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Design for security has become an area of increasing importance.
This includes securing systems from both natural and intentional
threats. Extremely large and complex systems can have an ac-
cordingly large number of threat scenarios, thus simply listing
the threats and devising countermeasures for each is ineffective
and inefficient. The components of a large system may also have
various states of failure, which cannot be captured by contem-
porary binary system models. To address this problem, we de-
scribe a threat cataloging methodology whereby a large num-
ber of threats can be efficiently cataloged and analyzed for com-
mon features. This allows countermeasures to be formulated that
address a large number of threats that share common features.
The methodology utilizes Mixed-Radix Multiple-Valued Logic
for describing the state of a large system and a multiple-valued
decision diagram (MDD) for the threat catalog and analysis.
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1 INTRODUCTION

In recent years, more emphasis has been placed on design for security, secu-
rity assessment, disaster recovery, and disaster tolerance in addition to ongo-
ing efforts in the established area of fault tolerance. All of these areas require
the identification and analysis of faults or threats. Most fault models and anal-
ysis methods assume that a fault causes a system to either function or fail and
are thus modeled with binary conditions. In [9] we extended the model to al-
low the system to be modeled with a finite discrete set of states encompassing
intermediate conditions of partial failure. Here, we further extend the model
to allow for subsystem components to have differing numbers of state values
resulting in a mixed-radix MDD representation.

Recent events have demonstrated our vulnerability to disasters, both natu-
ral and man-made. This motivates the need to incorporate disaster tolerance
into large system designs. Disaster tolerance is a characteristic of a system
that results from incorporating a superset of the more established design ap-
proaches for fault tolerant systems. Disaster tolerant systems differ from fault
tolerant systems since they are designed with the assumption that failures can
occur due to threats that can result in either single or massive numbers of indi-
vidual faults. Furthermore, the faults can occur simultaneously or in a rapidly
cascading manner. Traditional fault tolerance system design usually relies
on fault models that represent single points of failure for the entire system.
In contrast, a disaster-tolerant system can still function with some degree of
normality even in the presence of multiple or cascading faults [8, 19].

Threats to a system can occur in either an accidental or intentional manner.
Examples of accidental threats include random component failures, natural
disasters, and fires. Examples of intentional threats include sabotage, or in
the case of information processing systems, cyber threats. It is necessary to
catalog and characterize anticipated system threats in order to formulate ap-
propriate countermeasures during the design and implementation of a disaster
tolerant system.

A variety of tree-like data structures have been developed to represent pos-
sible system threats. These tree structures are commonly called fault trees or
attack trees. Fault trees are used to identify the effects of component failures
on a system [21] while attack trees are intended to focus on the effects of
cyber security breaches [18]. Several different variants of these types of trees
have been devised and used interchangeably in past literature [3, 5, 12, 7, 14].
However, these trees are all based on a binary model whereby a system either
operates in a fully functional or a complete failure mode. This assumption
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allows binary-valued trees, connected with Boolean AND and OR operators
to be used as basic elements. The binary model limits the effectiveness of
how such trees can be used to represent threats in a disaster tolerant system.

Modeling different operational modes other than the binary case of fail-
ure or normal operation are critical in analyzing large systems in the pres-
ence of threats. As an example, in the 2003 blackout of the US power grid,
many complex interactions caused a blackout to occur in a large portion of
the northeastern US [1]; however, it would be incorrect to state that the entire
US power grid failed. In order to effectively catalog system threats, it is nec-
essary to determine the probabilities of these threats based on various system
stimuli, including input conditions and their probabilities.

As part of our preliminary research on large-scale system threat assess-
ment, we developed threat tree models [13]. Threat trees are a superset of
fault and attack trees since they are based on multiple-valued (MV) or radix-
p valued algebras over a finite and discrete set of values [11]. When the
radix p = 2, the threat tree reduces to a fault or attack tree depending on the
nature of the disruptive events. Generally, threat trees have p > 2: these ad-
ditional logic states allow for more complicated interactions to be modeled.
In particular, these additional states can represent partial failures or degraded
performance in a system, which are critical in analyzing large systems in the
presence of threats.

Multiple-valued logic systems can either be fixed-radix, where all system
components have the same radix p, or mixed-radix, where the system compo-
nents have different radices. A preliminary version of the results in this paper
was presented at the 41st IEEE International Symposium on Multiple-Valued
Logic [9], and focused on threat probability analysis methods for fixed-radix
systems. However, many practical systems may contain components that have
different radices. This paper describes the extension of our methods to deter-
mine threat probabilities for mixed-radix systems.

The structure of this paper is the following: First, background information
on decision diagram models is provided. Next, an approach is presented using
decision diagram models to determine system threat probabilities. Finally, a
system example is used to illustrate these concepts.

