined by the three bits 𝑞!!!!𝑞!!𝑞!!!! of Q as can be seen from Table 2.3.1. Bit q-1

is considered a 0.

Table 2.3.1: Radix-4 Booth Recoding [1, 4]

Binary Booth Digit
100 1

110, 101 1
000, 111 0
001, 010 1

011 2

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

3500000	

4000000	

4500000	

5000000	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

µm2

23

Table 2.3.2; Shows how 𝑄 = 1100 0101 1000 1011! is recoded to be represented by
𝑃 = 110122111 !

𝑸 = 𝟏𝟏𝟎𝟎 𝟎𝟏𝟎𝟏 𝟏𝟎𝟎𝟎 𝟏𝟎𝟏𝟏𝟐
11 1
101 1
001 1
100 2
011 2
010 1
000 0
110 1
001 1

𝑷 = 𝟏𝟏𝟎𝟏𝟐𝟐𝟏𝟏𝟏 𝟒

The use of Booth radix-4 recoding for 16-bit integer multiplication for 𝑄×𝑃 requires 88

entries and 9 rows as illustrated in Table 2.3.3 for the n-bit product. This is a considerable

reduction of the 136 entries and 16 rows for the radix-2 integer partial product array but

provides no additional benefit for the squaring operation. A radix-2 squaring circuit was

described in [3] resulting in 72 entries as illustrated in Table 2.3.4.

Table 2.3.3: Booth Recoded Radix 4 Multiplication

(selector digits)

 0011 1010 0111 0100
 1110 1001 1101 00
 0101 1000 1011
 0011 1010 00
 0001 0110
 0010 11
 0000
 00

1
1
1
2
2
1
0
1

 0100 0000 1000 0101 2’s comp bits
 0011 1001 0111 1001 Square

24

Table 2.3.4: Booth Recoded Radix-2 Squaring

(1100 0101 1000 1011)2
 [1000 1011]

(selector bits)

 1000 1011 0001 01o1
 0001 0110 0010 o1
 0000 0000 00o0
 0101 1000 o1
 0000 00o0
 0000 o0
 00o0
 o1

1
1
0
1
0
0
0
1

 0011 1001 0111 1001 Square

2.3.1. Algorithm

The radix-4 dual recoded squaring algorithm determines the Booth digits in a right-to-

left manner i.e. starting from the least significant bit and moving toward the most

significant bit. Let Pi be the integer formed by shifting the radix 4 digit string right i

places deleting the low order i digits obtaining

for 𝑖 = 0,1,⋯ , !
!

, with and . Since then and

 for 𝑖 = 0,1,⋯ , !
!

, we obtain the following.

Observation 1:

()()
⎣ ⎦
∑

−

=
++ ++=

1

0

2
1222

2
2

168
n

i

i
iiii ddqQQ

25

Definition 1: Let with for and let

 be the ith digit of the Booth recoded radix 4 representation

. Then the ith radix-4 partial square is where

 is the ith multiplicand factor for radix-4 dual recoded squaring and di is the

ith recoded radix 4 select digit.

 Recall that is effectively the sign bit of the recoded digit 𝑑!, so we obtain the

partial square identity

.

It is important to observe that the 2’s complement of reduces to the sign

extended 1’s complement of 22 +iQ , as formally summarized in the following.

Theorem 1: Let be the radix-4 dual recoded representation of

. Let be the conditionally 1's complemented sign extended leading

bits of 𝑄!!!! =
!
!!

 given for 𝑖 = 0,1,⋯ , !
!

 by

Then

.

26

From Theorem 1 we observe that the PPG's for recoded radix 4 squaring are simpler than

for a Booth recoded radix-4 multiplier since the complements are simply 1's

complements. This means that for the n-bit integer radix-4 square: (1) we need to employ

only the !
!

 low order half of the Booth-4 select digits in forming the radix-4 dual

recoded square array, (2) No complement bit row is needed as in Booth-radix 4

multiplication, and (3) no sign extension of the partial squares are needed for the n-bit

square.

 Table 2.3.5 illustrates the radix-4 dual recoded array for computing

. There are only 40 entries in Table 2.3.1.1 compared

to the 72 entries for radix 2 illustrated in Table 1.1.4 and compared to the 88 entries for

Booth recoded radix 4 multiplication illustrated in Table 1.1.3.

Table 2.3.5: Radix-4 Dual Recoded Squaring

1100 0101 |10|00| 10|11

 [1 1 1 1]

Booth-4 select digits

0111 0100 1110 10o1

1101 0011 10o1

1011 00o1

01o0

1

1

1

2

0011 1001 01 11 10 01 Square

27

2.3.2. Implementation

 Based on the properties of Theorem 1, an efficient Partial Square Generator

(PSG) was designed. Figure 2.3.2.1 is a Synopsys screen shot of an 8-bit PSG. The

dataflow through the circuit is as follows:

1. All the bits of the input, X, except for the 3 least significant bits are

conditionally negated if x2 is 1,

2. The output from step 1 is left shifted by 1 if x2 is equal to x0,

3. If the three least significant bits of X are 0, else all but the 3 least

significant bits of Y are the output from step 2 and

Figure 2.3.2.1: A Synopsys Screen Shot of an 8-bit PSG

28

Using the PSG design above, the architecture of the squaring unit can be viewed in at

least the two following methods depicted in figures 2.3.2.2 and 2.3.2.3. Figure 2.3.2.2

shows the architecture view of building the circuit independent of smaller versions of the

circuit. The architecture in Figure 2.3.2.2 is constructed from the following components:

 PSG’s of bit sizes n, n-2, …, 2, and an adder tree of height of where x is the

bit size of the adders used in the adder tree.

PS 4

PS 3

PS 2

PS 1

Adder u1

x2

x1

Adder
u1

x2

x1

Adder
u1

x2

x1

O[3:0]

O[7:4]

O[15:8]

i[15:0]

[14:2}

[1:0]

[12:4]

[3:1]

[10:6]

[5:3]

[8]

[7:5]

Figure 2.3.2.2: Data Path of 16-bit Input/16-bit Output Radix-4 Dual Recoded Squaring
Circuit

29

Figure 2.3.2.3: Recursive Data Path for an n-bit Recoded Radix-4 Squaring Circuit

2.3.3. Results

 The radix-4 dual recoded squaring circuit and a general purpose multiplier were

both implemented in Verilog and mapped to OSU standard cell library [5]. Both circuits

were constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and

64 bit-widths. The charts in Figures 2.3.3.1-2.3.3.3 show a substantial gain in power,

leakage power, and area for our customized squaring circuit compared to a multiplier

circuit.

N-2 bit Squaring Unit N bit PSG

N-4 bit Adder

In-1:2 In-1:0

Xn-5:0 Yn-1:4

On-1:4 O3:0

30

Figure 2.3.3.1: Power (mW) vs Word Size Chart

Figure 2.3.3.2: Leakage Power (nW) vs Word Size Chart

0	

50	

100	

150	

200	

250	

300	

350	

16	
 32	
 64	

multiplier	

radix-­‐4	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

Word Size

mW

nW

31

Figure 2.3.3.3: Area vs Word Size Chart

2.4. Floating-Point Square

 Although the integer square and general purpose integer multiplier are very useful

circuits, must real world calculations, such as finance, business, and science, require

floating-point numbers. With this in mind, I used the integer square described in Chapter

3 to design an IEEE 754 standard floating-point squaring unit.

2.4.1. Summary of the IEEE 754 Floating-Point Standard [14]

When discussing the IEEE 754 Floating Point Standard [14], we first need to look at

the number are represented. Figure 2.4.1.1 shows the number representation for a single

precision floating-point number which is interpreted as follows:

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

µm2

32

0.𝐹 ∗ 2!!"# 𝐸 = 0
𝑁𝑎𝑁 𝐹 ≠ 0
±𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦 𝐹 = 0 𝐸 = 255

−1! ∗ 1.𝐹 ∗ 2!!!"# 0 < 𝐸 < 255

.

Figure 2.4.1.1: Floating-point Number Representation

Conceptually, floating point multiplication is simple. The exponents are added and

multiplying the significands. However, a lot of pre- and post-processing must be

performed such as lining up the significands and adjusting the exponents accordingly as

well as setting flags in case an exact result can’t be calculated. The next several sections

will describe how floating-point multiplier used as a comparison accomplishes these

tasks.

2.4.2. Algorithm

The question now becomes how to multiply two numbers represented in IEEE

floating-point format. The simplest case is when both of the inputs are normalized. In this

case the significands are multiplied together with the most significant half of the product

is used as the significant answer and the exponents are added together. Table 2.4.1

illustrates this simple case.

S
(1)

E
(8)

F
(23)

33

Table 2.4.1: Simple Case Floating-Point Multiplier

Operations Exponent Significant

 1000 0011 000 0001 0100 0001 1000 1010

 1000 1000 000 1000 0010 1000 0001 0010

Exponent Add/Significant Multiply 1000 1100 000 1011 1111 0000 1100 1010

The first complication that covered in the above example is if the product of the

significands is equal to or greater than 2. The value is 2 or greater if and only if the most

significant bit of the product is one. If this occurs, the product must be right shifted by

one and the sum of exponents must be incremented by one. A more complicated issue is

if one or both of the inputs are not normalized. Since the inputs to the multiplier are not

guaranteed to be normalized, the inputs must be checked to see if they are normalized and

if not, it must be normalized. Table 2.4.2 illustrates what happens if the above algorithm

is used to multiply a normalized number with an unnormalized number.

Table 2.4.2: Normalized/Unnormalized Floating-point (Incorrect)

Operations Exponent Significant

 0000 0000 010 0000 0000 0000 0000 0000

 1100 1111 001 0100 1000 0110 0000 0000

Exponent Add/Significant Multiply 0101 0000 011 1001 1010 0111 1000 0000

The input must be left shifted to one place past the most significant 1. The exponent then

becomes 1 – the number of shifts. The exponent needs an extra bit to be stored in 2’s

34

compliment form. The example shown in Table 2.4.3 shows the multiplication of a

normalized and unnormalized floating point numbers.

