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Quantum multiple-valued decision diagrams (QMDD) are data
structures that enable efficient representation and manipulation
of unitary matrices representing reversible and quantum circuits.
QMDDs are of the form of a rooted, directed, acyclic graph with
initial and terminal vertices where each vertex is annotated with
a variable name representing a circuit line. Directed paths from
the intial to a terminal vertex can be represented as a sequence of
variable names in the order in which they appear in the path. The
existence of QMDD paths that do not contain all variable names,
or “skipped variables”, has direct ramifications in the formula-
tion of synthesis and other algorithms for reversible and quantum
logic. Skipped variables are generally rare and tend to appear in
quantum circuits that are intended to operate using superimposed
values on the control lines. We have found that a unitary matrix
representing a circuit whose QMDD contains skipped variables
is likely to exhibit a specific anomaly when decomposed into a
cascade of unitary matrices using the Reck-Zeilinger-Bernstein-
Bertani algorithm.
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1 INTRODUCTION

Quantum computing algorithms such as prime factoring [1] and searching [2]
offer exponential speedup as compared to implementations on classical Tur-
ing computers. Several practical problems remain to be solved before quan-
tum computing solutions are practical including the development of reliable
devices, and methods for the design of this class of computers. Fortunately,
mathematical models for device functionality are known and design methods
research is progressing in parallel with physical device development. The de-
vice models are in the form of unitary transformation matrices allowing an
abstract view of a quantum computer or logic circuit to be in the form of a set
of such matrices that can be combined into a single overall system matrix [3].
These matrices are all unitary since the underlying quantum devices are both
physically and logically reversible.

Work by Reck, Zeilinger, Bernstein, and Bertani demonstrated that any
unitary matrix may be synthesized as a quantum circuit in the laboratory us-
ing beam splitters, which perform two-level unitary operations. While the
synthesis resulting from the RZBB is not efficient with regard to cost, their
work established the beam splitter as a universal gate [4]. We use some of
the results from [4] to analyze the occurence of “skipped variables” within
QMDDs as the occurence of skipped variables is an important factor in syn-
thesis approaches based on QMDD representations of the target quantum or
reversible logic circuit.

Large numbers of quantum, binary and MVL gates have been developed in
the hope of achieving efficient synthesis of quantum circuits [5]. These gates
are more complex than the beam splitter and allow more cost effective synthe-
sis. Various CAD tools have been developed to assist these efforts, including
the Quantum Information Decision Diagram (QuIDD) [6] and the Quantum
Multiple-valued Decision Diagrams (QMDD) [7] packages. The QMDD rep-
resents the transformation matrix of a circuit by repeated decomposition, and
it is particularly efficient with common sparse unitary matrices. In earlier
work, we have used QMDD for simulation, synthesis, and investigation of
redundancy in reversible circuits [8] [9] [10].

A crucial issue for quantum circuit simulation is whether we should con-
strain the control lines to take only the “binary” values |0〉 and |1〉 or to allow
the control lines the freedom of using superposition values. In their paper on
quantum synthesis using the quantum decision diagram (QDD) structure, Ab-
dollahi and Pedram dubbed this issue as the binary control signal constraint
[11]. They pointed out that researchers often adopt this constraint in quantum
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logic synthesis without explicit notice. In practice, various quantum circuits
(components of the Grover search [2], fault tolerance stabilizer circuits [12],
etc.) allow the control inputs to be fed with values in superposition [11]. We
found that such quantum circuits may cause the rare phenomenon of skipped
variables in QMDD-based simulations [8].

Skipped variables refer to the existence of a path in a QMDD where a par-
ticular variable does not appear when compared to the sequence of variables
in other QMDD paths. Skipped variables are important when the QMDD (or
other ordered decision diagram structures) are manipulated or used for the
purpose of quantum circuit synthesis [17]. For this reason, it is important to
understand why variables are skipped and what characteristics the underlying
circuits must have that result in skipped variables. In this paper we investigate
skipped variables in binary and ternary QMDD and developed techniques to
determine when they are occurring. We found a correlating property that re-
lates the appearance of skipped variable in a quantum circuit with a certain
anomaly observed during the RZBB decomposition of the circuit into beam
splitters.