2 DECISION DIAGRAMS

Figure 1 shows an example of a simple binary fault tree where the circular
nodes represent the event of a single component failure and the logic opera-
tors (AND/OR gates) show how the events combine to result in a subsystem
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FIGURE 1
Fault Tree Example

failure. Referring to Figure 1, if one or more of events 1, 2, or 3 occur, subsys-
tem A will fail. Alternatively, both events 4 and 5 must occur for subsystem
A to fail. For practical systems, it is likely that a large number of compo-
nents will need to be analyzed. As the system size grows (in terms of number
of components and/or number of logic states), the system analysis process
quickly becomes unwieldy. Therefore, an alternate system representation is
required to make the analysis process more efficient.

Decision diagrams are well-suited for compact representation of a large
number of threats and due to their canonical structure, efficient algorithms are
formulated that analyze threats and identify those that pose the greatest threat
to the system. Decision diagrams are rooted directed acyclic graphs (DAG)
that can be used to represent large switching functions in an efficient manner.
For binary-valued logic, the binary decision diagram (BDD) is a well-known
structure [4] that has been applied to many areas including the representation
of fault trees [17, 16, 15, 2, 22, 23]. Furthermore, efficient software is readily
available to manipulate BDDs [16, 15, 2].

In the case of Multiple-Valued Logic (MVL), an extension to the BDD
construct has been developed and implemented called the Multiple-Valued
Decision Diagram (MDD). Consider a totally-specified p-valued function with
n inputs, f(x0, x1, . . . , xn) where each dependent variable xi ∈ {0, 1, · · · , p−
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FIGURE 2
Mixed-radix MDD Example

1}. f(x) can be efficiently represented by an MDD. As is similar to BDD, the
MDD is also a DAG and it contains a maximum of p terminal nodes, where
each terminal node is labeled by a distinct logic value in the range [0, p− 1].
Every non-terminal node is labeled by an input variable, and has p outgoing
edges, where each edge corresponds to each logic value. MDD can be mini-
mized using various techniques that were developed for BDD, thus allowing
the representation of exceptionally large number of such functions [10].

For mixed-radix MVL, each non-terminal node on the MDD will have its
own radix. Given a mixed-radix MDD with m non-terminal nodes, each node
j has an associated radix pj . The maximum radix of the MDD is denoted
by |p| = max{p1, p2, . . . , pm}, and the MDD contains a maximum of |p|
terminal nodes [20]. Figure 2 shows an example of an MDD for a mixed-
radix system. Input variable x0 is radix-2, while input variable x1 is radix-3.
The truth table for this system is shown in Table 1. This is mixed-radix ”min”
function, where f = min(x0, x1). For a mixed-radix min function, if both
inputs are their maximum radix values, then the output is the maximum radix
value of the system. Therefore f = 2 if x0 = 1 and x1 = 2.

3 DETERMINING SYSTEM OUTPUT PROBABILITIES

For binary tree structures (fault and attack trees), BDD’s have been applied
to simplify the modeling threats on complex systems [5, 17, 16, 15, 2, 22,
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x0 x1 f
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 2

TABLE 1
Truth Table for Mixed-radix Example

23]. The common approach to determine probabilities on binary tree struc-
tures is to apply probability equations, such as those described in [12]. As-
sume we have n inputs, each with probability Pin(xi){1}, i ∈ [1, n], where
Pin(xi){1} = probability that input xi is 1. If the inputs are mutually in-
dependent, then the output probability (probability that the output is 1) of an
n-input AND gate is the sum of all the edges pointing to the terminal-1 vertex.

As an example, assume we have a 2-input AND gate with the following
input probabilities:

Input x0 : Px0
[x0 = 0] = 0.5, Px0

[x0 = 1] = 0.5

Input x1 : Px1
[x1 = 0] = 0.25, Px1

[x1 = 1] = 0.75

Then Pout{1} = Px0 [x0 = 1]Px1 [x1 = 1] = (0.5)(0.75) = 0.375 Since
this is a binary system, Pout{0} = 1− Pout{1} = 1− 0.375 = 0.625.

While the separate application of probability equations has been com-
monly used for previous fault tree assessment methods, this approach can
become inefficient for systems with large number of nodes. Since the deci-
sion diagram contains edges with logic value weights, a more efficient ap-
proach would be to incorporate probabilities as edge weights, then calculate
output probabilities by traversing the graph edges.