Table 2.4.3: Normalized/Unnormalized Floating-point Multiplication

Operation Exponent Significant

 0000 0000 010 0000 0000 0000 0000 0000

 1100 1111 001 0100 1000 0110 0000 0000

Shift Significant/Adjust Exponent 1 1111 1111 000 0000 0000 0000 0000 0000

 0 1100 1111 001 0100 1000 0110 0000 0000

Product 0100 1111 001 0100 1000 0110 0000 0000

The other special cases of NAN, positive infinity, and negative infinity can be accounted

for by detection and assigning the output to the appropriate answer.

2.4.3. Implementation

 Floating point multiplication 2.4.3.1.

The floating-point multiplication implemented in [15] breaks the multiplication into

the following components: preprocessor, special case detector, pre-normalizer, multiplier,

exponent adder, normalizer, shifter, rounder, flagger, and assembler. The components are

connected as shown in Figure 2.4.3.1. Each of the components will be discussed in detail

in the following sections.

35

Figure 2.4.3.1: Diagram of Floating point Multiplication Circuit [15]

Preprocessor

SpecialerPrenormer

Multiplier

bisnan

aisnan

infinity
zero

norm
a

norm
b

Exponenter

expa

expb

Normalizer Shifter

Rounder

Flager

prod

twoormore

expsum

normalized

shiftexp

shiftloss

shiftprod

tiny

Assembler

roundprod

roundexp

A B Control

YFlags

roundm
odesign

specialsigncase

specialspecialcase

inexact

dnr
stilltiny

overflow

36

2.4.3.1.1. Preprocessor

Before the two values can be multiplied, some preprocessing must be done. The

inputs are represented by A and B for the floating point numbers and control for the

rounding mode. The rounding mode is defined by the two least significant bits of the

control input. First, the potential sign of output can be calculated by taking the XOR of

the most significant bit of A and B. The preprocessor circuit must also determine if either

A or B is one of the special cases discussed in Section 2.4.1. To determine wither either A

or B is zero, all of the bits excluding most significant of each input is NORed and then

outputs from the NOR of each input are ORed together producing the zero output. This

gives the equation: 𝑧𝑒𝑟𝑜 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 &~|𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] |
~|𝐵 𝑤𝑠𝑖𝑔 − 1 &~|𝐵[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1]

where wsig and wexp stand for the bit width of the significant and bit width of the

exponent. A and B both checked to determine whether or not it is infinity or NAN. First

all of the bits of the exponent are checked to see if everyone is 1. This is done by

ANDing all the exponent bits together. Then NOT of the output NOR gate used earlier to

determine if the significant is zero is ANDed with output of the AND gate to detect NAN

and the output of the earlier NAND gate ANDed with the AND gate used to determine if

all bits of the exponent are 1 to detect infinity. These equations further explain this:

 𝑎𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐴 𝑤𝑠𝑖𝑔 − 1) & (&𝐴 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1)

 𝑏𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐵 𝑤𝑠𝑖𝑔 − 1) & (&𝐵 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1)

 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 & &𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] |

 ~|𝐵 𝑤𝑠𝑖𝑔 − 1 & &𝐵[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] .

37

The preprocessor must also determine if either of the inputs is not normalized. An input is

not normalized if the exponent is equal but the significant is not. In order to calculate this,

the NOR gates used find the zero output. For both A and B, this equates to the NOT of the

NOR of bits [wsig-1:0] ANDed with the NOR of bits [width-1: width-wexp-1]. The

entire circuit for the processor is shown in Figure 2.4.3.2.

Figure 2.4.3.2:Pre-processor [15]

2.4.3.1.2. Special Case Detector

The outputs aisnan, bisnan, zero, and infinity from the preprocessor are inputs to the

special case detector as well as A and B. The specialsigncase is defined as

𝑎𝑖𝑠𝑛𝑎𝑛 𝑏𝑖𝑠𝑛𝑎𝑛 (𝑧𝑒𝑟𝑜 & 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦) and specialcase is defined

as𝑎𝑖𝑠𝑛𝑎𝑛 𝑏𝑖𝑠𝑛𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑡𝑦 | 𝑧𝑒𝑟𝑜. Invalid equates to𝑧𝑒𝑟𝑜 & 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. If invalid is 1

A

B

control

[width-­‐1]

[width-­‐1]
sign

[wsig-­‐1:0]

[width-­‐1:width-­‐wexp-­‐1]

[wsig-­‐1:0]

[width-­‐1:width-­‐wexp-­‐1]

zero

aisnan

bisnan

aisdenorm

bisdenorm

infinity

roundmode
[1:0]

38

the specialsign is most significant bit A if the following expression, which is referred to

as aishighernan in [15], aisnan is true plus the significant of A is greater than or equal to

the significant B or bisnan is false and is the most significant bit of B if it is false. The

value to which the output special is assigned can best be described using the flowchart in

Figure 2.4.3.3. The entire circuit for the special case detector is shown in Figure 2.4.3.4.

Figure 2.4.3.3: Flowchart for selected

aisnan	
 |	
 bisnan

zero aishighernan

0 1

selected	
 =	

A[width-­‐2:0]

selected	
 =	

B[width-­‐2:0]

0 1

infinityselected	
 =	

constinfinity

0 1

selected	
 =	

constzero

selected	
 =	

constnan

0 1

39

Figure 2.4.3.4: Special Case Detector [15]

2.4.3.1.3. Pre-normalizer

Using the inputs A and B as well as the outputs from the preprocessor aisdenorm and

bisdenorm to normalize A and B such that the significant value is between [1, 2). If the

input is unnormalized, the significant is left shifted by the width minus the bit position of

the most significant 1. This pre-normalization shift function is shown in Figure 2.4.3.5. If

the significant is shifted, the exponent must be adjusted such that the number still

represents the same value. The entire pre-normalized circuit is shown in Figure 2.4.3.6.

zero

aisnan

bisnan

infinity

A

B

special

invalid

specialsigncase

u1

x2

x1
A	
 >=	
 B

[wsig-­‐1:0]

[wsig-­‐1:0]
[width-­‐1:0]

[width-­‐2:0]

S1

S2

D

C ENB

Multiplexer
[width-­‐1:0]

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

CONSTZERO

CONSTNAN

S1

S2

D

C ENB

Multiplexer

specialcase

CONSTINFIN

S1

S2

D

C ENB

Multiplexer
[width-­‐1]

[width-­‐2:0]

1
specialsign

40

Figure 2.4.3.5: Pre-norm Shifter [15]

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

23

22 21 20 19 18

17 16 15 14 13

12 11 10 9 8

7

2

56 4 3

1

i[23:0]

o[4:0]

41

Figure 2.4.3.6: Pre-normalizer [15]

2.4.3.1.4. Multiplier

The multiplier circuit used is the carry save multiplier described in Chapter 1. The

multiplier takes the normalized significands as inputs. In addition to outputting the

product, the most significant bit of the product is used to determine if the product is equal

to or greater than two.

a

aisdenorm

b

bisdenorm

u1x1

Prenorm
Shifter

u1x1

Prenorm
Shifter[WSIG:0]

u1

x2

x1
Subtractor1

u1

x2

x1
Subtractor1

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

expb

expa
modexpa

modexpb

u1

x2

x1
x2	
 <<	
 x1

u1

x2

x1
x2	
 <<	
 x1

[WSIG:0]

[WSIG:0]

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

[WSIG:0]

normb

norma

[WSIG:0]

42

Figure 2.4.3.7: Multiplier [15]

2.4.3.1.5. Exponent Adder

In addition to multiplying the significands, the exponents need to be added. However,

the exponents need to be adjusted by the bias and whether or not the product from the

multiplier is more than two. The circuit in Figure 2.4.3.8 implements the following

equation derived from equation

2.4.1.1:𝑒𝑥𝑝𝑠𝑢𝑚 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 − 𝑡𝑤𝑜𝑜𝑟𝑚𝑜𝑟𝑒 . The bias must be subtracted

from the sum of expa and expb because both have bias added to them. Therefore, the

equation becomes 𝑒𝑥𝑝𝑎 − 𝑏𝑖𝑎𝑠 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 + 𝑏𝑖𝑎𝑠 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠. If

twoormore from the multiplier in Section 2.4.2.1.4 is 1, the exponent needs to

incremented thus producing the

equation:𝑒𝑥𝑝𝑠𝑢𝑚 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 − 𝑏𝑖𝑎𝑠 − 𝑡𝑤𝑜𝑜𝑟𝑚𝑜𝑟𝑒 . The output tiny is used to

determine if the expsum is less than one. Since expsum is in 2’s complement form, tiny is

one if the most significant bit of expsum is 1 or if all of the other bits of expsum are 0.

u1

x2

x1
xy

[prodwidth-­‐1]

norma

normb

prod

twoormore

u1

x2

x1
x+y

u1

x2

x1
x-­‐y

u1

x2

x1
x-­‐y

expa

expb

twoormore

bias

expsum

[wexpsum-­‐2:0]

[wexpsum-­‐1]

tiny

43

Figure 2.4.3.8: Exponent Adder [15]

2.4.3.1.6. Normalizer

If the needed the product from the multiplier is normalized. If both tiny and

twoormore are both true than the product is already normalized, normalized is set equal

to prod. Since twoormore represents an overflow of the product and tiny represents an

overflow of the sum of the exponents, the product is left shifted by 1 if one of them is

true or left shifted by 2 if neither one is true. This is done to place the most significant bit

of the possible output in the most significant bit of the product.

Figure 2.4.3.9: Normalizer [15]

2.4.3.1.7. Shifter

If the product is unnormalized which is indicated by tiny being true, then the

significant may need to be right shifted in order to properly represent the true value. This

is done by shifting the magnitude expsum. Since for tiny to be true the expsum must be

less than or equal than 0, normalized should be right shifted by the 2’s complement of

expsum if the most significant bit of expsum is 1. If expsum is greater than zero, shiftexp

prod

tiny

twoormore

S1

S2

D

C ENB

Multiplexer

[prodwidth-­‐2:0,0]

[prodwidth-­‐3:0,00]

S1

S2

D

C ENB

Multiplexer

[prodwidth-­‐1:0]

normalized

44

is set equal to expsum otherwise shiftexp is set to 0. It is also necessary to determine

whether or not there was any loss of accuracy. Shiftloss is used to store this information.