The paper is organized as follows. In Section 2 we discuss binary and
MVL reversible circuits, the QMDD data structure, and we detail two-level
unitary matrices and their use in the RZBB decomposition process. Theoret-
ical analysis and rules of detection of skipped variables in binary and ternary
circuits is outlined in Section 3. In Section 4 we discuss our preliminary
experimental results searching for quantum circuits that exhibit skipped vari-
ables and comparing these quantum circuits to their corresponding RZBB de-
compositions. Conclusions and applications of these results appear in Section
5.

2 PRELIMINARIES

2.1 Reversible Circuits
Definition 1: A binary or MVL gate/circuit is logically reversible if it maps
each input pattern to a unique output pattern. This mapping is defined by the
transformation matrix of the circuit. �

For binary reversible logic, the transformation matrix is of the form of
a permutation matrix. For quantum circuits, the transformation matrix is a
unitary matrix with complex-valued elements. An n × n reversible circuit
with n inputs and n outputs requires a rn × rn transformation matrix, where
r is the radix.
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FIGURE 1
The Deutsch-Toffoli Universal Gate

Definition 2: An n × n unitary matrix (n ≥ 2) that transforms only two
or fewer vector components is referred to as a two-level unitary matrix. �

Many binary and MVL reversible gates have been proposed [5] [13]. Fig.
1 illustrates a quantum two-level unitary matrix which is the transformation
matrix of the Deutsch-Toffoli universal gate. The control lines of each gate
are denoted by filled circles while the target line is marked by a square with a
function name (Rx in this case, and U in the general case). A common binary
reversible gate is the Control-Not or Toffoli gate where the unitary function
(the Not operation) is represented by a circle [14].

Definition 3: An n-variable reversible gate cascade is a circuit composed
of adjacent reversible gates that operate on the same n variables represented
by horizontal lines across the circuit. Each gate may be connected to one
or more of the lines and must be extended via the tensor product operator to
affect all n lines. �

Fig. 2 illustrates 4-variable quantum cascade C that preserves the bi-
nary control signal constraint. It includes gates G1 (Toffoli), G2 (Deutsch-
Toffoli), G3 (Not) and G4 (general unitary).

The transformation matrix of a circuit cascade is computed by multiplying
the transformation matrices of the gates, starting with the rightmost gate.

C = G4×G3×G2×G1 (1)

The unitary transformation matrix C maps the vector {x3, x2, x1, x0} to
vector {x′3, x′2, x′1, x′0} and vice versa.
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FIGURE 2
4-variable Quantum Cascade

2.2 Quantum Multiple-valued Decision Diagrams
The transformation matrix M of dimension rn × rn representing an MVL
reversible/quantum logic circuit C with radix r can be partitioned as

M =


M0 M1 . . . Mr−1
Mr Mr−1 . . . M2r−1
...

...
. . .

...
Mr2−r Mr2−r+1 . . . Mr2−1


where each Mi element is a submatrix of dimension rn−1 × rn−1. This
partitioning is exploited by the QMDD structure and is used to specify the
circuit C in a compact form [7]. In a manner similar to a reduced ordered
binary decision diagram (ROBDD) [15], a QMDD adheres to a fixed variable
ordering and common substructures (representing submatrices) are shared.
A QMDD has a single terminal vertex with value 1, and each edge in the
QMDD, including the edge pointing to the start vertex, has an associated
multiplicative complex-valued weight.

Theorem 1: An rn × rn complex-valued matrix M representing a re-
versible or quantum circuit has a unique (up to variable reordering or relabel-
ing) QMDD representation.
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FIGURE 3
A Mach-Zehnder Interferometer

Proof: A proof by induction based on the normalization of edge weights
that may be performed during the construction of a QMDD is detailed in
[7,8]. �

2.3 The RZBB Decomposition of a Unitary Matrix
The function of a beam splitter, which is a common component for quantum
optical experiments, can be represented by a two-level unitary matrix. L.
Mach and L. Zehnder developed the classic Mach-Zehnder interferometer
based on the beam splitter in 1892. Fig. 3 illustrates a common variant of the
Mach-Zehnder interferometer that implements a two-level unitary matrix. It
comprises two beam splitter (BS) elements, two mirrors (M) and two phase
delay elements with ω and ϕ delays.