The BDD for this gate is shown in Figure 3. The edge weights have the
notation ”V/P”, where V = input value and P = probability of that input
value. The output state probabilities Pout{1} and Pout{0} are calculated by
traversing the edges of the BDD. This is done along all the paths from the root
node to the output state nodes (0 and 1). The probabilities along each path
are multiplied, and paths leading to the same output state node are added:

Pout{0} = 0.5 + (0.25)(0.5) = 0.625
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FIGURE 3
Binary BDD with Probabilities for AND Gate

Pout{1} = (0.5)(0.75) = 0.375

Since an MDD is an extension of a BDD, it should also hold that we can
determine threat probabilities by applying the specified state probabilities as
weights to the MDD edges and traversing the tree. Table 2 shows a system
with three operational states and two components with given input probabil-
ities. The system has the following truth table (Table 3), which becomes the
MDD shown in Figure 4. Note that branch (1,2) from A to output state (2)
adds the probabilities of the two events: 0.25 + 0.5 = 0.75. We get the fol-
lowing output probabilities by traversing the MDD. This is done along all the
paths from the root node to the output state nodes (0, 1, and 2). The proba-
bilities along each path are multiplied, and paths leading to the same output
state node are added together:

Pout{0} = (0.2)(0.25) = 0.05

Pout{1} = (0.2)(0.5) + (0.3)(0.25) = 0.175

Pout{2} = (0.2)(0.25) + (0.3)(0.75) + 0.5 = 0.775

Using these concepts, we developed the algorithm shown in Figure 5 to
calculate system output probabilities for a given MDD. Initially, the out-
put probabilities are set to zero. The algorithm starts at the root vertex of
the MDD, then traverses the MDD using a depth-first search. A standard
depth-first search on a graph with V vertices and E edges has a complexity
ofO(V +E) [6]. Each edge is traversed, and the corresponding probabilities
are multiplied to form a working probability value until a terminal node is
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State Component A Probability Component B Probability
(2) Operational 0.25 0.5
(1) Degraded 0.5 0.3
(0) Offline 0.25 0.2

TABLE 2
Radix-3 System Example

A B f
0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 2
2 X 2

TABLE 3
Truth Table for Radix-3 Example

FIGURE 4
MDD for Radix-3 Example
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reached. At this point, the output probability corresponding to the terminal
node is updated by adding the working probability value. When all vertices
have been traversed, the output probabilities have been updated to their final
values.

4 EXAMPLE

Using the previously mentioned 2003 US power grid failure example, assume
that we can represent a simple power system using the example from [13].
Figure 6 shows the MVL circuit for the power system example. The city’s
power condition P depends on two sub-systems:

1. Power generation plant sub-system G, which is a radix-3 system.

2. Power transmission line sub-system T , which is a radix-2 system.

System P is mixed-radix, so a mixed-radix MDD is developed to model
this system. The analysis proceeds in a bottom-up manner: the output logic
levels and probabilities of sub-systems G and T will become the input logic
levels and probabilities for the MIN gate.

4.1 Power generation plant sub-system
The power generation plant sub-system G has three operational states: fully
operational, partially operational, and non-operational. This is a radix-3 sys-
tem, so it cannot be represented by the traditional attack tree structure. How-
ever, it can be represented by our threat tree structure: state 2 = fully opera-
tional, state 1 = partially operational (degraded) and state 0 = non-operational.
Also assume that the simple power grid system has three generation plants:
coal, hydro, and wind. The total power available on the power grid is the sum
of the power output produced by the coal, hydro and wind plants. Table 4
shows the threshold power values for fully operational, degraded, and non-
operational states for the total power grid, while Table 5 shows these values
for each generation plant. Using this information, an MVL truth table for this
system is created (Table 6), where f represents the total power grid opera-
tional state. Note that ”X” indicates a ”don’t-care” state, where the value can
be either 0, 1, or 2. For example, row 4 in Table 6 identifies the system state
where the coal plant is non-operational (state 0: output = 0), the hydro plant is
partially operational (state 1: output = 1500 MW) and the wind plant is fully
operational (state 2: output = 200 MV). The total power grid output for this
system state is 1700 MW, so the power grid is partially operational (G = 1).
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Given MDD as graph G(V,E) with vertices V and edges E:

begin Calc Prob(G)
let p = 1.0 // current probability value
for j = 0 to (radix-1) do

Pout[j] = 0.0 // output probability values
end for
let u = root vertex of G
DFS(u,p)

end Calc Prob

begin DFS(u,p)
if u is a terminal node then

k = value of terminal node (0, 1, . . . , radix− 1)

// update output probability value
Pout[k] = Pout[k] + p

else
for each child vertex v of u do

x = probability value on edge(u,v)
// multiply edge probability by current probability
y = x · p
// do depth-first search starting at child v
DFS(v,y)

end for
end if

end DFS

FIGURE 5
Algorithm for Output Probability Calculations
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FIGURE 6
Power System Example with Power Generation and Transmission Line Systems [13]