In order for shiftloss to be true, a shift must be necessary and either the shift causes

prodshift to be zero or if any of the bits lost due to a shift is 1. The implementation from

[15] is shown in Figure 2.4.3.10.

Figure 2.4.3.10: Normalizer [15]

2.4.3.1.8. Rounder

The multiplier described in Section 2.4.2.1.8 produces an output that is bit-width

twice as wide as the bit widths of the inputs. However, the IEEE standard only allows for

the output to be stored in the same bit width as the inputs. Since it sometimes not possible

to store the exact result, the output must be rounded. The rounding in the floating-point

multiplier implementation in [15] is based on the rounding methods presented in [16].

The multiplier allows four different types of rounding modes: round to nearest even,

normalized

expsum

u1

x2

x1
x+y1

u1

x2

x1
x>y

maxshift

[wexpsum-­‐1]

S1

S2

D

C ENB

Multiplexer

maxshift

u1

x2

x1
x>>y

u1

x2

x1
preappend

preshiftzeros

S1

S2

D

C ENB

Multiplexer

prodshift

[shiftwidth-­‐prodwidth-­‐1:0]
shiftloss

S1

S2

D

C ENB

Multiplexer
0 shiftexp

45

round to zero, round to positive infinity, and round to negative infinity. The rounding

mode is determined by the two least significant bits of control. Table 2.4.4 shows the

relation between control and the rounding mode.

Table 2.4.4: Rounding Modes [15]

Control Rounding Mode

00 Round to Nearest Even

01 Round to Zero

10 Round to Positive Infinity

11 Round to Negative Infinity

The upper half of the shifted product is used as the basis for the answer which will be

referred to as unrounded. The purpose of the Rounder is to determine whether or not to

add 1 to unrounded. The simplest rounding method is round to zero because 1 is never

added unrounded as the least significant bits are always truncated which will be referred

to as lowerBits. The only time that 1 is added to unrounded is if at least one of the

lowerBits is 1 and the rounding mode is round to nearest even and the least significant bit

of unrounded is 1, the rounding mode is round to positive infinity and the sign bit is 0, or

the rounding mode is round to negative and the sign bit is 1. This leads to following

Boolean expression:

𝑟𝑜𝑢𝑛𝑑𝑈𝑝 = |𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠 &
~𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 ~𝑢𝑛𝑟𝑜𝑢𝑛𝑑𝑒𝑑 0 |

𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 𝑠𝑖𝑔𝑛 |
𝑟𝑜𝑢𝑛𝑑 1 𝑟𝑜𝑢𝑛𝑑 0 ~𝑠𝑖𝑔𝑛

 which can

be simplified to:

46

𝑟𝑜𝑢𝑛𝑑𝑈𝑝 = |𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠 & ~𝑟𝑜𝑢𝑛𝑑 1 ~𝑟𝑜𝑢𝑛𝑑 0 ~𝑢𝑛𝑟𝑜𝑢𝑛𝑑𝑒𝑑 0 | 𝑟𝑜𝑢𝑛𝑑[1] 𝑟𝑜𝑢𝑛𝑑⊕ 𝑠𝑖𝑔𝑛 . The

exponent will need to be adjusted if the significant needs to roundup and adding one to

the significant could cause the significant to be greater than or equal to 2. If this is the

case, the exponent will need to be incremented and the significant left shifted by one.

Since the exponent might be changed, it must be rechecked to see if the number is still

tiny and must also be checked for overflow. According to the IEEE standard [14], once

the value has been rounded, it is now longer exact. If the value is inexact, it must be

detected which can be done by 𝑙𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝑠 𝑟𝑜𝑢𝑛𝑑𝑈𝑝|𝑟𝑜𝑢𝑛𝑑[0]. As the initial inputs

were checked in to see if they were denormal as described in Section 2.4.2.1.1, the

rounded product must also be checked. Figure 2.4.3.11 shows how all the above Boolean

expressions were implemented in what [14] called a rounder.

Figure 2.4.3.11: Rounder [15]

shiftprod

shiftexp

shiftloss

sign

tiny

roundmode
[1]

[0]

[shiftwidth-­‐wsig-­‐3:0]

[shiftprod-­‐wsig-­‐2]

denormround

u1x1

X+1[shiftwidth-­‐1:shiftwidth-­‐wsig]

inexact

u1

x2

x1
x+y [wexp-­‐1:0]

roundexp

[wexp-­‐1:0] stilltiny

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

0

roundprod

[wexp-­‐1:0]

[wxpsum-­‐1:wexp]

overflow

47

2.4.3.1.9. Flagger

As stated in 2.4.1, flags must be set in the event that an exact answer cannot be

calculated. The first of such situations is a divide by zero but since this a multiplier a

division by zero cannot happen therefore the divide by zero flag is set to zero. Another

such case is infinity times zero which is labeled invalid. This is actually determined in the

Special Case Detector in Section 2.4.2.1.2 and only needs to be assigned to the

appropriate flag here. Only if it is not a special case as defined in Section 2.4.2.1.2 can

the flags underflow, overflow, and inexact be true. The underflow flag is set if tiny from

Section 2.4.2.1.5, underflow which is the OR of shiftloss from Section 2.4.2.1.8 and

inexact from Section 2.4.2.1.8, and not overflow from Section 2.4.2.1.8. The overflow

output is then just the overflow input into the Flagger from Section 2.4.2.1.8. The inexact

input is the OR of shiftloss from Section 2.4.2.1.8 and inexact from Section 2.4.2.1.8. The

inexact flag is the OR of the inexact input, underflow input, and the overflow input. The

Flagger is shown in Figure 2.4.3.12.

Figure 2.4.3.12: Flagger [15]

0
flags[divzero]

flags[invalid]invalid

specialcase

overflow
flags[overflow]

tiny

inexact

underflow
flags[inexact]

flags[underflow]

48

2.4.3.1.10. Assembler

Once all of the possible answers have been calculated, the right answer must be

chosen which is accomplished by the Assembler. The Assembler is composed mainly of

multiplexers. See Figure 2.4.3.13. The inputs specialsigncase, sign, roundmode, and

overflow are to select the correct output. If specialsigncase is 1, the most significant bit or

sign bit is specailsign otherwise it is set to sign. The logic for determining which values

Figure 2.4.3.13: Assembler [15]

 Floating-Point Squarer 2.4.3.2.

Some optimizations can be implemented when focusing on the square as opposed to a

general multiplication. First since there is only one input, checking for special values

become simpler. The results for special value inputs are shown in Table 2.4.3.1.

specialsigncase

specialsign

sign S1

S2

D

C ENB

Multiplexer

y[width-­‐1]

shiftexp

roundprod

u1

x2

x1
combine

S1

S2

D

C ENB

Multiplexerconstinfinity

constlargest

roundmode
[0]

S1

S2

D

C ENB

Multiplexer

constinfinity

constlargest

[0]

S1

S2

D

C ENB

Multiplexer

[1]

special

S1

S2

D

C ENB

Multiplexer

overflow

S1

S2

D

C ENB

Multiplexer

y[width-­‐2:0]

49

Table 2.4.3.1: Special Values

Input Output

NAN NAN

+INFINITY +INFINITY

-INFINITY +INFINITY

UNNORMALIZED UNNORMALIZED

One major change and a few minor changes were made to the floating-point multiplier

discussed earlier. The first change was in the preprocessor. The preprocessor is simplified

to the following Boolean expressions:

𝑧𝑒𝑟𝑜 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 &~|𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1]

𝑎𝑖𝑠𝑛𝑎𝑛 = ~(~|𝐴 𝑤𝑠𝑖𝑔 − 1) & (&𝐴 𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1)

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 = ~|𝐴 𝑤𝑠𝑖𝑔 − 1 & &𝐴[𝑤𝑖𝑑𝑡ℎ − 1:𝑤𝑖𝑑𝑡ℎ − 𝑤𝑒𝑥𝑝 − 1] . [23]

A

control

[width-­‐1]
sign

[wsig-­‐1:0]

[width-­‐1:width-­‐wexp-­‐1]
zero

aisnan

aisdenorm

infinity

roundmode[1:0]

Figure 2.4.3.2.1: Simplified Pre-processor

50

The simplified special case detector is described as follows. The specialsigncase is

defined as 𝑎𝑖𝑠𝑛𝑎𝑛 | (𝑧𝑒𝑟𝑜 & 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦) and specialcase is defined

as𝑎𝑖𝑠𝑛𝑎𝑛 | 𝑖𝑛𝑓𝑖𝑛𝑡𝑦 | 𝑧𝑒𝑟𝑜. Invalid equates to𝑧𝑒𝑟𝑜 & 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. If invalid is 1, the

specialsign is most significant bit of A.[23]

aisnan

zero

0 1

selected	
 =	

A[width-­‐2:0]

infinityselected	
 =	

constinfinity

0 1

selected	
 =	

constzero

selected	
 =	

constnan

0 1

Figure 2.4.3.2.2: Flowchart for selected [23]

51

A

control

[width-­‐1]
sign

[wsig-­‐1:0]

[width-­‐1:width-­‐wexp-­‐1]
zero

aisnan

aisdenorm

infinity

roundmode[1:0]

Figure 2.4.3.2.3: Simplified Special Case Detector [23]

 The pre-normalized for the square is half the size of the pre-normalized for the

multiplier. The circuit has only one pre-normalized shifter, subtractor, and shifter as well

as 2 multiplexers. The pre-normalized now produces two outputs modexpa and norma.

The new circuit is shown in figure 2.4.3.2.4.

a

aisdenorm

u1x1

Prenorm
Shifter u1

x2

x1
Subtractor1

S1

S2

D

C ENB

Multiplexer

expa
modexpa

u1

x2

x1
x2	
 <<	
 x1

[WSIG:0]
S1

S2

D

C ENB

Multiplexer

norma

[WSIG:0]

Figure 2.4.3.2.4: Simplified Pre-normalizer [23]

52

The adder in the exponent adder is replaced with a left shift by 1. The multiplier is

replaced by a full dual recoded radix-4 square. The squaring circuit has bit width 24 and

54 for single precision and double precision respectively.