Reck et al. showed that a two-level unitary matrix implemented by beam
splitters is essentially a universal gate, capable of implementing any arbitrary
finite unitary matrix [4]. More specifically, they proved that:

Theorem 2: An arbitrary n × n unity matrix U can be decomposed into
a product of two-level unitary matrices so that U = V1V2. . .Vk and k ≤
n(n− 1)/2.

Proof A proof by construction is detailed in [4] and useful examples ap-
pear in [5]. We outline the proofs construction here since we use the RZBB
decomposition in Section 4. The main idea is to create a cascade of two-level
matrices to transform U into a diagonal matrix. A first set of n (or less) two-
level matrices transforms U into an intermediate matrix with a 1 in the first
diagonal element and 0s elsewhere in the first column and first row. Another
set of n−1 (or less) two-level matrices transforms the last intermediate matrix
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into another with a ‘1’ in the second diagonal element and 0s elsewhere on
the second column and second row. The process continues recursively until
U is fully transformed into a diagonal matrix, so that V1V2. . .VkU = I. It
is easy to see that k ≤ (n− 1) + (n− 2) + . . .+ 1 = n(n− 1)/2. Since all
Vi are unitary, U = V′1V

′
2 . . .V

′
k. �

In Figure 4 we illustrate the RZBB decomposition of two different 4 × 4

unitary matrices (each matrix is decomposed step-by-step along two columns
of the table). Both examples require six two-level unitary matrices, resulting
in the cascade

U = V+
1 V

+
2 V

+
3 V

+
4 V

+
5 V

+
6 . (2)

3 QMDD SKIPPED VARIABLES

3.1 Conditions for Skipped Variables
The QMDD points to any sub-matrix having all zero elements directly to the
terminal node with zero weighted edges. Since quantum circuits are repre-
sented by unitary matrices that are typically sparse, QMDD achieve efficient
sizes by exploiting the large number of zero weighted edges. However, like
any other decision diagram, size explosion is still a potential limitation when
working with QMDDs. A sifting technique to minimize the structure that
employs local QMDD swap operations was investigated in [8].

Definition 4: A QMDD variable i is skipped if a non-terminal vertex rep-
resenting decision variable i+1 has a non-zero weighted edge that points to a
non-terminal vertex of decision variable i− 1, thus skipping the intermediate
variable i in the overall ordering. �

Sifting based on local swap operations can be made very efficient when the
QMDD does not have skipped variables. Therefore, it is helpful to determine
when quantum circuits may exhibit skipped variables [16].

Lemma 1: In order for an intermediate vertex representing decision vari-
able i to be skipped in a QMDD, at least one of the r × r decomposed sub-
matrices for the decision variable i + 1 matrix must be further decomposed
by r2 identical sub-matrices.

Proof: The ri × ri sub-matrix of decision variable i + 1 with r2 identi-
cal sub-matrix decompositions represents a vertex that has all outgoing edges
pointing to identical subtrees. By Theorem 1, a non-terminal vertex is re-
dundant if all r2 edges point to the same vertex with the same weight. It is
easy to see that the condition in Lemma 1 causes the intermediate vertex i to
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FIGURE 4
RZBB Decomposition of 4× 4 Unitary Matrices
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be redundant, since the identical matrices pointed to by all edges are repre-
sented by the same vertex due to the uniqueness of all the QMDD vertices.
This same vertex represents a matrix of size ri−1 × ri−1, which represents
decision variable i+1. We thus show that the condition in Lemma 1 causes a
vertex of decision variable i+1 to skip directly to a vertex of decision variable
i− 1. �

Fig. 5 shows the occurrence of a skipped variable in a binary QMDD in
view of Lemma 1. The transformation matrix for vertex V 1 at variable i+ 1

is decomposed into four sub-matrices that are subsequently decomposed at
variable i. Note that variable numbering decreases from the root vertex to
the terminal node T . To avoid cluttering of the illustrations, zero weighted
edges are shown as truncated stubs with 0. The 4th sub-matrix is decomposed
into four identical sub-matrices, and in accordance with Lemma 1 it causes
a skipped variable to occur. Vertex V 4 at variable i is eliminated by an edge
that points directly to V 7 at variable i− 1.