State Total Power Output Available (MW)
(2) Fully Operational ≥ 2400
(1) Degraded 1600 - 2400
(0) Non-operational < 1600

TABLE 4
Operational States for Power Grid Subsystem

State Coal Plant Hydro Plant Wind Plant
MW Probability MW Probability MW Probability

(2) 1000 0.98 2000 0.99 200 0.6
(1) 600 0.018 1500 0.009 100 0.3
(0) 0 0.002 0 0.001 0 0.1

TABLE 5
Operational States for Each Power Plant (column MW indicates output in MW)
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Coal Hydro Wind G

0 0 X 0
0 1 0 0
0 1 1 1
0 1 2 1
0 2 X 1
1 0 X 0
1 1 X 1
1 2 X 2
2 0 X 0
2 1 X 2
2 2 X 2

TABLE 6
Truth Table for Power Grid Subsystem

The MDD for our example power grid system is shown in Figure 7. The
path along the MDD that corresponds to row 4 in Table 6 is indicated by the
dashed arrows in Figure 7.

Using this MDD, we can now calculate the output probabilities for this
radix-3 system. Note that the input probabilities from Table 5 are denoted
in the MDD of Figure 7. Applying the algorithm of Figure 5, we obtain the
following output probabilities:

Pout{0} = (0.002)(0.009)(0.1) + (0.002)(0.001) + (0.018)(0.001) +

(0.98)(0.001) = 0.001002

Pout{1} = (0.002)(0.009)(0.3)+(0.002)(0.009)(0.6)+(0.018)(0.009)+

(0.002)(0.99) = 0.002158

Pout{2} = (0.98)(0.009) + (0.018)(0.99) + (0.98)(0.99) = 0.99684

4.2 Power transmission line sub-system
The power transmission line sub-system T has two states: either fully oper-
ational or non-operational. Therefore, this is a radix-2 system. As shown in
Figure 6, T = max{TX1, TX2}. This means that if at least one line is fully
operational, system T is fully operational. Figure 8 shows the MDD for this
system. For this example, we assume that line TX1 has a probability of 0.9
operational and 0.1 non-operational, while the respective values for line TX2

are 0.95 and 0.05. The resulting output probabilities are:
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FIGURE 7
MDD Radix-3 for the Power Grid Subsystem
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FIGURE 8
MDD Radix-2 for the Power Transmission Line Subsystem

Pout{0} = (0.1)(0.05) = 0.005

Pout{1} = (0.1)(0.95) + (1)(0.9) = 0.995

4.3 Entire power grid system
Now that we have the output probabilities of the subsystems of the power grid,
these will be used as input probabilities to determine the output probabilities
of the entire power grid system P . Recall from Figure 6 that the city’s power
condition P = min{G,T}. Sub-system T is a radix-2 system, while sub-
system G is a radix-3 system. Therefore, P must be a radix-3 system with the
min function operation as described in Section 2. Figure 9 shows the mixed-
radix MDD for system P . Using the algorithm of Figure 5, the resulting
output probabilities are:

Pout{0} = (0.005)(1) + (0.995)(0.001) = 0.005995

Pout{1} = (0.995)(0.0022) = 0.002189

Pout{2} = (0.995)(0.9918) = 0.991816

5 CONCLUSION

The determination of system threat probabilities is an important component
of system classification and threat cataloging. We have shown how to model
system threat probabilities using edge weights on MDD’s, which is a more

14



FIGURE 9
Mixed-radix MDD for Power Grid System

efficient approach than the current method of developing separate probability
equations for each possible output threat scenario. It allows easier determi-
nation of overall system state probabilities and it can accommodate complex
systems with the efficient scalability of modern MDD packages. The frame-
work discussed in this paper can be further applied to risk analysis which is
useful in the determination of the initial system element probability values.

In terms of augmenting large systems to make them more disaster tolerant,
we intend to develop further analysis methods based on threat trees. Because
threat trees inherently combine common subtree structures, we note that a
tree representing a collection of threats automatically yields common charac-
teristics of subsets of threat by combining common subpaths. Such common
subpaths correspond to similar characteristics among subsets of threats and
they may be used to determine which parts of the system to augment in order
to address a maximum number of threats. Finally, another area for further
research is how to model threat probabilities that are not mutually exclusive,
such as conditional probabilities, and determine how to incorporate these into
the MDD structure.
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7 NOMENCLATURE

pj radix of node j in MDD
|p| maximum radix value in mixed-radix MDD
Pout{x} probability that output value of function will be x
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