2.4.4. Results

The floating-point radix-4 dual recoded squaring circuit and a general purpose

floating-point multiplier were both implemented in Verilog and mapped to OSU standard

cell library [5]. Both circuits were constrained to run with-in a 50ns clock-edge and were

implemented for single and double precisions. The charts in Figures 2.4.4.1-2.4.4.3 show

a substantial gain in power, leakage power, and area for our customized squaring circuit

compared to a multiplier circuit.

Figure 2.4.4.1: Power (mW) vs Word Size chart

0	

50	

100	

150	

200	

250	

single	
 double	

radix-­‐4	

multiplier	

Word Size

mW

53

Figure 2.4.4.2: Leakage Power(nW) vs Word Size Chart

Figure 2.4.4.3: Area vs Word Size Chart

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

single	
 double	

radix-­‐4	

multiplier	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

single	
 double	

radix-­‐4	

multiplier	

Word Size

Word Size

nW

µm2

54

Chapter 3

MULTIPLICATION

3.1. Parallel Multipliers

A parallel multiplier is a multiplier in which partial products of the multiplicand

are produced and then added together. The partial products can be added together serially

or in tree structure. Two common types of parallel multipliers are the Pezaris and the

Booth multipliers.

3.1.1. Pezaris Array Multiplier
The Pezaris array multiplier is generally used for two’s complement

multiplication. The partial products are generated by AND gates while the summation

section of the adder consist of four different types of full adders. Two of the full adders

are positively weighted while the other two full adders are negatively weighted. Below

are the Boolean expressions for the carry and sum of all four adder types where type 0

and 1 are positively weighted while type 2 and 3 are negatively weighted.[18] The sum

output is the same for all full types: 𝑠 = 𝑎⨁𝑏⨁𝑐!". The carry out for each type is

𝑐!"# = 𝑎𝑏 + 𝑎𝑐!" + 𝑏𝑐!"# for types 1 and 3 and 𝑐!"# = 𝑎𝑏 + 𝑎𝑐!" + 𝑏𝑐!" for types 1 and

2. [18] The output from the array multiplier can also be read serially has the least

significant bits are calculated before the most significant bits.

55

FA1

u
2

u
1

x
2

x
1

 FA1

u
2

u
1

x
2

x
1

 FA1

u
2

u
1

x
2

x
1

 FA3

u
2

u
1

x
2

x
1

FA1

u
2

x
3

u
1

x
2

x
1

 FA1

u
2

x
3

u
1

x
2

x
1

 FA1

u
2

x
3

u
1

x
2

x
1

 FA3

u
2

x
3

u
1

x
2

x
1

FA1

u
2

x
3

u
1

x
2

x
1

 FA1

u
2

x
3

u
1

x
2

x
1

 FA1

u
2

x
3

u
1

x
2

x
1

 FA3

u
2

x
3

u
1

x
2

x
1

FA2

u
2

x
3

u
1

x
2

x
1

 FA2

u
2

x
3

u
1

x
2

x
1

 FA2

u
2

x
3

u
1

x
2

x
1

 FA4

u
2

x
3

u
1

x
2

x
1

FA3

u
2

x
3

u
1

x
2

x
1

FA3

u
2

x
3

u
1

x
2

x
1

FA3

u
2

x
3

u
1

x
2

x
1

FA3

u
2

x
3

u
1

x
2

x
1

A0A1A2A3A4B0B1B2B3B4

P2P3P4P5P6P9 P0P1P7P8

Figure 3.1.1.1: Data path of a Pezaris Multiplier [18]

3.1.2. Booth Multiplier

In 1951 Andrew Booth presented a new algorithm for multiplication in [19]. The

true strength of his algorithm was that it was able to multiply two numbers efficiently no

56

matter the sign of either number. A radix-2 recoding was used in which 00 represented 0,

01 represented 1, 10 represented -1, and 11 represented 0. The initial product is created

by adding leading zeroes to the multiplier. When the Booth digit is 1, the multiplicand is

added to the left half of the current product and then an arithmetic shift right is performed

on the current product. When the Booth digit is -1, the multiplicand is subtracted from the

left half of the current product and then an arithmetic shift right is performed on the

current product. When the Booth digit is 0, on an arithmetic shift right is performed.

Table 3.1.1 shows an example of the Booth algorithm by multiplying -5 and 3 to produce

-15. [19]

Table 3.1.1: Booth multiplication of -5 and 3

 0000 1011 Booth-4 select digits

 1101 1011

 1110 1101

 1111 0110

 0010 0110

 0001 0011

 1110 0011

 1111 0001

-1 – Subtract

Arithmetic Shift right (ASR)

0 – ASR

1 – Add

ASR

-1 - Subtract

ASR

 1111 0001 Product (-15)

57

 The Booth multiplier can be used in mobile devices for reduction in area and

power consumption.[20] In [20], the authors are able to make gains in area and power

consumption through the use of counterflow organization and a merged arithmetic/shifter

unit. The counterflow organization is when data and commands flow in opposite

directions across the pipeline.[20]

While the initial Booth algorithm is not a parallel multiplier, it is the basis of the

Booth recoded multiplier which is a parallel multiplier. The Booth recoded multiplier is

used in digital signal processing as well as image compression. [21, 22] The basic design

for a Booth recoded multiplier is to produce the product in two stages. The first stage all

of the partial products are calculated and the second stage the partial product are added

together. For the following design description, a radix-4 Booth recoded multiplier is

assumed.

The partial products stage consists of two circuit types: a Booth encoder and a partial

product generator (PPG). The Booth encoder takes as inputs 3 bits from the multiplier

and outputs 3 control signals: negate, shift, and zero. The inputs to the PPG are the

multiplicand and the 3 control outputs of the Booth encoder. The output of the PPG,

which is called the partial product, can be any of the following zero, multiplicand,

negated multiplicand, shifted multiplicand, or shifted and negated multiplicand.

58

Booth Decoder
u2
u3

u1

x2

x1

Booth Decoder
u2
u3x3

u1
x2

x1

Booth Decoder
u2
u3x3

u1
x2

x1

Partial
Product

 Generator

x3
x4

u1x2

x1

Partial
Product

 Generator

x3
x4

u1x2

x1

Partial
Product

 Generator

x3
x4

u1x2

x1

Full
Adder

u2
x3

u1
x2

x1Full
Adder

u2
x3

u1
x2

x1
Adderu1

x2

x1

Concatenation

x3

u1x2

x1

Y0

Y1

Y2

Y3

Y4

Y5

Out

X

Figure 3.1.2.1: Data path of a Booth Multiplier [21]

3.2. Tree Multipliers

3.2.1. Dadda Multiplier

In 1965, Luigi Dadda presented a new tree multiplier which has been used in high

speed floating point multipliers and regular connectivity. [25, 26] The Dadda tree has

worst case O(n) where n is the bit width of the inputs. Like many other tree multipliers,

the first step is to form partial products by ANDing together of the two inputs as shown

in Figure 3.2.1.1. However, unlike other multipliers the Dadda tree multiplier

consolidates partial products as late as possible. [24] Dadda used a dot notation to

illustrate his algorithm which is shown in Figure 3.2.1.2. Each dot represents a bit of a

59

partial product. Each rectangle box around a column of dots represents a full adder if 3

are enclosed and a half-adder if the box encloses 2 dots. The last rectangle represents a

carry propagate adder. The diagonal lines represent carries. As shown in Figure 3.2.1.3, a

Dadda tree multiplier takes 4 full adders, 2 half adders, and 6-bit carry propagate adder.

Figure 3.2.1.1: Initial Partial Product for a Dadda Multiplier

60

Figure 3.2.1.2: Dot Diagram of a Dadda Tree multiplier

61

A B

[3] [2] [1] [0] [3][2] [1]
[0]

[3]

[2]

[1] [0] [3] [2] [1] [0][0][0][0][0][1][1][1][1][2]

[2][2][2][3][3][3][3]

Full
Adder

u
2

x
3

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

Half
Adder

u
2

u
1

x
2

x
1

Half
Adder

u
2

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

CPA
Adder

u
1

x
2

x
1

Concatnate

x
3
x
4
x
5
x
n

u
1

x
2
x
1

Concatnate

x
3
x
4
x
5

u
1

x
2
x
1

O

Figure 3.2.1.3: Data Path for a Dadda Tree Multiplier

3.2.2. Wallace Multiplier

Like the Dadda tree multiplier, the Wallace tree multiplier starts by ANDing all the

input bits to create partial product, but unlike the Dadda multiplier the Wallace multiplier

reduces the number of partial products as early as possible. This is done by grouping the

initial partial products into groups of three to feed into full adders and this continues until

62

there only two partial products left which are added together in carry propagate adder.

This data path is show in Figure 3.2.2.1. [27]

A B

[3] [2]

[1]

[0]

[3]

[2]
[1]

[0] [3] [2] [1]
[0]

[3]
[2]

[1] [0] [0][0][0]
[0]

[1]
[1]

[1][1][2]
[2][2]

[2][3][3][3]
[3]

Full
Adder

u
2

x
3

u
1

x
2

x
1

Half
Adder

u
2

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

Half
Adder

u
2

u
1

x
2

x
1

Half
Adder

u
2

u
1

x
2

x
1

Full
Adder

u
2

x
3

u
1

x
2

x
1

O

CPA

u
1

x
2

x
1

Figure 3.2.2.1: Data Path for a Wallace Tree Multiplier

Over the years since the Wallace multiplier was introduced, improvements have been

made. In [28], replacing the carry propagation adder with parallel prefix adder was able

to improve time delay. Other proposed improvements include the use of 4:2 and 5:2

compressors instead of 3:2 compressors, i.e. full adders, and a carry select adder instead

of a carry propagate adder. [29, 30]

63

While the parallel and tree multipliers have been presented separately, principles of

each can be used together. In [31], a Wallace tree was presented with the initial partial

products are created through Booth encoding and partial product generators as opposed to

AND gates.