Fig. 6 shows the occurrence of skipped variable in a ternary QMDD. No-
tice that the transformation matrix at each vertex is decomposed into 9 sub-
matrices, and each vertex has 9 edges. The last sub-matrix at vertex V 1 is
decomposed into identical 9 sub-matrices, thus causing an edge that skips
variable i in accordance with Lemma 1.

3.2 Quantum Circuits with Skipped Variables
In our previous work we have shown that binary reversible circuits cannot
result in QMDD representations containing skipped variables because their
transformation matrices are necessarily of the form of a permutation matrix
[8]. A permutation matrix only contains a single ‘1’ value in each column and
row, thus the condition of Lemma 1 cannot be met. In this work we investigate
unitary matrices that have many non-zero elements that may produce skipped
variables.

Definition 5: We will refer to an N × N matrix D with all diagonal ele-
ments equal to 2

N − 1 and all the remaining elements equal to 2
N as DI(N)

matrices. �

DI(N) =



2
N − 1 2

N
2
N . . . 2

N
2
N

2
N − 1 2

N . . . 2
N

2
N

2
N

2
N − 1 . . . 2

N
...

...
...

. . .
...

2
N

2
N

2
N . . . 2

N − 1

 (3)

Lemma 2: If N is an integer such that N > 1, then the DI(N) matrix
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FIGURE 5
Skipped Variable in a Binary QMDD
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FIGURE 6
Skipped Variable in a Ternary QMDD
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is unitary. If m is an integer such that m > 1, then a QMDD representing
DI(2

m) must have skipped variables. Furthermore, the QMDD must have at
least one vertex with a non-zero weight that skips m− 1 variables.

Proof: It is easy to show that DI(2
m)D∗I (2

m) = I, and therefore, DI(2
m)

is unitary and represents a valid quantum state transformation. When n = 2m,
where m is an integer and m > 1, DI(2

m) can be represented by a binary
(radix r = 2) QMDD. To prove that DI(2

m) contains a skipped variable,
consider the decomposition of the matrix into four sub-matrices at each deci-
sion variable during the construction of the QMDD. For m = 2, the DI(4)

matrix is of dimension 4× 4 and is unitary. �

DI(4) =


− 1

2
1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2

 (4)

The first decision variable x1 decomposes DI(4) into four 2 × 2 sub-
matrices. Clearly these sub-matrices are not equal. The next and final de-
cision variable x0 further decomposes each of the four 2 × 2 sub-matrices
into four 1 × 1 sub-matrices. With this example, it is easy to show that the
condition of Lemma 1 exists within the second and third sub-matrices that are

S1 = S2 =

[
1
2

1
2

1
2

1
2

]
(5)

It is easy to show by induction that matrix DI(2
m) where m > 1 results in

a QMDD containing skipped variables that actually skip over m−1 variables.
This proves the case for m = 2 that there is a non-zero weighted edge that
skips m− 1 = 1 variables.

For the m + 1 case, we note that increasing m by 1 adds one decision
variable and quadruples the size of the transformation matrix from that of
m. Since all elements except the diagonal elements are the same, we have a
skipped variable which skips one more variable than the case for m. �

Fig. 7 illustrates the skipped variables that arise in the DI(8) unitary ma-
trix.

The DI(N) matrices, which represent quantum circuits that are used by
the Grover search algorithm clearly require the control inputs to have super-
position values, thus relaxing the binary control signal constraint [11].
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FIGURE 7
Skipped Variable in QMDD of DI(8)
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4 EXPERIMENTAL RESULTS

In the first phase of our experimentation we considered several published
quantum circuits in our QMDD simulator and we noted that the occurrence of
skipped variables is indeed a rare phenomenon among this test set. Except for
the DI(N) matrices that were discussed in Section 3.2 (or their tensor prod-
ucts when they were incorporated as part of larger quantum circuits) we have
so far not observed any other quantum circuits that produce skipped variables.