3.3. Integer Multiplication Using Squaring Units

As mobile devices become a larger and larger part of our lives and more mobile

devices are announced seemingly daily such as the Kindle and iPad, power consumption

of electronic devices becomes more and more important. Capitalizing on the power

savings of the Radix-4 Recoded squaring unit, a multiplier was designed using the

squaring unit. The purpose of this design is to produce a low power multiplier with

minimal speed lose. With a lower power multiplier, battery life of mobile devices should

increase.

3.3.1. Algorithm

The design is based on the following mathematical identity.

From this identity, the following data path shown in Figure 3.3.1.1 was created.

()
()
()
()
() ()()22

4
1

2222
4
1

2222
4
1

4
1
4
1

)2(2

22

22
4

bababa

bababababa

babaababba

ababba
abba

−−+=×

+−−++=×

−−+++=×

+=×
=×

64

Adder u1

x2

x1

Subtractor
u1

x2

x1

Squareu1x1

Squareu1x1

Subtractor
u1

x2

x1
>>	
 2 u1x1

i1

i2

o

Figure 3.3.1.1: Data Path for Integer Multiplication Using Squaring Units

3.3.2. Unsigned Multiplication

 Implementation 3.3.2.1.

Slight changes needed to be made to the implementation of the Radix-4 squaring unit.

The issue during implementation that caused this was that the inputs for the squaring unit

no longer have bit widths that are multiples of 4. This occurs due to the need of an

overflow bit for the results of the adder and subtractor. One possible solution to this is to

divide the output of the adder and the output of the subtractor by 2 before the values are

squared. However, this adds a new issue. Since we are dealing with integer numbers and

not real numbers, truncating becomes an issue when dividing the inputs to the squaring

circuits by 2. This issue is shown the following example of multiplying 3 times 2 in Table

3.3.1.2.1. In this example, 3 times 2 equals 4 which we all know is incorrect. This error

occurs because when we 5 divided by 2 should be 2.5 instead of 2 and 1 divided by 2

should be .5 instead of 0. The squares of 2.5 and .5 are 6.25 and .25 respectively. By

subtracting .25 from 6.25, the correct answer for 3 times 2 is calculated. In order to fix

this issue, the n most significant bits of the inputs to the squaring circuits are added to the

outputs of the squaring circuits. This adds if and only if the input has been truncated. This

method gives you the output as if the value was truncated after it was squared. Since we

65

only add the x when𝑥 0 = 1, then the square is equal to the truncated squared value,𝑥!

plus .25. The following mathematical proof shows that our method works

𝑥! + .25 = 𝑥 − .5 ! + 𝑥

𝑥! + .25 = 𝑥! − 𝑥 + .25+ 𝑥

𝑥! + .25 = 𝑥! + .25

In order to prove this identity in more general terms, the following proof, where s

represents the number right shifts and is an positive integer greater than 0, is needed.

𝑥! +
1
2!! = 𝑥 −

1
2!

!

+
𝑥

2!!!

𝑥! +
1
2!! = 𝑥! −

2𝑥
2! +

1
2!! +

𝑥
2!!!

𝑥! +
1
2!! = 𝑥! +

1
2!!

From the above equation, if a number was right shifted by 2 before being squared, the

squared value would have to have to add x and !
!
 if both bits shifted to the left are 1.

Figure 3.3.2.1 illustrates what the data path of this circuit would look like. Note that the

circuit equates to this equation: 𝑖! = 𝑖[16: 1]! + 𝑖 0 𝑖 16: 1 .

Figure 3.3.2.1: Example Truncation Correction Data Path

Squareu1x1

S1

S2

D

C ENB

Multiplexer

Adder u1

x2

x1[16:1]
i[16:0] o[15:0]/o[31:0]

0

[0]

66

Table 3.3.2.1.2 revisits our example 3 times 2. Adding these corrections to the

data path shown in Figure 3.3.2.1, the circuit shown in Figure 3.3.2.2 was created.

Table 3.3.1: Truncation Example

Operation Binary Value Binary Value
Inputs 0000000000000011 0000000000000010

Add/Subtract 0000000000000101 0000000000000001
Right Shift by 1 0000000000000010 0000000000000000

Square 0000000000000100 0000000000000000
Subtract 0000000000000100

Table 3.3.2: Truncation Correction Example

Operation Binary Value Binary Value
Inputs 0000000000000011 0000000000000010

Add/Subtract 0000000000000101 0000000000000001
Right Shift by 1 0000000000000010 0000000000000000

Square 0000000000000100 0000000000000000
Conditional Add 0000000000000110 0000000000000000

Subtract 0000000000000110

Figure 3.3.2.2: Radix-4 Dual Booth Recoded Multiplier by Squaring

The above circuit however was taking too much power and area. I was able to

optimized the circuit by replacing the second 2-1 MUX in all of the PSG’s with AND

Squareu1x1

S1

S2

D

C ENB

Multiplexer

Adder u1

x2

x1

[15:1]

i1[15:0]
o[15:0]/o[31:0]

0

[0]

Squareu1x1

S1

S2

D

C ENB

Multiplexer

Adder u1

x2

x1

i2[15:0]

Adder u1

x2

x1

Subtractor
u1

x2

x1

MaxMin

u2

u1

x2

x1

rshift1u1x1

[15:1]

[15:1]

rshift1u1x1

[0] Subtractor
u1

x2

x1

67

gates to conditionally zero out the output as well as replacing the 2-1 MUXs in the

truncation correction with AND gates. This optimization was able to improve the area but

not the power consumption.

 Results 3.3.2.2.

The general purpose integer multiplier created from radix-4 dual recoded squaring

circuits and a general purpose multiplier were both implemented in Verilog and mapped

to OSU standard cell library [5] for the for the lower n-bits of the result. Both circuits

were constrained to run with-in a 50ns clock-edge and were implemented for 16, 32, and

64 bit-widths. The charts in Figures 3.3.2.3-3.3.2.5 show a gain in power, leakage power,

and area for our customized radix-4 based multiplier compared to a multiplier circuit.

Figure 3.3.2.3: Power (mW) vs Word Size Chart

0	

50	

100	

150	

200	

250	

300	

350	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

mW

68

Figure 3.3.2.4: Leakage Power(nW) vs Word Size Chart

Figure 3.3.2.5: Area vs Word Size Chart

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

16	
 32	
 64	

multiplier	

radix-­‐4	

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

16	
 32	
 64	

multiplier	

radix-­‐4	

Word Size

Word Size

nW

µm2

69

 The general purpose integer multiplier created from radix-4 dual recoded squaring

circuits and a general purpose multiplier were both implemented in Verilog and mapped

to OSU standard cell library [5] for a n-bits of the result. Both circuits were constrained

to run with-in a 100ns clock-edge and were implemented for 16, 32, and 64 bit-widths.

The charts in Figures 3.3.2.6-3.3.2.8 show a loss in power but gains in leakage power and

area for our customized radix-4 based multiplier compared to a multiplier circuit.

Figure 3.3.2.6: Power (mW) vs Word Size Chart

0	

100	

200	

300	

400	

500	

600	

700	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

Word Size

mW

70

Figure 3.3.2.7: Leakage Power(nW) vs Word Size Chart

Figure 3.3.2.8: Area vs Word Size Chart

0	

1000	

2000	

3000	

4000	

5000	

6000	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

Word Size

Word Size

nW

µm2

71

3.3.3. Signed Multiplication

 Implementation 3.3.3.1.

While the unsigned general purpose multiplier is useful, a signed multiplier would be

even more useful. The initial thought of building a signed multiplier might be to just

adding 2’s complement circuits to the inputs and the outputs. While that configuration

will work, it is not the optimal configuration.

Under further investigation, the truncation correction circuit described in 3.3.2.1

is no longer needed. Now that the most significant bit represents the sign of the number,

the sum of the two (n-1)-bit numbers will at most take n-bits to store. Since now the sum

and the difference can both be store in n-bits, the left shifting can be move to the last

operation performed on the data. The new configuration can be shown in Figure 3.3.3.1.

Figure 3.3.3.1: Signed Multiplication Data Path

 Results 3.3.3.2.

The signed general purpose integer multiplier created from radix-4 dual recoded

squaring circuits and a signed general purpose multiplier were both implemented in

Verilog and mapped to OSU standard cell library [5] for a n-bits of the result. Both

Adder u1

x2

x1

Subtractor
u1

x2

x1

Squareu1x1

Squareu1x1

Subtractor
u1

x2

x1

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

> u1

x2

x1

i1[n-­‐1:0]

i2[n-­‐1:0]

o[2n-­‐1:0]S1

S2

D

C ENB

Multiplexer

==	
 0 u1x1

0

u1x1

2's	
 Comp

u1x1

2's	
 Comp

u1x1

2's	
 Comp

72

circuits were constrained to run with-in a 100ns clock-edge and were implemented for 16,

32, and 64 bit-widths. The charts in Figures 3.3.3.2 - 3.3.3.4 show a loss in power but

gains in leakage power and area for our customized radix-4 based signed multiplier

compared to a signed multiplier circuit.

Figure 3.3.3.2: Power (mW) vs Word Size Chart

0	

100	

200	

300	

400	

500	

600	

700	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

Word Size

mW

73

Figure 3.3.3.3: Leakage Power(nW) vs Word Size Chart

Figure 3.3.3.4: Area vs Word Size Chart

0	

1000	

2000	

3000	

4000	

5000	

6000	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

16	
 32	
 64	
 128	

multiplier	

radix-­‐4	

Word Size

Word Size

nW

µm2

74

Chapter 4

CONCLUSION

 Throughout this paper, we have presented several uses for a dual recoded radix-4

squaring circuit. Although the squaring circuits can be used to build general purpose

multipliers, the circuits biggest advantages is as a specialized squaring circuit. When used

for calculating the square, improvements are made in area, power, and leakage power.

This holds true for the n-bit integer square, 2n-bit integer square and floating point

square. The biggest improvements were seen in the implementations of n-bit integer

square and floating point square. The improvements in the floating point square are due

not only to replacing the multiplier circuit with a dual recoded 2n-bit squaring circuit, but

also reducing the size of the preprocessor, pre-normalized, special case detector, and

exponent adder.