In the second phase of our experimentation, we tried to determine if cir-
cuits represented by QMDD with skipped variables correlates with any anomaly
metrics associated with other processes that may be performed on the unitary
matrices representing the same circuits. We were specially interested in the
RZBB decomposition. As explained in Section 2.3, this decomposition of an
arbitrary n×n unitary matrix creates a cascade of up to n(n−1)/2 two-level
unitary matrices. Clearly this process is not efficient in comparison with other
synthesis methods. However, the two-level unitary matrices employed by the
RZBB decomposition are the lowest complexity “universal gates”, and as
such we expected them to provide some fundamental insight into the metrics
of the decomposed matrix. With this notion in mind we developed the test-
flow outlined in Fig. 8. As shown, we subject the tested unitary matrix to our
“Scilab” implementation of the RZBB decomposition, where all intermediate
matrices are preserved and inspected for any anomalies. At the same time,
the unitary matrix is analyzed as a QMDD for detection of skipped variables,
using the conditions discussed in Section 3. Finally, we attempt to correlate
any anomalies with the occurrences of skipped variables.

To establish our control database of RZBB decomposed unitary matrices,
we performed the testflow of Fig. 8 on numerous 4 × 4 and 8 × 8 “ran-
dom” unitary matrices that were generated by ‘Scilab’. When we analyzed
the QMDDs representing the same random unitary matrices we noticed that
none of them exhibited skipped variables, nor did they exhibit the anomalies
found in the next phase.

With the controlled database of “normal” unitary matrices RZBB decom-
position, we investigated the DI(N) matrices to determine if the fact that they
cause QMDD skipped variables correlates with any anomaly metrics associ-
ated with their corresponding RZBB decomposition.

An interesting sample of our investigation is detailed in Fig. 4. In the
1st and 2nd columns we show the step-by-step RZBB decomposition of a
4 × 4 unitary matrix that does not exhibit skipped variables. The 3rd and
4th columns of Fig. 4 show the RZBB decomposition of the DI(4) unitary
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FIGURE 8
Experimental Results
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FIGURE 9
Skipped Variable in QMDD of HCH

matrix that does exhibit skipped variables. In fact, this matrix represents the
well known HCH quantum circuit shown in Fig. 9 that is used to represent
the superimposed result of a CNOT operation.

In the case of the unitary matrix without skipped variables, we saw that
the intermediate matrices (in 2nd column) never exhibit 0 in the diagonal.
In contrast, the DI(4) matrix with the skipped variables exhibits a 0 in the
diagonal of the intermediate matrix (in 4th column). This occurrence must be
followed by a permutation matrix (V 4 in the 3rd column) to rotate a non-zero
number into the diagonal. Similar behavior was observed in other DI(N)

matrices.
The QMDD requires that any sub-matrix that has all 0 elements point di-

rectly to the terminal vertex with zero weight. It should be noted that in
Definition 4 we made a distinction that edges that skip variables must have a
non-zero weight. Without this distinction, it can be shown that every sparse
unitary matrix exhibits skipped variables. Naturally, the RZBB decomposi-
tion does not make this distinction and it responds with a permutation matrix
even when variables are skipped with zero-weight edges. As a result, 0 ele-
ments do appear in the diagonal of the intermediate matrices in the decom-
position of sparse unitary matrices (e.g. permutation matrices representing
binary reversible circuits). To comply with Definition 4, the random 4 × 4

and 8 × 8 unitary matrices that were generated by “Scilab” were not sparse,
so that our controlled database of RZBB decompositions did not include 0
elements in the diagonals of the intermediate matrices.
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5 CONCLUSIONS

This paper has considered the phenomenon of skipped variables in QMDD.
This phenomenon was found to occur rarely; however, its occurrence may re-
duce the overall efficiency of sifting-based QMDD minimization.. The results
are used to determine the conditions that cause skipped variables and several
useful circuits that are known to exhibit skipped variables are reviewed. We
investigated the correlation between circuits that have skipped variables in
their QMDD representation and the appearance of an anomaly in their RZBB
decomposition. We also showed that randomly generated non-sparse unitary
matrices do not produce skipped variables in their QMDD representation.

Circuits that exhibit skipped variables in QMDD representations are likely
to exhibit various anomalies in other types of unitary decomposition repre-
sentations. This observation can lead to further optimizations in other forms
of quantum logic circuit decision diagrams. The existence of skipped vari-
ables in QMDD representations can be used as a basis for metrics that may
aid the synthesis of circuits representable by a unitary transfer matrix.
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