 While the multiplier made from the integer square showed a loss in total power

and only minimal gains in area and leakage power, the circuit does have value. This

designs value is for a circuit that needs to calculate square often and rarely needs the

multiplication operation while not having the area for both a dual recoded radix-4 square

and a traditional multiplier.

 The floating point Booth dual recoded square and a general purpose floating point

multiplier could coexist on the same circuit with only a small increase in area. The most

75

obvious way to do this is for the two circuits is to add a MUX to share the normalizer,

shifter, rounder, flagger, and assembler. This configuration is shown in Figure 4.1.

Square
Pre-­‐processor

Special	
 Case	

Detector

Square
Prenormalizer

Multiplier

norm
b

Exponent	

Adder

expb

Normalizer Shifter

Rounder

Flagger

normalized

shiftloss

Assembler

roundprod

roundexp

AB Control

YFlags

inexact

dnr
stilltiny

overflow

Square	

Pre-­‐processor

Square	

Prenormer

Squarer
Square	

Exponent	

Shifter

aisnan

bisnan

expa

norma

MUX

MUXMUX

multProd
square

multTwoormore

squareTwoormore

squareExp

multExp

prod twoormore exp

roundmode

shiftprod

shiftexp

A[width-­‐1]
B[width-­‐1]

mult

sign

MUX

multiny

squaretiny

tiny

overflow

Combined	

Special

binf

bzero

ainf
azero

special
specialsigncase

specialcase

Figure 4.1: Multiplier/Squarer Combination Circuit [23]

76

Appendix A

AUTOMATIC TESTBENCH GENERATION

/**
 * @class VerilogTest
 * @author Jason Moore
 * @description Produces a testbench Verilog file for testing the squaring and multiplier
cicuits
 */

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;

public class VerilogTest {
 private static String[] includes16 = { "fullpps16_1.v", "fullpps16_2.v",
 "fullpps16_3.v", "fullpps16_4.v", "fullpps16_5.v",
 "fullpps16_6.v", "fullpps16_7.v", "fullpps16_8.v",
 "signExt16.v", "fullRadix4_16.v" };
 private static String[] includes32 = { "fullpps32_1.v", "fullpps32_2.v",
 "fullpps32_3.v", "fullpps32_4.v", "fullpps32_5.v",
 "fullpps32_6.v", "fullpps32_7.v", "fullpps32_8.v",
 "fullpps32_9.v", "fullpps32_10.v", "fullpps32_11.v",

"fullpps16_3.v", "fullpps16_4.v", "fullpps16_5.v",
"fullpps16_7.v", "fullpps16_8.v", "signExt32.v",
 "fullRadix4_32.v" };

 private static String[] includes64 = { "fullpps16_2.v", "fullpps16_3.v",
 "fullpps16_4.v", "fullpps16_5.v", "fullpps16_7.v",

"fullpps16_8.v", "fullpps32_3.v", "fullpps32_4.v",
"fullpps32_5.v", "fullpps32_6.v", "fullpps32_7.v",
"fullpps32_8.v", "fullpps32_9.v", "fullpps32_11.v",
"fullpps64_1.v", "fullpps64_2.v", "fullpps64_3.v",
"fullpps64_4.v", "fullpps64_5.v", "fullpps64_6.v",

 "fullpps64_7.v", "fullpps64_8.v", "fullpps64_9.v",
 "fullpps64_10.v", "fullpps64_11.v", "fullpps64_12.v",
 "fullpps64_13.v", "fullpps64_14.v", "fullpps64_15.v",

77

"fullpps64_16.v", "fullpps64_17.v", "fullpps64_18.v",
 "signExt64.v", "fullRadix4_64.v" };
 private static String[] includes16m = { "pps16_1.v", "pps16_2.v",
 "pps16_3.v", "pps16_4.v", "radix4_16.v", "squareM2_16.v" };
 private static String[] includes32m = { "pps16_2.v", "pps16_3.v",
 "pps16_4.v", "pps32_1.v", "pps32_2.v", "pps32_3.v",

"pps32_4.v", "pps32_5.v", "radix4_32.v", "squareM2_32.v" };
 private static String[] includes64m = { "pps16_2.v", "pps16_3.v",
 "pps16_4.v", "radix4_16.v", "pps32_2.v", "pps32_3.v",

"pps32_4.v", "pps32_5.v", "pps64_1.v", "pps64_2.v",
 "pps64_3.v", "pps64_4.v", "pps64_5.v", "pps64_6.v",
 "pps64_7.v", "pps64_8.v", "pps64_9.v", "squareM2_32.v" };

 private static String[] includes16sm = { "pps16_1.v", "pps16_2.v",
"pps16_3.v", "pps16_4.v", "radix4_16.v", "signedSquareM2_16.v"
};

 private static String[] includes32sm = { "pps16_2.v", "pps16_3.v",
 "pps16_4.v", "pps32_1.v", "pps32_2.v", "pps32_3.v",

"pps32_4.v", "pps32_5.v", "radix4_32.v", "signedSquareM2_32.v"
};

 private static String[] includes64sm = { "pps16_2.v", "pps16_3.v",
 "pps16_4.v", "radix4_16.v", "pps32_2.v", "pps32_3.v",

"pps32_4.v", "pps32_5.v", "pps64_1.v", "pps64_2.v",
 "pps64_3.v", "pps64_4.v", "pps64_5.v", "pps64_6.v",
 "pps64_7.v", "pps64_8.v", "pps64_9.v", "signedSquareM2_64.v"
};

 private static String[] includes24 = { "fullpps32_6.v", "fullpps32_7.v",
 "fullpps32_8.v", "fullpps32_9.v", "fullpps32_11.v",
 "fullpps16_2.v", "fullpps16_3.v", "fullpps16_5.v",

"fullpps16_7.v", "fullpps16_8.v", "fullpps24_1.v",
 "fullpps24_2.v", "signExt24.v", "fullRadix4_24.v" };

 private static String[] includes48 = {"fullpps16_2.v", "fullpps16_3.v",
 "fullpps16_4.v", "fullpps16_5.v", "fullpps16_7.v",

"fullpps16_8.v", "fullpps32_2.v", "fullpps32_3.v",
"fullpps54_2.v", "fullpps32_5.v", "fullpps32_6.v",
"fullpps32_7.v", "fullpps32_8.v", "fullpps32_9.v",
"fullpps32_11.v", "fullpps54_1.v","fullpps64_7.v",
"fullpps64_8.v", "fullpps64_9.v", "fullpps64_10.v",
"fullpps64_11.v", "fullpps64_12.v", "fullpps64_13.v",
"fullpps64_14.v", "fullpps64_15.v", "fullpps64_16.v",
"fullpps64_17.v", "signExt54.v", "fullRadix4_54.v", "assemble.v",
"exponent2.v", "flag.v", "normalize.v", "prenorm2.v",
"preprocess2.v", "round.v","shift.v", "special2.v", "fpmul2.v"};

/**
 * @method addIncludes

78

 * @param outputStream
 * @param bitWidth
 * @param multi
 * @throws IOException
 * @description: Writes the needed includes
 */
 private static void addIncludes(BufferedWriter outputStream, int bitWidth,
 int multi) throws IOException {
 String[] includes;
 if (multi == 1) {
 switch (bitWidth) {
 case 16:
 includes = includes16m;
 break;
 case 32:
 includes = includes32m;
 break;
 case 64:
 includes = includes64m;
 break;
 default:
 return;
 }
 } else if (multi == 2) {
 switch (bitWidth) {
 case 16:
 includes = includes16sm;
 break;
 case 32:
 includes = includes32sm;
 break;
 case 64:
 includes = includes64sm;
 break;
 default:
 return;
 }
 } else if (multi == 3) {
 if (bitWidth == 32) {
 includes = includes24;
 } else {
 includes = includes48;
 }

79

 } else {
 switch (bitWidth) {
 case 16:
 includes = includes16;
 break;
 case 32:
 includes = includes32;
 break;
 case 64:
 includes = includes64;
 break;
 default:
 return;
 }
 }
 for (int i = 0; i < includes.length; i++) {
 outputStream.write("`include " + '"' + includes[i] + '"');
 outputStream.newLine();
 }
 }

 /**
 * @method changeValues
 * @param outputStream
 * @param bitWidth
 * @param multi
 * @throws IOException
 * @description 2^16 random values are written to the Verilog file
 */
 private static void changeValues(BufferedWriter outputStream, int bitWidth,
 int multi) throws IOException {
 Random randomGenerator = new Random();
 double numOfValues = 65536.0;
 int values = (int)Math.pow(2, bitWidth);
 //Multiplication
 if (multi == 1) {
 for (double i = 0.0; i < numOfValues; i++) {

int randomInt1 = randomGenerator.nextInt(new
 Double(values).intValue());

 int randomInt2 = randomGenerator.nextInt(new
 Double(values).intValue());

 outputStream.write("\t\t\ti=" + randomInt1 + ";");
 outputStream.write("\t\t\ti2=" + randomInt2 + ";");
 outputStream.newLine();

80

 outputStream.write("\t\t\t#100");
 }
 } else if (multi == 2) { //Signed Multiplication
 for (double i = 0.0; i < numOfValues; i++) {
 int randomInt1 = randomGenerator.nextInt(new
 Double(values).intValue()) –

(values >> 1);
 int randomInt2 = randomGenerator.nextInt(new

 Double(values).intValue()) –
 (values >> 1);

 outputStream.write("\t\t\ti=" + randomInt1 + ";");
 outputStream.write("\t\t\ti2=" + randomInt2 + ";");
 outputStream.newLine();
 outputStream.write("\t\t\t#100");
 }
 } else if (multi == 3) { //Floating Point Square
 for (int i = 0; i < numOfValues; i++) {
 int control = 3;
 int exp;
 if (bitWidth == 32) { //Single
 exp = (i%256) << 23;
 values = (int) Math.pow(2, 23);
 long randomInt = randomGenerator.nextInt(new

 Double(values).intValue()) + exp;
 outputStream.write("\t\t\ti=" + randomInt + ";");
 } else { // Double
 exp = (i%1024) << 52;
 values = (int) Math.pow(2, 52);
 long randomInt = randomGenerator.nextInt(new

 Double(values).intValue()) + exp;
 outputStream.write("\t\t\ti=64'd" + randomInt +";");
 }

 if (i < numOfValues/4) {
 control = 0;
 } else if (i < numOfValues/2) {
 control = 1;
 } else if (i < (numOfValues * .75)) {
 control = 2;
 }
 outputStream.write(" control=" + control + ";");
 outputStream.newLine();
 outputStream.write("\t\t\t#100");
 }

81

 }
 //Square
 else {
 for (double i = 0.0; i < numOfValues; i++) {
 int randomInt = randomGenerator.nextInt(new

 Double(values).intValue());
 outputStream.write("\t\t\ti=" + randomInt + ";");
 outputStream.newLine();
 outputStream.write("\t\t\t#100");
 }
 }
 }

 public static void main(String[] args) {
 try {
 int multi = 0;
 BufferedWriter outputStream = new BufferedWriter(new

FileWriter(“simcrct" + args[0] + args[1] + ".v"));
 int bitWidth = Integer.parseInt(args[1]);
 if (args[2].toLowerCase().equals("multiply")) {
 multi = 1;
 } else if (args[2].toLowerCase().equals("signed")) {
 multi = 2;
 } else if (args[2].toLowerCase().equals("floating")) {
 multi = 3;
 }
 addIncludes(outputStream, bitWidth, multi);
 outputStream.write("module stimcrct" + args[1] + ";");
 outputStream.newLine();
 outputStream.write("\treg [" + (bitWidth - 1) + ":0] i;");
 outputStream.newLine();
 //Initial Verilog setup
 if (multi > 0 && multi < 3) {
 outputStream.write("\treg [" + (bitWidth - 1) + ":0] i2;");
 outputStream.newLine();
 outputStream.write("\twire ["+(bitWidth* 2 - 1) + ":0] o;");
 outputStream.newLine();
 outputStream.write("\t" + args[0] + "_" + args[1] +

 " crct(i,i2, o);");
 outputStream.newLine();
 outputStream.write("\tinitial");
 outputStream.newLine();
 outputStream.write("\t\tbegin");
 outputStream.newLine();

82

 outputStream.write("$monitor (\"square = %d\", o);");
 } else if (multi == 3) {
 outputStream.write("\treg [4:0] control;");
 outputStream.newLine();
 outputStream.write("\twire [" + (bitWidth - 1) + ":0] o;");
 outputStream.newLine();
 outputStream.write("\twire [4:0] flag;");
 outputStream.newLine();
 outputStream.write("\t fpmul2 crct (i, o, control, flag);");
 outputStream.newLine();
 outputStream.write("\tinitial");
 outputStream.newLine();
 outputStream.write("\t\tbegin");
 outputStream.newLine();
 outputStream.write("$monitor (\"square = %d flag = %d\",

 o, flag);");
 } else {
 outputStream.write("\twire [" +(bitWidth * 2 - 1)+":0] o;");
 outputStream.newLine();
 outputStream.write("\t" + args[0] + "_" + args[1] +

 " crct (i,o);");
 outputStream.newLine();
 outputStream.write("\tinitial");
 outputStream.newLine();
 outputStream.write("\t\tbegin");
 outputStream.newLine();
 outputStream.write("$monitor (\"square = %d\", o);");
 }
 outputStream.newLine();
 changeValues(outputStream, bitWidth, multi);
 outputStream.write("\t\t\t$finish;");
 outputStream.newLine();
 outputStream.write("\t\tend");
 outputStream.newLine();
 outputStream.write("endmodule");
 outputStream.flush();
 outputStream.close();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

}

83

Appendix B

VERILOG FILES

B.1 PARTIAL SQUARE GENERATOR

/*
* A 2X1 13-bit MUX that sets z to i2 if c is 1
* and to i2 otherwise.
* Inputs: i1 and i2
* Control: c
* Output: z
*/
module mux21_13 (i1, i2, c, z);
 input[12:0] i1, i2;
 input c;
 output[12:0] z;
 reg[12:0] z;

 always @ (c or i1 or i2)
 begin
 if (c)
 begin
 z = i2;
 end
 else
 begin
 z = i1;
 end
 end
endmodule

/*
* Left shifts a 13-bit input i
* one place to the left for a
* 13-bit output o.
* Input: i
* Output: o
*/
module lshift13_1 (i, o);
 input[12:0] i;

84

output[12:0] o;
 reg [12:0] o;

 always @ (i)
 begin
 o = i << 1;
 end
endmodule

/*
* Negates the 13-bit input i if
* c is 1.
* Input: i
* Output: o
*/
module codNeg13 (i, c, o);
 input[12:0] i;
 input c;
 output[12:0] o;
 reg[12:0] o;
 integer j;

 always @ (i or c)
 begin
 for (j = 0; j < 13; j = j + 1)
 begin
 o[j] = c ^ i[j];
 end
 end

endmodule

/*
 * pps16_1
 * Calculates a 16-bit partial square from a
 * 15-bit input.
 * Input: x
 * Output: y
 */
module pps16_1 (x, y);
 input [14:0] x;
 output [15:0] y;
 wire [15:0] y;
 wire c1, c2, c3, c4;
 wire [12:0] t1, t2, t3, t4;

85

 xnor xn1 (c1, 0, x[0]);
 xnor xn2 (c2, x[0],x[1]);
 and a1 (c3, c2, c1);
 not n1 (c4, c3);
 and a2 (y[2], c4, c1);
 assign y[1] = 0;
 nor no1 (y[0], c1, c3);
 codNeg13 cn1 (x[14:2], x[1], t1);
 lshift13_1 ls1 (t1, t2);
 mux21_13 m1 (t1, t2, c1, t3);
 assign t4 = 0;
 mux21_13 m2 (t3, t4, c3, y[15:3]);
endmodule

B.2 INTERGER MULTIPLIER

/* Calculates the 16-bit square
 * from a 16-bit input
 * Input: i
 * Output: o
 */
module radix4_16 (i, o);
 input[15:0] i;
 output[15:0] o;
 reg[15:0] o;
 wire[15:0] t1;
 wire[11:0] t2;
 wire[7:0] t3;
 wire[3:0] t4;
 reg[11:0] t5;
 reg[7:0] t6;

 // Calculate partial squares
 pps16_1 p1 (i[14:0],t1);
 pps16_2 p2 (i[12:1], t2);
 pps16_3 p3 (i[10:3], t3);
 pps16_4 p4 (i[8:5], t4);
 // Added partial squares together
 always @ (t1 or t2 or t3 or t4)
 begin
 o[3:0] = t1[3:0];
 t5 = t1[15:4] + t2;
 o[7:4] = t5[3:0];
 t6[3:0] = t3[3:0];
 t6[7:4] = t3[7:4] + t4;
 o[15:8] = t6 + t5[11:4];

86

 end

endmodule

B.3 FULL PARTIAL SQUARE GENERATOR

/*
* A 2X1 15-bit MUX that sets z to i2 if c is 1
* and to i2 otherwise.
* Inputs: i1 and i2
* Control: c
* Output: z
*/
module mux21_15 (i1, i2, c, z);
 input[14:0] i1, i2;
 input c;
 output[14:0] z;
 reg[14:0] z;

 always @ (c or i1 or i2)
 begin
 if (c)
 begin
 z = i2;
 end
 else
 begin
 z = i1;
 end
 end
endmodule

/*
* Left shifts a 15-bit input i
* one place to the left for a
* 15-bit output o.
* Input: i
* Output: o
*/
module lshift15_1 (i, o);
 input[14:0] i;
 output[14:0] o;
 reg [14:0] o;

 always @ (i)
 begin

87

 o = i << 1;
 end
endmodule

/*
* Negates the 14-bit input i if
* c is 1.
* Input: i
* Output: o
*/
module codNeg15 (i, c, o);
 input[13:0] i;
 input c;
 output[14:0] o;
 reg[14:0] o;
 integer j;

 always @ (i or c)
 begin
 for (j = 0; j < 14; j = j+ 1)
 begin
 o[j] = c ^ i[j];
 end
 o[14] = c ^ 0;
 end
endmodule

/*
 * codZero15
 * Sets the 15-bit output to 0
 * if c is 0 otherwise the output
 * is set to the input.
 * Input: i, c
 * Output: o
 */
module codZero15 (i, c, o);
 input[14:0] i;
 input c;
 output[14:0] o;
 reg[14:0] o;
 integer j;

 always @ (i or c)
 begin
 for (j = 0; j < 15; j = j + 1)
 begin

88

 o[j] = c & i[j];
 end
 end
endmodule

/*
 * fullpps16_1
 * Calculates a 18-bit partial square
 * from a 16-bit input.
 * Input: x
 * Output: y
 */
module fullpps16_1 (x,y);
 input[15:0] x;
 output[17:0] y;
 wire[17:0] y;
 wire c1, c2, c3, c4;
 wire[14:0] t1, t2, t3;

 xnor xn1 (c1, 0, x[0]);
 xnor xn2 (c2, x[0],x[1]);
 nand n1 (c4, c2, c1);
 not n2 (c3, c4);
 and a2 (y[2], c4, c1);
 assign y[1] = 0;
 nor no1 (y[0], c1, c3);
 codNeg15 cn1 (x[15:2], x[1], t1);
 lshift15_1 ls1 (t1, t2);
 mux21_15 m1 (t1, t2, c1, t3);
 codZero15 m2 (t3, c4, y[17:3]);
endmodule

B.4 FULL DUAL RECODED RADIX-4 SQUARE

/* Calculates the 32-bit square of
 * a 16-bit input input
 * Input: i
 * Output: o
 */
module fullRadix4_16 (i,o);
 input[15:0] i;
 output[31:0] o;
 reg[31:0] o;
 wire[31:0]c1;
 wire[24:0] c2;
 wire[22:0] c3;

89

 wire[19:0] c4;
 wire[9:0] c5;
 wire[7:0] c6;
 wire[5:0] c7;
 wire[3:0] c8;
 wire[13:0] c9;
 reg [27:0] c14;
 reg [27:0] c16;
 reg [24:0] c15;
 reg [18:0] c10;
 reg [19:0] c11;
 reg [23:0] c12, c13;
 wire x, y, z;

 //Calculate partial squares
 fullpps16_1 fp1 (i, c1[17:0]);
 fullpps16_2 fp2 (i[15:1],c2[15:0]);
 fullpps16_3 fp3 (i[15:3],c3[13:0]);
 fullpps16_4 fp4 (i[15:5], c4[11:0]);
 fullpps16_5 fp5 (i[15:7], c5);
 fullpps16_6 fp6 (i[15:9], c2[23:16]);
 fullpps16_7 fp7 (i[15:11], c3[21:16]);
 fullpps16_8 fp8 (i[15:13], c4[19:16]);
 signExt16 s1 (i[1], i[2], i[3],i[5],i[7],i[9],i[11],i[13], c1[31:18]);
 and a1 (c3[14], i[5], i[4],i[3]);
 and a2 (c4[12], i[5], i[6],i[7]);
 and a3 (c4[14], i[7], i[8],i[9]);
 and a4 (c2[24], i[9], i[10],i[11]);
 and a5 (c3[22], i[11],i[12],i[13]);

 // Line up bits
 assign c3[15] = 0;
 assign c4[13] = 0;
 assign c4[15] = 0;

 // Add partial squares
 always @ (c1 or c2)
 begin
 o[3:0] = c1[3:0];
 c16 = c1[31:4] + c2;
 o[7:4] = c16[3:0];
 end

 always @ (c3 or c4)
 begin

90

 c12[3:0] = c3[3:0];
 c12[23:4] = c3[22:4] + c4;
 end

 always @ (c16 or c12)
 begin
 c13 = c12 + c16[27:4];
 o[15:8] = c13[7:0];
 end

 always @ (c5 or c13)
 begin
 o[31:16] = c13[23:8] + c5;
 end
endmodule

B.5 INTEGER MULTIPLCATION USING SQUARING UNITS

/* Calculates the 64-bit product
 * of two 64-bit inputs
 * Inputs: i1, i2
 * Output: o
 */
module squareM2_16 (i1, i2, o);
 input[15:0] i1, i2;
 output[15:0] o;
 reg[15:0] o;
 wire[15:0] t1, t2;
 reg[15:0] t3, t4;
 reg[16:0] t5, t6;
 reg[16:0] t7;
 reg[16:0] t8;
 // Add the two inputs
 // Subtract the smaller input
 // from the larger on
 always @ (i1 or i2)
 begin
 if (i1 > i2)
 begin
 t3 = i1;
 t4 = i2;
 end
 else
 begin
 t3 = i2;
 t4 = i1;

91

 end
 t5 = t3 - t4;
 t6 = t3 + t4;
 end
 // square the difference
 radix4_16 s1 (t5[16:1], t1);

// square the sum
 radix4_16 s2 (t6[16:1], t2);
 // Truncation correction
 always @ (t2)
 begin
 if (t6[0] == 1)
 begin

 t7 = t2 + t6[16:1];
 end
 else
 begin
 t7[15:0] = t2;
 t7[16] = 0;
 end
 end

 always @ (t1)
 begin
 if (t5[0] == 1)
 begin

 t8 = t1 + t5[16:1];
 end
 else
 begin
 t8[15:0] = t1;
 t8[16] = 0;
 end
 end
 // Subtract the smaller square
 // from the larger one
 always @ (t7 or t8)
 begin
 o = (t7 - t8);
 end

endmodule

92

REFERENCES

[1] A.D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J.
Mechanical and Applied Math., vol. 4, no. 2, pp. 236-240, 1951.

[2] D.W. Matula, “A Radix-4 dual recoded Squaring Procedure For Use in

Design of Application Specific Arithmetic Circuits”, SRC Report,
4/12/2007

[3] A. Pirson, J.-M. Bard, and M. Daoudi, Squaring Circuit for Binary

Numbers, United States Patent, No. 5,629,885, May 13, 1997.

[4] L.P. Rubinfeld, “A Proof of the Modified Booth's Algorithm for
Multiplication,” IEEE Trans. Computers, vol. 24, no. 10, pp. 1014-1015
Oct. 1975.

[5] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D.

Franzon, M. Bucher, S. Basavarajaiah, J. Oh, R. Jenkal, FreePDK: An
Open-Source Variation-Aware Design Kit. Proceedings of the 2007 IEEE
International Conference on Microelectronic Systems Education, 2007.

[6] A. Strollo, E. Napoli, and D. Caro, “New Design of Squarer Circuits

Using Booth Encoding and Folding Techniques”, Proceedings of the 8th
ICECS, pp. 193-196, Sep. 02, 2001.

[7] K. Wires, W. Schulte, L. Marquette, and P. Balzola, “Combined Unsigned

and Two’s Complement Squarers”, Proceedings of the Thirty Third

93

Asilomar Conference on Signals, Systems, and Computers, pp. 1215-
1219., 1999

[8] F. Yul and A. Willson, Jr., “Multirate Digital Squarer Architectures”,
Proceedings of the 8th ICECS, pp. 177-180, Sep. 02, 2001.

[9] A. Fit-Florea, D.W. Matula, and M.A. Thornton, “Additive Bit-serial

Algorithm for the Discrete Logarithm Modulo 2k”, IEE Electronics
Letters, vol. 41, no. 2, January 2005, pp. 57-59.

[10] L. Li, A. Fit-Florea, M.A. Thornton, and D.W. Matula "Hardware

Implementation of an Additive Bit-Serial Algorithm for the Discrete
Logarithm Modulo 2k ", Proc. IEEE Ann. Sym. on VLSI, May 2005,
pp.130-135.

[11] L. Li, M.A. Thornton, and D.W. Matula, “A Digit Serial Algorithm for the

Integer Power Operation”, Proc. of ACM/IEEE Great Lakes Symposium
on VLSI (GLSVLSI), April 2006, pp. 302-307.

[12] P. M. Seidel, D.W. Matula, and L.D. McFearin, "Secondary Radix

Recodings for Higher Radix Multipliers", IEEE Trans. on Comp., vol 54,
2005, pp. 111-123.

[13] J. Moore, M.A. Thornton, and D.W. Matula, “A Low Power Radix-4 Dual

Recoded Integer Squaring Implementation for use in Design of
Application Specific Arithmetic Circuits”, IEEE Asilomar Conference on
Signals, Systems, and Computers (ASILOMAR), October 26-29, 2008, pp.
1819-1822.

[14] IEEE Standard for Binary Floating-Point Arithmetic. New York:

ANSI/IEEE 754-1985, 1985.

[15] M. E. Phair, “Free Floating-Point Madness: Multiplier”,
http://www.hmc.edu/chips/fpmul.html, May 14, 2002

[16] N. Quach, N. Takagi, and M. Flynn, "On Fast IEEE Rounding," Technical

Report CSL-TR-91-459, Stanford University, January 1991.

[17] G. Even and P-M. Seidel, "A comparison of Three Rounding Algorithms
for IEEE Floating-Point Multiplication." IEEE Transactions on
Computers, Vol. 49 No. 7 July 2000.

94

 [18] J. Stohmann and E. Barke, “A Universal Pezaris Array Multipler
Generator for SRAM-Based FPGAs”, Computer Design: VLSI in
Computers and Processors, 1997. ICCD '97. Proceedings., 1997 IEEE
International Conference on, pp.489,495, 12-15 Oct 1997

[19] A. D. Booth, “A signed binary multiplication technique”, Quart. J. Mech.

Appl. Math. 4 (1951), 236–240.

[20] J. Hensley, A. Lastra, and M. Singh, "An area- and energy-efficient
asynchronous Booth multiplier for mobile devices," Computer Design:
VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE
International Conference on , vol., no., pp.18,25, 11-13 Oct. 2004

[21] A. S. Prabhu, and V. Elakya, "Design of modified low power booth
multiplier," Computing, Communication and Applications (ICCCA), 2012
International Conference on , vol., no., pp.1,6, 22-24 Feb. 2012

[22] S. Chen, C. Liu, T. Wu, and A. Tsai, “Design and Implementation of

High-Speed and Energy-Efficient Variable-Latency Speculating Booth
Multiplier (VLSBM),” IEEE Trans. On Ciruits and Systems 60-I, pp.
2631-2643, Oct. 2013

[23] J. Moore, M. Thornton, and D.W. Matula, Low Power Floating-Point

Multiplication and Squaring Units with Shared Circuitry, IEEE Midwest
Symposium on Circuits and Systems (MWSCAS), pp. 1395-1398, August
4, 2013

[24] L. Dadda, "Some schemes for parallel multipliers". Alta Frequenza 34:

349–356, March 1965

[25] B. Jeevan, S. Narender, C.V.K. Reddy, and K. Sivani, “A High Speed
binary Floating Point Multiplier Using Dadda Algorithm”, Automation,
Computing, Communication, Control and Compressed Sensing (iMac4s),
2013 International Multi-Conference on , vol., no., pp.455,460, 22-23
March 2013

[26] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Sjalander, D. Johansson,

and M. Scholin, “Multiplier Reduction Tree with Logarithmic Logic
Depth and Regular Connectivity”, 2006 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 4-8, May 2006

95

[27] C.S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on
Electronic Computers Vol: EC-13 Issue: 1, pp. 14-17, Feb. 1964

[28] S. Rajaram and K. Vanithamani, “Improvement of Wallace Multipliers

using Parallel Prefix Adders”, 2011 International Conference on Signal
Processing, Communication, Computing, and Networking Technologies
(ICSCCN), pp. 781-784, July 2011

[29] M.E. Robinson and E. Swartzlander Jr., “A Reduction Scheme to

Optimize the Wallace Multiplier”, International Conference on Computer
Design: VLSI in Computers and Processors 1998 (ICCD ‘98), pp. 122-
127, Oct. 1998

[30] N. Sureka, R. Porselvi, and K. Kumuthapriya, “An Efficient High Speed

Wallace Tree Multiplier”, 2013 International Conference on Information
Communication and Embedded Systems (ICICES), pp. 1023-1026, Feb.
2013

[31] W. Dong-Hui, “Scan Test in 18x18 bits Booth Coding-Wallace Tree

Multiplier”, 4th International Conference on ASIC 2001, pp. 624-627, Oct.
2001

